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We model a one-dimensional current-driven interacting disordered system through a non-Hermitian Hamil-
tonian with asymmetric hopping and study the entanglement properties of its eigenstates. In particular, we
investigate whether a many-body localizable system undergoes a transition to a current-carrying nonequilibrium
steady state under the drive and how the entanglement properties of the quantum states change across the
transition. We also discuss the dynamics, entanglement growth, and long-time fate of a generic initial state under
an appropriate time evolution of the system governed by the non-Hermitian Hamiltonian. Our study reveals
rich entanglement structures of the eigenstates of the non-Hermitian Hamiltonian. We find transition between
current-carrying states with volume-law to area-law entanglement entropy, as a function of disorder and the

strength of the non-Hermitian term.
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I. INTRODUCTION

Classification of many-body quantum states in terms of
their entanglement properties has become a major theme
in condensed matter physics. These activities have revealed
intriguing connections of entanglement with dynamics and
thermalization of quantum systems [1-3].

It has been understood that typical high-energy eigenstates
of a generic isolated many-body system can be classified
as either ergodic or nonergodic depending on the subsystem
entanglement entropy, e.g., Sgg = —Traps In p4 of a subsys-
tem A, where p4 is the reduced density matrix of A for
the eigenstate. In particular, when d-dimensional system is
divided into two subsystems with the smaller subsystem, say
A, having length L, the entanglement entropy Sgg ~ L9, i.e.,
scales with the volume of the subsystem. On the contrary, for
many-body localized (MBL) states [1-7], prominent examples
of nonergodic eigenstate, subsystem entanglement scales as
L1 i.e., with the area of the subsystem, the so-called area-
law scaling. Starting with a generic initial state, the MBL
systems do not thermalize under the unitary dynamics, unlike
the ergodic ones. Nevertheless, the MBL systems still give
rise to a slow growth of entanglement entropy approaching
a state with subthermal volume-law scaling [8—11]. One of
the most natural realizations of MBL phases is found in
strongly disordered systems where single-particle Anderson
localization is stable to interaction [4—7], even at finite-energy
densities above the ground state. A many-body localizable
system can undergo a volume-law (ergodic) to area-law (non-
ergodic) transition [1-7] as a function of the strength of the
disorder or the interaction.

However, condensed matter systems are seldom isolated. In
particular, some very important experimental setups require
the system to be connected with external environment. A
notable example is a system connected to leads and driven by
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current or a voltage bias or an electric field [see Fig. 1(a)].
Generically, such systems are expected to attain a unique
current-carrying nonequilibrium steady state (NESS). It is
interesting to explore whether such NESSs could also be
classified according to their entanglement content. For exam-
ple, we could ask whether a many-body localizable system
can undergo a dynamical transition when driven by a strong
current or electric field, e.g., a transition between NESSs
with distinct system-size scaling of current. Moreover, can
such NESS transition be coincident with an entanglement
transition?

Recently, there have been some studies of entanglement
properties [12,13] as well as entanglement transitions [14,15]
for the current-carrying NESSs in noninteracting models us-
ing nonequilibrium Green’s functions or scattering states.
However, computing entanglement properties of driven states
of a disordered interacting system connected to infinite leads
at the boundaries is an extremely challenging task. One
possible way to access such boundary driven system is via
Markovian Lindblad quantum master-equation approximation
[16-19]. Nevertheless, generically, such Markovian evolution
is destined to lead to a description of NESS in terms of mixed
state having area-law entanglement, e.g., quantified in terms
of mutual information [18—-20], and hence make the notion of
entanglement transition obscure. Also, in noninteracting sys-
tems, there are examples of NESSs with higher than area-law
mutual information [21], or even volume-law entanglement
[14,15]. Such highly entangled NESSs can persist even in
interacting systems with size smaller than electronic phase
coherence length [14]. An important avenue, at present, is to
try to mimic such NESS in less microscopic toy models, e.g.,
boundary-driven random unitary circuit model [14]. Here,
we take a different route, and try to address driven states
of interacting disordered systems through an effective model
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FIG. 1. The model: (a) Schematic of an interacting disordered
system driven by current through a voltage bias ug — pr, applied
between left and right leads with chemical potentials w; and g,
respectively. (b) The non-Hermitian model [Eq. (2)] for interacting
fermions hopping on a ring with an imaginary flux iWL.

which incorporates the dissipation and the current drive via a
non-Hermitian term.

The model studied here is an interacting version of the
one-dimensional (1D) Hatano-Nelson model [22-24] for non-
Hermitian single-particle localization-delocalization transi-
tion. The model has a time- (7-) reversal symmetry, that
could be spontaneously broken by the eigenstates for a large
enough strength of the non-Hermitian term. In the noninteract-
ing Hatano-Nelson model, 7 -reversal symmetry breaking or
real-to-complex eigenvalue transition [22-24] coincides with
localization-delocalization transition. We study the interacting
non-Hermitian model via exact diagonalization (ED). Our
main results are the following.

(1) We show that a current-driven many-body localizable
system can undergo a volume- to area-law entanglement
transition in the eigenstates as a function of disorder and/or
the strength of the non-Hermitian term for a fixed interaction
strength.

(2) We find that entanglement transition has a direct cor-
respondence with a transition, similar to MBL transition in
a Hermitian system [25,26], in terms of participation of the
eigenstates in the many-body Hilbert space.

(3) We demonstrate that the entanglement and 7 -reversal
breaking transitions are distinct in the interacting case. We
also find another distinct transition within the 7 -reversal
broken region in terms of the scaling of the current with
system length.

(4) We show how the system approaches the NESS at long
times, under an appropriately defined dynamics, in terms of
time evolution of the entanglement entropy and the memory
of the initial state. In particular, as in the Hermitian MBL
systems, starting with an initial unentangled (product) state
the entanglement entropy grows linearly with time # in the
volume-law phase. In contrast, both in the 7 -reversal broken
and unbroken area-law phase, entanglement entropy grows
as In(z). However, the entanglement growth is followed by
a decay at late times toward a unique NESS. Moreover, we
find that the memory of the initial state always eventually
gets lost as the NESS is attained at long times. Overall,
our study reveals a much richer eigenstate and dynamical
phase diagram of the non-Hermitian model compared to the
Hermitian systems.

The remainder of this paper is organized as follows. In
Sec. I we describe the model and the dynamics governed
by the non-Hermitian Hamiltonian. We give some physical
motivations behind the model and its dynamics in Sec. III.
Section IV discusses the results for the Hilbert-space
localization-delocalization, entanglement and time-reversal
symmetry-breaking transitions in terms of finite-size scaling
analysis. We also describe here the transient dynamics of
the system during the approach to NESS and the properties
of the NESS. In Sec. V we conclude with the implications
and significance of our results. The Appendix include some
additional results.

