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Synthetic spin-orbit coupling mediated by a bosonic environment

Mikhail Maslov ,* Mikhail Lemeshko,† and Enderalp Yakaboylu ‡

IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria

(Received 12 December 2019; revised manuscript received 2 March 2020; accepted 6 April 2020;
published 7 May 2020)

We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in
the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem,
we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means
of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a
coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon
exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a
correlation function between the internal and the orbital angular momentum operators. The strong-coupling
regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state
shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the
states that exhibit strong interaction with the surroundings. The results might find applications in such fields as
spintronics or topological insulators where spin-orbit coupling is of crucial importance.
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I. INTRODUCTION

The basic theory of the spin-orbit coupling (SOC) is dis-
cussed in most conventional Quantum Mechanics textbooks
[1–3]. SOC is usually treated as an interaction between the
magnetic dipole moment of the electron, associated with its
intrinsic spin, and the magnetic field in the rest frame of the
electron induced by the positively charged nucleus [4]. More-
over, an effective spin-orbit coupling can be engineered by
using an intense external laser field [5–7]. Apart from leading
to splittings in atomic spectra [8] and being one of the main
ingredients of the nuclear shell model [9,10], SOC was shown
to be of great importance in a variety of condensed-matter
phenomena. To name a few, it underpins the Dresselhaus [11]
and Rashba [12,13] splittings that were used in spintronics
to create a spin-injected field transistor [14–16] and antifer-
romagnetic memory [17–19]. It also stands behind the spin
Hall effect—spin imbalance generated by charge circulation
in paramagnets [20–23] as well as its quantum counterpart
[24] that leads to the distinction of topological phases [25],
giving rise to the discussions on topological insulating elec-
tronic phases [26–28] and topological quantum computation
[29–31], e.g., using Majorana bound states [32]. Achieved by
coupling internal atomic degrees of freedom with laser fields
[33], the spin-orbit interaction has also been realized in ultra-
cold gases [34,35] with topologically nontrivial states emerg-
ing due to the interaction with synthetic gauge fields [36].

Here, we consider another kind of spin-orbit coupling,
i.e., that induced by the excitations of a many-particle envi-
ronment. In particular, we focus on a bosonic many-particle

*mikhail.maslov@ist.ac.at
†mikhail.lemeshko@ist.ac.at
‡enderalp.yakaboylu@ist.ac.at

environment, acting as a mediator of the interaction between
two angular momenta corresponding to the internal and orbital
motions of an impurity in the bath. Such motion may be
achieved, e.g., by applying a static magnetic field to a system
consisting of charged molecule and neutral environment. For
the impurity, we consider a quantum rotor. A rotating impurity
surrounded by a bosonic bath was previously shown to be
effectively represented by a quasiparticle named “angulon”
[37–39], which can be described by using the language of
Feynman diagrams for the excitations in the phonon con-
tinuum [40,41]. It has been also shown that the angulon
quasiparticle leads to novel phenomena, such as the realiza-
tion of magnetic monopoles in terms of molecular impurities
[42] or strong “anomalous” electromagnetic screening [43].
Moreover, the angulon theory can explain the anomalous
broadening of the spectroscopic lines observed in superfluid
helium nanodroplets [44].

The paper is organized as follows. In Sec. II, we present
the Hamiltonian of the system obtained from the recently
introduced “rotating polaron” quasiparticle [45] by taking
into account the geometrical aspects of our system. We, sub-
sequently, introduce a coordinate transformation that brings
the Hamiltonian into the reference frame corotating with the
impurity’s center of mass, eliminating the angle of circula-
tion from the Hamiltonian. In Sec. III, we investigate the
Hamiltonian by using one-phonon variational ansatz in the
regime of the weak coupling between the impurity degrees
of freedom and the many-body environment. We present the
energy spectrum of the system and illustrate the transition
between different angular momentum states. The transition
is explained within the framework of the spin-orbit coupling
by calculating the correlators between the angular momen-
tum operators. We show that, in the vicinity of the angulon
instability [37], the coupling amplifies due to the increased
probability of the phonon exchange. In Sec. IV, we follow
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FIG. 1. Schematic of a rotating impurity immersed into the
bosonic bath. The COM transverse motion is confined to a ring of
radius r0 in the xy plane (dashed line). Here, (x, y, z) and (x′, y′, z′)
are the laboratory and circulation frames, respectively.

the Pekar approach [46] to examine the effect in the strong-
coupling limit and thereby establish a connection between the
bath-mediated angular momentum exchange and the effective
spin-orbit interaction of the molecule in the medium. We
conclude the paper in Sec. V with a discussion of our results.

II. THE HAMILTONIAN

The Hamiltonian that describes a moving impurity pos-
sessing internal rotational degrees of freedom immersed in a
bosonic environment, derived from the first principles within
the Bogoliubov approximation [47], was studied in Ref. [45].
Here, we consider the case where the transverse motion of
the impurity’s center of mass (COM) is confined to a ring
of radius r0 in the xy plane. The geometry of the problem
is sketched in Fig. 1. Such a configuration can be obtained,
for example, by considering a charged molecule in a neutral
bath subjected to an external magnetic field B = Bext ẑ. Then,
as is described in more detail in Ref. [45], the corresponding
Hamiltonian for this configuration is given by

Ĥ = Bext (Ĵz + L̂z ) + B0Ĵ2
z + BL̂

2

+
∑
kλμ

ω(k)b̂†kλμ
b̂kλμ + Ĥint, (1)

where atomic units are used and B0 ≡ (2Mr2
0 )−1, M is

the mass of the molecular impurity, B is the the molecular
rotational constant, Ĵ is the the angular momentum of circular
motion, and L̂ is the the angular momentum of the impurity’s
internal rotation. The first term in Eq. (1) describes the in-
teraction between the angular momentum of the molecular
impurity with the external magnetic field Bext, the second
stands for the kinetic energy of the COM motion, whereas
the third is the kinetic energy of the internal rotation. The
fourth term, in turn, corresponds to the kinetic energy of the
bath with

∑
k ≡ ∫

dk. Here, b̂†kλμ
and b̂kλμ are the bosonic

creation and annihilation operators written in the spherical
basis. They obey the commutation relation [b̂kλμ, b̂†k′λ′μ′] =
δ(k − k′)δλλ′δμμ′ . Finally, the last term describes the impurity-
phonon interaction,

Ĥint =
∑
kλμ

lδαγ

[
U δγμ

lαλ
(k) jl (kr0)Ŷ ∗

l,δ (�̂r )Ŷ ∗
α,γ (�̂)b̂†kλμ

+ H.c.
]
,

(2)

with r̂ ≡ (r0, �̂r ) ≡ (r0,
π
2 , ϕ̂r ) being the circulation operators

of the COM coordinate, �̂ ≡ (θ̂ , ϕ