II. MODEL

In this section we introduce the non-Hermitian Hamilto-
nian and the dynamics. In the next section, we briefly review
general motivations for the model, based on non-Hermitian
approach to open systems, and discuss some specific physical
realizations.

A. Non-Hermitian Hamiltonian

We study the following non-Hermitian one-dimensional
(1D) XXZ spin (S = %) model with a uniform random field
h; € [-W, W], W being the disorder strength,

L L
J w - -V o—
H=-3 Xi:(e SHST e VSISt - Zi:h,-s,.z

L
— Ty S8, (1

Here, S = (SF £iS}), L is the number of sites, W is a real
number (see below), and J, J, are the spin exchanges; the
latter controls the interaction strength. We apply periodic
boundary condition. The above model can be rewritten as
H = Hj, +1irT, where H;, is the usual Hermitian random
field XXZ model with J — J = J cosh W, A = J sinh ¥ and
J =—(J/2) Y (7S, — S7S7,,) is the sum of spin current
across the system.

The model can be mapped, via Jordan-Wigner transforma-
tion, to a model of spinless fermions hopping (with amplitude
t =J/2) on the 1D lattice with random disorder potential
(¢; = h;) and nearest-neighbor interaction (V = J,), i.e.,

L L
W —v
H = —t Z(e C;—CH,l +e cL_lc,-) — Zein[
i i

L
-V Z ninj41. (2)

Here, c,-,cl.T are fermion operators. In this case, iV is an
imaginary vector potential corresponding to an imaginary flux
iWL through a ring of circumference L [Fig. 1(b)] and the
model is an interacting version of the Hatano-Nelson model
[22-24]. The latter describes non-Hermitian single-particle
localization-delocalization transition. The spinless fermion
model is invariant under i = «/—1 — —i, i.e., time (T) rever-
sal. However, as in the usual P7 -symmetric non-Hermitian
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models [27,28], this 7 or pseudo-P7T symmetry can be
broken by the eigenstates leading to complex eigenvalues. We
refer to this real-to-complex transition as 7T -reversal breaking
for brevity even in the spin model [Eq. (1)]. Intriguingly, in
the original Hatano-Nelson model the 7 -symmetry-breaking
transition of the single-particle eigenstates coincides with
the localization-delocalization transition and the delocalized
states carry finite current. This leads to the question whether
there is any localization-delocalization transition in the in-
teracting model and whether the transition coincides with
the 7T -reversal breaking. Such congruence of the symmetry
breaking and localization transition might lead to an exciting
possibility of describing a “MBL transition” in terms of
symmetry breaking.

B. Non-Hermitian dynamics

We further extend the model of Eq. (1) to describe the
approach to the long-time NESS through the following dy-
namical equation for density matrix p (A = 1):

d
d—f = —i[Hy pl + AT p} — 2Te(pT)pl = Lp.  (3)

Here, £ defines a Liouvillian operator. As we discuss in the
next section, the above dynamics for the density matrix can
be obtained starting with the time-dependent non-Hermitian
Schrodinger equation [29,30]. The dynamical evolution of
Eq. (3) has been used previously in the context of P7T-
symmetric quantum mechanics to describe system with gain
and loss [31]. A similar model has been also used in the
context of field-driven Mott transition [32]. Equation (3)
can describe the evolution of both pure and mixed states
as discussed in Ref. [31] and keep Trp(¢) = 1. Unlike in a
Lindblad master equation, an initial pure state remains pure
during the time evolution, and, in this case, Eq. (3) reduces
to a complex Schrodinger equation [31]. From Eq. (3), o(¢)
can be formally written using the non-Hermitian Hamiltonian
[Eq. (D] as p(r) = e~ poe™" /Te(e ™ pe™'1), where po
is the initial density matrix. In particular, for an initial pure
state pg = |) (Y|, the state at time 7 is given by

>, e o (| r) Ing)
132, e 8 (ng |7 ) Ing) |

V(1) = “

Here, (n;| and |ng) are the left and right eigenvectors of H
with eigenvalue E,, = &, +iA,; || ... || denotes the norm of
a vector. As well known [33], the left and right eigenvectors
form a biorthonormal basis (n; |mg) = §,,, with the resolution
of the identity Y, |ng){n.| = I. The real part of the eigen-
value &, = (ng|Hn|ng)/(nglng), i.e., the expectation of the
parent Hermitian Hamiltonian, and the imaginary part A, o
Jn = (ng|J|ng)/ (ng|ng). Here, the bra vector (ng| = |ng)t is
the Hermitian conjugate of the right eigenket, and similarly
|nz) = ({n])T. The identifications of real and imaginary parts
of the eigenvalue as the eigenstate expectation value of H,;, and
J are due to the fact that both the operators are Hermitian and,
hence, their expectation values are real. It can be easily shown
from Eq. (4) that, for eigenspectrum with nonzero imaginary
part of the eigenvalues, the NESS |V) = [ (f — 00)) is

given by

(scl¥r) Isg)
[selv) ! sl

where (s.| (|sg)) is the left (right) eigenvector with maximum
imaginary part of the eigenvalue Aj;.

[Veo) = &)

III. MOTIVATIONS AND PHYSICAL REALIZATIONS

A. Non-Hermitian approach to open quantum systems

Non-Hermitian Hamiltonians have been used in many past
studies to describe decaying states (e.g., see Refs. [33-36])
and effects of dissipation and drive in open quantum systems
(e.g., see Refs. [29-32,37-39]). For the latter systems, the
non-Hermitian approach has a range of applicability different
and complementary to more widely used Lindblad master-
equation approximation [40]. For instance, as already dis-
cussed, the non-Hermitian approach could describe both pure
and mixed states and their dynamical evolutions [29-31].
The general theoretical framework, in principle, to rigorously
derive such non-Hermitian Hamiltonian is rooted in the Fesh-
bach projection operator technique [33-37]. The latter can be
used to construct non-Hermitian Hamiltonian to describe the
effects of continuum of scattering states in the presence of an
environment on a finite subsystem which has discrete states
in isolation. However, here, as in earlier studies [32,38,39],
we use the model of Eq. (1) from a more phenomenological
ground to describe NESS in a current-driven interacting dis-
ordered open system. Apart from the connections to some of
the possible physical realizations that we discuss below, the
model of Eq. (1) could be thought of as an effective model
to generate and study interesting current-carrying pure states
which are relatively simpler to access within exact numerical
calculations, albeit for finite systems of modest sizes. Also,
in the spirit of study of current-carrying states in quantum
field theories (see, e.g., Ref. [41]), the non-Hermitian term
iAJ can also be interpreted as a Lagrange multiplier term
that acts as a source field for inducing finite current in the
eigenstates.

Once the non-Hermitian Hamiltonian of Eq. (1) is posited
as an effective phenomenological model to describe current-
driven open system, the dynamical evolution [Eq. (3)]
results naturally from the corresponding non-Hermitian
time-dependent Schrodinger equation [33] as discussed in
Refs. [29,30]. We briefly review here the derivation of Eq. (3)
for the sake of completeness.

For the non-Hermitian Hamiltonian the time-dependent
Schrodinger equation ia|1ﬁ(t))/8t = (H,+ i)»j)h/}(t)) for a
state [ (¢)) leads to

ap . o ~
5 = ~HHn pl+ 2T, p) (©)

for a density matrix p(t) = |¥())(¥(t)|. As discussed
in Refs. [29,30], the above evolution does not preserve
Trp(t). However, the expectation values of an operator can
be obtained using the normalized density matrix p(z) =
p(t)/Trp(t). It is straightforward to obtain the time evolution
of Eq. (3) for the normalized density matrix p, and hence
for the normalized pure state [y(¢)) [Eq. (4)] with p(¢) =
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[ ()) (¥ (¢)|, from Eq.(6). Therefore, we use Eq. (3) to de-
scribe the dynamics in our model.

B. Physical realizations

1. Electric-field-driven breakdown in interacting disor-
dered systems. One of the motivations for the models of
Egs. (1) and (2) comes from earlier works in Refs. [32,38,39]
on the electric-field-driven Mott transition. In this case, the
imaginary gauge potential in Eq. (2) arises from asymmetric
hopping amplitudes t;; = —tet¥ # 1, = —te 'Y, between
site 1 and L on the ring [Fig. 1(b)], while all other hop-
pings between nearest-neighbor sites are —¢. It was argued in
Ref. [38] that these asymmetric hoppings mimic the situation
of an open chain, connected to leads at the two ends, where
electron is supplied at site 1 and dissipated at site L at the other
boundary. Thus, the asymmetric hoppings give rise to both
dissipation and drive. The model of Eq. (2) can then be easily
obtained via nonunitary gauge transformations ¢, — e~*¥¢!
and ¢; — ¢¥¢; at site i, and iWL acts as an imaginary flux
through the ring [Fig. 1(b)].

In the case of electric-field-driven Mott localization de-
localization (insulator-to-metal transition), the model with
imaginary gauge potential has been shown [39] to describe
many-body Landau-Zener (LZ) [42] quantum tunneling pro-
cesses near field-driven Mott transition within Dykhne [43]
formalism. In the latter approach, a model with real gauge
potential, such as for a constant electric field, is analyti-
cally continued to imaginary gauge potential to describe LZ
transition.

Similar to the electric-field-driven Mott transition in
the clean fermionic Hubbard model [32,38,39], the non-
Hermitian model can be thought of as an effective model
to describe possible electric-field-driven transition in a MBL
system through many-body Landau-Zener breakdown. As in
the case of field-driven Mott transition [44], the connection of
the non-Hermitian model with field-driven MBL breakdown
can be explored by considering interacting fermions on a ring
[Fig. 1(b)] under a constant electromotive force applied by
a time-dependent (real) flux through the ring. It is indeed an
interesting question whether such many-body LZ processes
could provide an effective description for field- or current-
driven transition in a MBL system. Here, we do not attempt to
address this issue, and, instead, use the non-Hermitian model
[Eq. (1)] as an effective model to generate current-driven pure
states and describe possible entanglement transitions among
them.

2. Anomalous boundary states of symmetry-protected
gapped topological (Hermitian) systems. Recently, new corre-
spondence has been established between topological classifi-
cation of (d + 1)-dimensional gapped Hermitian systems and
d-dimensional non-Hermitian systems [45]. For example, as
discussed in Ref. [45], the long-time steady state of noninter-
acting clean non-Hermitian model in Eq. (2) with W = 0 and
V = O describes 1D chiral fermions, that are naturally realized
at the edge of quantum Hall systems. Hence, the model of
Eq. (2) could describe the effects of disorder and interaction
on such chiral edge states.

3. Depinning transition in classical systems of interacting
vortices. The original motivation behind the Hatano-Nelson

model [22-24] was to study a classical systems of supercon-
ducting vortices with columnar defects and tilted magnetic
field applied at an angle with columnar defects in one higher
dimension than the quantum model. The latter can be mapped
to the classical model via standard path-integral approach,
and the depinning transition is understood as the localization-
delocalization transition in the quantum model. In the same
spirit, the interacting model of Eq. (2) may describe the effects
of intervortex interaction on the depinning transition [46].

IV. RESULTS

We discuss our results on the phases and phase diagram for
the model of Eq. (1) in this section. To this end, we obtain
the eigenvalues and the (left and right) eigenvectors of the
non-Hermitian Hamiltonian [Eq. (1)] using numerical exact
diagonalization for system sizes L = 10-16 and sample over
many disorder realizations (10 000 for L = 10, 6000 for L =
12, 1440 for L = 14, and 200 for L = 16). The Hamiltonian
[Eq. (1)] and the dynamics [Eq. (3)] conserves S} =) . S;.
Hence, we work in the S =0 subspace. We expect the
results to be similar for the other S;"‘ sectors, however, the
effect of interaction is strongest for S©° = 0 subspace, which
corresponds to half-filling in the fermion sector. We take the
interaction J, = J = 1 and vary W and W.

As in the studies of MBL systems [1-3,6,7,25,26], here we
characterize the phases as a function of W and W in terms
of (a) properties of eigenstates and (b) from time evolution
starting from a generic initial pure state. Moreover, to draw
the eigenstate phase diagram we use the quantity € = (€ —
&0)/(Eu — &), defined from the real part of the eigenvalues;
Eyv and &) are the maximum and the minimum values of
&, respectively. For brevity, we refer to € as energy density.
The quantity € is used as an index for the eigenstates. In the
Hermitian limit & = 0, since energy is conserved under time
evolution, the expectation value of energy density € of the
initial state can be used to characterize dynamics and long-
time steady-state ensemble. For example, in the ergodic phase
of the Hermitian model, within eigenstate thermalization hy-
pothesis (ETH) [47—49], the long-time steady state can be
related to a thermal Gibbs ensemble at a temperature 7 with
the thermal expectation value of energy density €(7T) = €.
Similarly, this relation can be used to define a temperature
for an eigenstate using its energy density. As a result, an
eigenstate phase transition at the many-body mobility edge
(e.) from ergodic to nonergodic or MBL phase can be defined
as a function of € [1-7,25,26]. In the non-Hermitian case the
energy density € is not conserved under the dynamics [Eq. (3)]
and for evolution from a generic initial pure state the energy
of the long-time steady state is uniquely determined by the
energy density of the eigenstate |sg) as can be easily seen
from Eq. (5). Hence, € cannot be related with a temperature.
However, € can still be used to denote the spectrum of
states and eigenstate transitions, e.g., T -reversal breaking and
localization-delocalization transition or a many-body mobility
edge, analogous to the single-particle mobility edge in the
noninteracting Hatano-Nelson model [22-24]. Furthermore,
states other than |sg) are accessed during the short- and
intermediate-time dynamics and they govern the approach
toward the steady state as we discuss later.
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FIG. 2. Phase diagrams: The phase diagrams for (a) the Hermitian system W = 0 and the non-Hermitian systems (b) ¥ = 0.3 and (c) ¥ =
0.6 as a function of disorder (W) and energy density (¢). The color indicates the slope a of the participation entropy with the system size (see
main text). The slope exhibits transition between ergodic to nonergodic eigenstates, going from a & 1 deep in the ergodic phase to a < 1 deep
in the nonergodic (MBL) phase. The transition shifts to higher disorder with increasing W, indicating breakdown of MBL states via current
drive. The phase boundaries (i) W,;, Hilbert space delocalization-localization and entanglement transitions, (ii) W,,, time-reversal breaking
transition, and (iii) W3, current transition, are shown. Eigenstates have volume-law entanglement and are delocalized for W < W, whereas,
for W > W,,, states have area-law entanglement and are localized. A finite fraction of eigenstates breaks 7 reversal for W < W,,. The region
W, < W < W, has area-law localized states that break 7 reversal. There is a separate transition at W3 in terms of system-size scaling of

current (see main text).

Following the above considerations, we construct the
eigenstate phase diagram in the W-¢ plane for a few values of
W based on (a) participation entropy [25,26], which quantifies
the extent of delocalization of an eigenstate in the Hilbert
space for a chosen basis, as discussed in the next section,
(b) entanglement entropy, and (c) fraction of eigenstate with
nonzero imaginary part of eigenvalue. The last one serves as
an order parameter for T -reversal symmetry breaking in the
eigenstates. In addition, we further quantify the 7T -reversal
breaking via scaling of current carried in the eigenstate with
system size. As mentioned in the Introduction, we find eigen-
state transitions in terms of all these quantities. We assume
the transitions to be continuous as in the numerical studies
of MBL transition for the Hermitian case and corroborate the
assumption via finite-size scaling collapse of the data of var-
ious quantities. However, we note that, even in the Hermitian
case, the exact nature of MBL transition is currently debated
[50-56], and cannot be ascertained within the modest system
sizes accessed via ED studies.

To characterize the phases based on time evolution, we
look into the long-time steady state and the time evolutions of
entanglement entropy and Néel order parameter, which serves
as the MBL order parameter [57], starting from an initially
unentangled Néel state of staggered arrangement of spins. We
describe our results in detail in the next sections.

A. Ergodic to nonergodic eigenstate transition
in the Hilbert space

To characterize the eigenstates of the non-Hermitian
Hamiltonian [Eq. (1)], we first obtain a phase diagram in
terms of participation entropy, a diagnostic of ergodicity of
the eigenstates. It is defined as Sp(|ng)) = —)_, pfx”) In pg’)
for the eigenstates in the basis of the spin configurations
la) =[S, 85, ..., 8%) [25,58] with p® = [(a|ng)|*.

In the delocalized phase, eigenstates are ergodic and have
support over a finite fraction of sites in the Hilbert space, i.e.,
(a|ng) ~ 1//Dy as required by normalization, and hence

Sp >~ In Dy, where Dy is the dimension of the Hilbert space in
the S}* = 0 subspace. On the other hand, in the MBL phase,
the eigenstates are expected to exhibit a fractal character,
i.e., a delocalized but nonergodic behavior, with support over
exponentially large number but vanishing fraction of sites in
the Hilbert space, i.e., (a|ng) ~ 1/D%* or Sp ~ a In Dy with
a <1 [26,59]. We obtain the disorder averaged Sp(€) as a
function W and € and plot the slope of Sp with L (~InDg) in
Figs. 2(a)-2(c) for ¥ = 0, 0.3, and 0.6. To define Sp(€), and
other quantities discussed in the next sections, as a function
of €, we have binned € into intervals containing 100 or more
eigenstates for a given disorder realization. Indeed, consistent
with the Hermitian MBL case [25,26] in Fig. 2(a), we find a
transition in the Hilbert space in terms of eigenstate partici-
pation for W = 0.3, 0.6 [Figs. 2(b) and 2(c)]. The transition
shifts to higher disorder for increasing W. Hence, a nonzero
current drive causes a breakdown of the MBL states of the
parent Hermitian model over certain regime of disorder.

B. Entanglement transition

We obtain the von Neumann entanglement entropy Sgg for
each of the eigenstates, i.e., Sge(|ng)) = —Tr(p4 In ps). Here,
pa = Trp|ng)(ng| is the reduced density matrix of the subsys-
tem A, for the real-space bipartition of the system into left half
A and right half B. As already discussed in the Introduction,
the MBL transition is defined from volume-law to area-law
transition [25] in the Hermitian case, i.e., ¥ = 0. A similar
transition is observed for W = 0.3 with increasing disorder as
shown in Fig. 3(a), where disorder averaged Sgg is plotted
as a function of length L at € = 0.5, at the middle of the
spectrum, for a range of disorder strength. As can be seen, for
large values of disorder Sgg tends to a constant value at larger
L, whereas Sgg increases linearly with L for weaker disorder
strength. The presence of a transition is evident from a clear
crossing of Sgg/L vs W curves for different L in Fig. 3(b).
The dependence of Sgg on L is consistent with a volume-law
scaling for W < W,, and an area-law scaling for W > W,,.

184201-5



ANIMESH PANDA AND SUMILAN BANERJEE

PHYSICAL REVIEW B 101, 184201 (2020)

5 T T T 0.3
@ o [,
4 y 0.25} ¢ L=12/
L1 +L=14
2 =
) 02} HL=16]]
3 e
P e
ww P “Wo.15}
[} PR Yo
@ 2gzt -7 e A
¥’,/ - -1 0.1}
- _-- _ e
,—"’—“" -1
1¢---S_-=-""
%::;;:::i:::i::f} 0.051
TEE:i:::i:::i::'?
0 . . . 0 . : .
8 10 12 14 16 0 2 4 6
L W

FIG. 3. Volume-law to area-law transition for W = 0.3: (a) Sgg
as function of L for different disorder strengths at € = 0.5; the
arrow denotes the direction of increasing disorder (W), from 0.43
to 7. (b) Sgg/L is plotted against W for different L. The crossing
of the curves for different L at W ~ 3.6 suggests the existence of a
scale-invariant critical point.

This crossing point is used to find out the critical disorder
W, ~ 3.6, implying an entanglement transition, similar to the
Hermitian case [25].

The transition is further corroborated by a reasonably good
data collapse in Figs. 4(a) and 4(b) for W = 0.3, 0.6, obtained
using the finite-size scaling ansatz Sgg(L) = Lg(Ll/ (W —
W.1)) [25], where g(x) is the scaling function. The finite-size
scaling form assumes a volume-law scaling at the critical
point, as in the case of Hermitian model [25]. We find that
the data for Sgg/L at € = 0.5 and ¥ = 0.3 [Fig. 4(a)] for
various W and L can be collapsed quite well into two universal
curves for W < W,; and W > W, with a critical exponent
vy >~ 1 and W, = 3.6 £0.1. The two curves, one below and
another above the transition, result from the sign of W — W,
in the argument of the scaling function g(x). We have done
similar analysis for the entire spectrum of €. The crossing of
the curves and the data collapse are most prominent near the
middle of the spectrum. The finite-size data collapse of Sgg/L
at € = 0.5 for ¥ = 0.6 is shown in Fig. 4(b). For this larger
value of ¥, we find W,y =4.240.1, and v = 1.5, i.e., the
extracted critical exponent changes with W.

Here, it is important to note that, as in the exact di-
agonalization studies of Hermitian MBL systems [25], for
See(L) and the other quantities discussed in the next sections,
neither the scaling function g(x) nor the critical exponents can
be extracted very accurately from finite-size scaling limited
to such small systems, and with only a few system sizes
accessible via ED. However, the scaling function g(x), as
such, is not required to obtain the data collapse. The collapse
is obtained by taking all the data as function of W and L,
e.g., from Fig. 4(b) (inset), and plotting as a function of the
LIW — W, | (or L'/"'|W — W,_,|) with appropriate choice of
W, and v that generate a good scaling collapse. Additionally,
we have also used a polynomial for g(x) and fitted all the data
as a function of L'/"'(W — W,;) with the polynomial. This
gives results consistent with that obtained using the simpler
data collapse mentioned above. We do not perform a detailed
error analysis for the scaling collapse. The main purpose of
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FIG. 4. Finite-size scaling of entanglement entropy: The scaling
collapse of Sgg/L is shown at € = 0.5 for the non-Hermitian model
for (a) ¥ =0.3 and (b) ¥ = 0.6. In both the cases, the data for
different L collapse reasonably well into two universal curves, one
below the transition (W < W,;) and the other above (W > W,)).
The critical disorder W, in each case has been extracted from the
system-size crossing of Sgg/L as shown in the insets. The values of
critical disorder and scaling exponents extracted for different W are
@uv~1, Wg=3.6=%x0.1for ¥=0.3,and (b) vi = 1.5, W, =
4.2 £0.1 for ¥ = 0.6.

the finite-size scaling here is to bring out the existence of the
transition, rather than estimating the critical exponents. The
error bars in W, are estimated from the range of values of W,
for which the data collapse is reasonable while keeping the
critical exponent v; fixed. The finite-size scaling analysis for
the other quantities discussed below are also performed in a
similar manner.

For the the phase boundaries W, in the W-¢ plane for
W =0,0.3,0.6 in Fig. 2 we use the standard deviation og
of the entanglement entropy over disorder realizations. At
the transition, or is expected to show a peak that diverges
with L [60]. In Fig. 2, we plot W,; from the peak of og
for system size L = 16. The phase boundary is consistent
with that obtained from the participation entropy for ergodic
to nonergodic transition. In Figs. 5(a) and 5(b), we obtain
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FIG. 5. Finite-size scaling of variance of entanglement entropy:
System size scaling of og is shown here at € = 0.5 for W = 0.3
and W = 0.6 in (a) and (b), respectively. The critical disorder W,
in each case has been fixed at those from Fig. 4. The scaling of the
peak height and position indicates the existence of an entanglement
transition at W, in tune with the results in Fig. 4.

scaling collapses of o /(L — ¢) vs W for ¥ = 0.3 and 0.6 at
€ = 0.5 with ¢ as a fitting parameter [25]. Here, the values
of v; and W, are fixed from the finite-size scaling of Sgg.
Surprisingly, we see an indication of two peaks in og for
L = 16 [Fig. 5(b)]. The reason behind the two-peak structure
is not clear at present and will be studied in a future work.

We note that the average Sgg and og shown in Figs. 4
and 5 are obtained by averaging over the eigenstates with real
eigenvalues. The averaging over the eigenstates with complex
eigenvalues also gives similar results.

C. T -reversal breaking

We now address one of the main questions raised in the
Introduction, i.e., whether the entanglement or the localization
transition coincides with the 7T -reversal breaking, as in the
noninteracting Hatano-Nelson model [22-24]. We define a
T -reversal order parameter ¢(€), the fraction of imaginary
eigenvalues at €. Numerically, an eigenvalue is defined to have
a nonzero imaginary part by setting an ad hoc small cutoff.
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FIG. 6. Time-reversal symmetry-breaking transition: System-
size scaling of fraction of imaginary eigenvalues (¢) at € = 0.5 for
(a) ¥ = 0.3 and (b) 0.6. The critical disorder W,, is extracted from
the system-size crossing of ¢ as shown in the insets. The values of
critical disorder and scaling exponents extracted for different W are
(@) v, =09, Wyp=475+0.1 for ¥ =0.3, (b) v, ® 1.5, W, =
5.6 £ 0.1 for ¥ = 0.6. The data for different L collapse into two
universal curves, one below the transition (W < W,,) and the other
above (W > W,,). This and the fact that W, > W, indicate the pres-
ence of 7 -reversal breaking transition distinct from the entanglement
transition in Fig. 4.

However, we have checked that our results are insensitive to
the choice of cutoff. We find a clear crossing of the ¢ vs W
curves for different L, as shown in Figs. 6(a) and 6(b) (insets)
for ¥ = 0.3 and 0.6 at ¢ = 0.5. As evident, the crossing point
is at W = Wy, = 4.75 for ¥ = 0.3, clearly larger than W,
for the entanglement transition in Fig. 4(a). A good scaling
collapse can again be obtained with an exponent v, ~ 0.9 and
W, = 4.75 £ 0.1 [Fig. 6(a)]. The collapse of the data for ¢ vs
W could not be obtained with W, = W,. This establishes the
fact that 7 -reversal breaking is distinct from the entanglement
transition and occurs within the area-law phase. We find
similar results for W = 0.6 [Figs. 4(b) and 6(b)], namely,
We = 5.6 # W, In this case, the critical exponent v, = 1.5.
From the crossing points of ¢(€) vs W curves we obtain the
phase boundary W, for the 7 -reversal breaking in Fig. 2.
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FIG. 7. Finite-size scaling of average eigenstate current: System-
size scaling of average current (j) is shown here for ¢ = 0.5 and
W =0.3,0.6 in (a) and (b), respectively. The critical disorder W3
in each case has been extracted from the system-size crossing of Lj
as shown in the insets. The values of critical disorder and scaling
exponents extracted for different W are (a) v, = 1, W, =2.3+0.1
for W =0.3, (b) v; & 1.5, W3 =2.95+0.1 for ¥ = 0.6. The data
for different L collapse into two universal curves, one below the
transition (W < W,3) and the other above (W > W), indicating a
transition in terms of system-size scaling of current. The transition
at W3 # Wy, W,, is distinct from either the entanglement transition
(Fig. 4) or the T -reversal breaking transition (Fig. 6).

To further characterize the 7 -reversal breaking eigenstates,
we compute the current j(e), obtained by averaging over the
magnitude of the currents |j,|, carried by the eigenstates with
imaginary eigenvalues, and disorder realizations. Again, we
find crossings W = W3 ~23 for V=03 and W = W3 =
3.0 for ¥ =0.6, in the J = Lj vs W plots for different L
[Figs. 7(a) and 7(b)] at € = 0.5. The transition, which we refer
to as current transition for brevity, is seemingly distinct from
both entanglement and 7 -reversal breaking transitions. We
can obtain a scaling collapse for j with v =1 and W3 =
2.3 for ¥ =0.3, and v3 = 1.5 and W3 = 3.0 for ¥ = 0.6,
as shown in Figs. 7(a) and 7(b)(inset). We obtain a phase
boundary for the current transition at other values of ¢ from
the crossing points, as shown in Figs. 2(b) and 2(c).

The scaling of j with L for W <« W, is consistent with
J approaching a constant for L — oo (not shown). The
scale-invariant crossing point indicates a diffusive scaling of
the current at the transition, namely, j ~ 1/L. In fact, for
W < W X W, the scaling of j with L could be consistent
with j ~ 1/L” with y X 1, and we expect j ~ e~L/¢ for W >
W.,, deep inside the 7 -reversal unbroken localized phase; ¢
is the characteristic localization length. However, this is hard
to verify from the exact diagonalization numerics limited to
such small system sizes. As discussed later (see Fig. 11),
the current j,, carried by the long-time NESS also exhibits
similar transition. For W > W, in the area-law phase, the
scaling of the current and the transition at W,, could be studied
by a matrix-product operator (MPO) based implementation
[16,17] of the dynamical evolution in Eq. (3). It would be
interesting to establish the existence of such current-carrying
pure NESS with area-law entanglement in an interacting
system, as discussed in Ref. [14].

The phase boundaries in the W-€ plane for all the tran-
sitions, ergodic to nonergodic, entanglement, time-reversal
breaking, and current transition, and their evolutions with
W, are summarized in Figs. 2(b) and 2(c). For comparison,
we also show the ergodic to nonergodic and entanglement
transition for ¥ = 0 in Fig. 2(a). The three phase boundaries
W.1, W, and W 3 naturally shift to higher disorder with
increasing W. As already mentioned, we obtain the phase
boundary W, (¢) from the peak of the standard deviation
of entanglement entropy or (Fig. 5). Similar, albeit slightly
higher, values for W, are obtained from the crossing of Sgg/L
vs W curves (Fig. 4). However, we do not use the crossing
point to plot phase boundary as a function of € since clear
crossings can only be detected over middle one-third and
one-half of the spectra for ¥ = 0.3 and 0.6, respectively. We
note that the clear crossing point for Sgg/L vs W curves could
be obtained for the Hermitian case (W = 0) almost over the
entire spectrum, except at the very edges.

D. Growth and decay of entanglement entropy
and the approach to NESS

In this section we study the time evolution under the
non-Hermitian evolution [Eq. (4)] starting with a simple
unentangled initial state. We choose the Néel state |yy) =
[t 414 ...) for this purpose. We compute the entanglement
entropy Sge(f) as function of time from the time-evolved
state | (¢)) [Eq. (4)]. The results for Sgg(¢) are shown in
Figs. 8(a) and 8(b) for two values of disorder strength, (a)
W = 2.15, in the volume-law phase, and (b) W = 4.3, the
T -reversal broken area-law phase. The result for higher dis-
order, in the 7T -reversal unbroken area-law phase, is similar
to that for (b). In each of the cases, to bring out the crucial
effect of interaction, we compare Sgg(7) with that obtained
for the noninteracting Hatano-Nelson model (J, = 0). The
prominent features of Sgg(f) are (i) an initial growth, (ii) a
broad peak followed by a decay or relaxation, and (iii) an
eventual approach to a steady-state value corresponding to
the NESS. In the volume-law phase [Fig. 8(a)(inset)], Sge(?)
grows linearly with time, whereas, Sgg(f) o In? initially in the
area-law phase [Fig. 8(b)], as in the Hermitian MBL case [9].
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FIG. 8. Time evolution of entanglement entropy: (a), (b) Semilog
plots of entanglement entropy Sgg vs ¢ for W =2.15, in the
T-reversal broken volume-law phase, and W = 4.3, within the
T-reversal broken area-law phase, respectively, starting with the
Néel state, for the interacting J. = 1 (S=') and the noninteracting
J.=0 (Sé’;o) cases. Inset in (a) shows log-log plot of Séfl(t) -
SéE: 0(t — 00) vs t. The box in (b) indicates the initial logarithmic
growth in the localized phases, with 7 -reversal breaking. The entan-
glement entropy peaks at a finite time and then eventually decays to
a finite value corresponding to the NESS (see main text).

Using Eq. (4), the growth and subsequent decay
of entanglement entropy can be understood from
the density matrix p(t) = |y EO)(Y(@)| =e “py =
D oam e~ Bt ud CV (t)|ng)(mg|, where the coefficient
CV (t) is obtained from Eq. (4).

Here, —(B,m + 18,um) could be thought of as the eigenvalues
of the Liouvillian operator L£: B, =2A; — A, — A, 20
and 8, = &, — &,. The real part, —fB,,, of eigenvalue of
L leads to relaxation and B, = 0 corresponds to the long-
time steady state. For a weak strength (W < 1) of the non-
Hermitian term, and for t < e-.,! §,,, > By, and the initial

!'Since the many-body spectra for the real part of the eigenvalues

are exponentially dense, the actual typical level spacing §,,, ~ e7*.

growth of the entanglement entropy appears over a time
window, 5,;;, it = ﬂt;ll,, due to the dephasing from the
exponential factor ¢'* in p(t). In this time window, the factor
e Pm' ~ 1. Here, §,y, and B,,,, are the typical values of §,,, and
Bum, respectively, that contributes to p(t) for t < e’.

This initial dephasing mechanism is similar to the one
that leads to In¢ growth of entanglement entropy in the
MBL phase [10]. For the interacting system, left to itself,
the dephasing would typically lead to a diagonal ensemble
and long-time state with volume-law entanglement, as it does
for the MBL phase [9]. Nevertheless, for the non-Hermitian
case, the relaxation due to B,, kicks in for ¢+ X ,3,;,1, and
gives rise to the decay of Sgg(?), as in Figs. 8(a) and 8(b),
before the system could reach the diagonal ensemble. How-
ever, Bun has a gap [61] B, ~ O(1) above its minimum
value B,,, =0 (see Appendix). On the contrary, the spec-
trum of §,,, is gapless, min(8,,,) ~ e~L. Hence, there could
be interesting dephasing dynamics that goes on during the
decay over /3,;,1, <t X B;, even though &, > By For
t> By !, the entanglement entropy rapidly approaches the
value for that of the NESS, dictated by the eigenstate with
the maximum imaginary part for the eigenvalue, as discussed
earlier.

E. Time evolution of Néel order parameter

We also show the time evolution of Néel order parameter
N(t) = (2/L) Y ,(= 1)y (t)|S?| (1)) in Fig. 9. This acts like
a MBL order parameter [57] and characterizes the memory
of the initial state. It approaches a finite value for + — oo for
the infinite system size in the MBL phase of the Hermitian
model; N(¢) decays to zero with time in the ergodic phase.
Here, for the non-Hermitian case, we find that No, = N(t —
00), the Néel order of the NESS decreases with L, even for
strong disorder, deep in the area-law phase. This is expected
in a driven system, which loses its initially memory due to
the drive. We also notice an interesting dynamical regime,
presumably over the time window ,8,;,1, <t <P, ! in the
decay of N(¢) [Figs. 9(b) and 9(c)]. The order parameter
plateaus over a region as a function of ¢, as if trying to retain
the initial memory.

In contrast, such regime is absent in the Hermitian model
with W = 0. As shown in Fig. 9(a) for W = 0.43 < Wy, the
long-time value N, goes to zero in the ergodic phase. This
can be seen from the fact that N,, decreases with L tending
to zero for L — oo. On the contrary, in the MBL phase, for
W = 4.3, 7, Ny approaches a constant value with increasing
L. Hence, the Néel order parameter in this case serves as the
MBL order parameter, i.e., it diagnoses the persistence of the
initial memory at arbitrary long times. In the non-Hermitian
model [Eq. (1)], the NESS is approached at long times. This
is true even deep in the MBL phase W > W,, since there is
always a finite number of eigenstates with complex eigenval-
ues, albeit with a vanishing fraction, for any finite-size system.
Of course, for W > W,,, it is expected that the imaginary part
of the eigenvalues ~eL/¢ and, hence, the NESS will ensue

However this does not contribute to the time evolution in Figs. 8(a)
and 8(b) fort « .
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FIG. 9. Time evolution of Néel order parameter: The Néel order parameter N(z) is shown for (a) the Hermitian case W = 0 and the
non-Hermitian cases (b) W = 0.3 and (c) ¥ = 0.6 as a function of W and L. The triangles, circles, and squares are for W = 0.43, 4.3, 7,
respectively, with L = 10 (blue), L = 12 (orange), L = 14 (yellow), and L = 16 (purple). The error bars are smaller than the symbols. In the
Hermitian MBL phase Ny, = N(t — 00) remains finite in the limit L — oo, whereas N, decays with increasing L in the non-Hermitian MBL
phase, indicating the loss of memory of initial state in the thermodynamic limit. A new dynamical regime emerges in the non-Hermitian MBL
phase where the N(¢) plateaus over a long intermediate time window retaining the initial memory.

only after a very long time ~¢/¢ for large systems. As shown
in Fig. 9(b) for ¥ = 0.3, and in Fig. 9(c) for W = 0.6, the
Néel order parameter for the NESS decreases rapidly with L,
presumably approaching zero for L — oo.

F. Properties of the NESS

We have so far discussed the entanglement entropy and
current carried by the eigenstates over the entire spectrum
of eigenstates. In this section we discuss the entanglement
entropy and system-size scaling of current for the long-time
NESS for time evolution from the Néel state. The NESS is
governed by the eigenstate with maximum imaginary part of
the eigenvalue or the current [Eq. (5)].

1. Entanglement entropy of NESS

We denote the entanglement entropy of the NESS by
Sgg, i.e., t — oo limit of Sgg(¢) (Fig. 8). We also analyze
the maximum value S%, reached by Sgg(¢) during its time
evolution toward NESS. We show Sg5, and SEeEak in Figs. 10(a)
and 10(b) as a function of W and L. We find no volume-law
to area-law transition in either S% or Sg% with the disorder
strength. In fact, S% and S32 neither scale as the volume nor
the area, even though both of these increase with L. Hence,
the entanglement for the NESSs in the non-Hermitian model
of Eq. (1) obeys a system-size scaling intermediate between
the area and the volume law. Similarly, the results for SP
indicate that Sgg(f) never attains the diagonal ensemble value
during its time evolution, unlike that in the Hermitian case [9].
For a given L, unlike the eigenstate averaged Sgg [Fig. 3(a)],
the maxima in S5 and S, appear at a finite disorder. Also,
we do not see any system-size crossing for S5 /L (S2 /L) vs
W in Figs. 10(c) and 10(d). We were also not able to obtain
any finite-size data collapse for S5, and SP*.

2. NESS current

There is also a current transition for the NESS, as in
Fig. 7 for the eigenstates. We show the system-size scaling of

current (j,) carried by the NESS in Fig. 11. The transition is
shown in terms of a finite-size scaling collapse for Lj, vs W
curves.

V. CONCLUSIONS AND DISCUSSIONS

To summarize, we have studied a non-Hermitian disor-
dered model, the interacting version of Hatano-Nelson model
[22]. We propose that the model can be used to generate a rich
variety of current-carrying states and study their entanglement
properties. For example, we have found both ergodic and
nonergodic eigenstates with volume- and area-law scalings,
respectively. Furthermore, we show the existence of a time-
reversal symmetry-breaking phase transition within the area-

25

FIG. 10. S¥* and S3 for W = 0.3: (a) S&* and (b) S as a
function of L for different W. The solid and dashed lines in (a) and
(b) are for W < W,, and W > W,,, respectively; W,, = 2 in (a) and

W,, = 1.2 in (b) are the positions of the maxima in S%™* and Sg2,
respectively, as function of W. In (a) and (b) the arrows indicate
the direction of increasing W for the dashed lines and direction of
decreasing W for the solid lines. The range of W is from 0.43 to 7.
As shown in (c) and (d), unlike average Sgg/L, S /L and S3 /L do
not show any crossing when plotted against W. These results indicate
the absence of any entanglement transition for the NESS.
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FIG. 11. Current in the NESS: Finite-size scaling collapse of
long-time steady-state current jo, with W, =2.9+0.1 and v = 1.8
for W = 0.3. Inset shows the transition in terms of crossing of L.,
vs W curves for different L, in a semilog plot.

law phase. We have established a detailed phase diagram as
a function of disorder and strength of the non-Hermitian term
based on the properties of the eigenstates and the long-time
NESS, as well as from the time evolution of entanglement
entropy.

The models of Egs. (1) and (2) combine several nontrivial
aspects of open quantum systems, namely, disorder, interac-
tion, and coupling to environment via a non-Hermitian term
that also induces a current drive. The disorder tries to localize
the spin-flip excitations in the spin model [Eq. (1)] or the
fermions in the model of Eq. (2). The non-Hermitian term,
on the other hand, tries to induce a current and adds to the
delocalizing tendency of the hopping term in Eq. (2). This can
be easily understood by considering the limit ¥ — oo, where
the eigenstates of the Hamiltonian are also the eigenstates
of the current operator and hence the eigenstates carry finite
current. Note that the hopping and the non-Hermitian term
in Eq. (2) commute with each other. The competition of
disorder and current drive and dissipation, already present
in the noninteracting Hatano-Nelson model [22-24], leads
to localization-delocalization and 7 -reversal breaking tran-
sitions even in 1D. This is in contrast to the Hermitian 1D
Anderson model which, as well known, has all the single-
particle states localized and there is no transition.

A similar competition between disorder and non-Hermitian
term modeling cooperative decay channel has been studied
in other non-Hermitian Anderson models, in the context of
collections of overlapping two-level systems coupled to light
(see, e.g., Refs. [62,63]), which discuss a superradiance (delo-
calization) to localization transition as a function of disorder.
However, the Hatano-Nelson model has the additional aspect
of a possible T -reversal breaking in the eigenstates.

As in the Hermitian system, the interaction term in Eq. (2),
of course, adds to the delocalization tendency by generating
matrix elements between an exponentially large number of

localized many-body product eigenstates of the noninteracting
model [5]. In addition, interaction in the non-Hermitian model
separates the localization-delocalization and the 7 -reversal
breaking transitions, thus leading to the existence of a novel
T -reversal broken area-law phase, unlike that in the noninter-
acting Hatano-Nelson model. The interaction is also crucial
to give rise to intermediate time entanglement growth, absent
in the noninteracting model, as shown in Fig. 8. Overall, the
non-Hermitian and the interaction terms make the delocalized
phase more robust to disorder.

Note added. Recently, we became aware of an independent
work [46] which has studied non-Hermitian MBL transition
in the same model. Our focus, i.e., to model current-driven
systems and NESS, is entirely different from that of Ref. [46].
Our results and conclusions are also substantially different
from those in Ref. [46]. In particular, unlike Ref. [46], we
find that the phase boundaries in the W -¢ plane for 7 -reversal
symmetry-breaking and entanglement transitions are distinct.
The main reasons behind the difference can be attributed to
the choice of parameters, the methodology of detecting phase
transition, and, to some extent, interpretation of small-system
ED results. The latter is a general problem even for well-
studied Hermitian MBL case [25,26]. Reference [46] typi-
cally focuses on a smaller value of W = 0.1 and obtains the
phase diagram based on level statistics, fraction of imaginary
eigenvalues, and entanglement entropy averaged over middle
one-third of the spectrum, unlike the energy-resolved phase
boundary in the W-€ plane in our case. Due to the smaller
value of W, the T -reversal symmetry-breaking and entangle-
ment transitions are much closer, even though different, in
Ref. [46]. Based on some heuristic arguments, the authors
of Ref. [46] conjecture that the small difference between the
two transitions will go to zero in the thermodynamic limit.
On the contrary, our results with detailed finite-size scaling
analysis in the W-€ plane show that the two phase boundaries
are clearly distinct for the particular choice of parameters
(¥ =0.3,0.6) in our work. We also note that our results
for the ergodic to nonergodic transition are consistent with
a more recent work [64] on the same model, studied in a
different context. Moreover, we give detailed insight into the
approach to NESS and identify a dynamical regime where
memory of initial state can be harnessed over a relatively
long intermediate time window during the relaxation to the
NESS (Sec. IVE). In the future, it would be also interesting
to understand whether the non-Hermitian model can indeed
describe some features of a many-body localizable system
under an actual current drive or voltage bias applied through
leads.
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FIG. 12. Probability distribution of the real part of the eigenval-
ues of the Liouvillian operator: The probability distribution P(B)
for (a) W =1 and (b) W =2 for ¥ = 0.3. The boxes in (a) and
(c) highlight the gapped part of the spectra, which are zoomed in
(b) and (d), respectively.

APPENDIX: SPECTRUM OF THE
LIOUVILLIAN OPERATOR

As discussed in the main text, the time evolution of the
density matrix is controlled by the eigenspectrum of the Liou-
villian operator £ in Eq. (3). The relaxation of the system to
the NESS is controlled by the real part of the eigenvalues of £,
i.e., —Bum > 0, where B,,, = 2A; — A, — A,,. In Fig. 12, we
plot the disorder-averaged distribution P(B) of the normalized
quantity 8 = (8 — Bo)/(Bu — Bo) for ¥ = 0.3. Here, B, and
By are the minimum and the maximum values of B,,,, respec-
tively. Since the imaginary eigenvalues of the non-Hermitian
Hamiltonian in Eq. (1) appear in complex-conjugate pairs,
the probability distribution is symmetric about g = % Also,
there is a peak at B = 0, which corresponds to the NESS, as
mentioned in the main text. As shown in Fig. 12, the peak
is separated from most of the spectrum by a long tail. In the
limit L — oo, the tail is expected to tend to a gap [61] ,Bg that
separates the peak from the relaxation modes with 8 > 0.
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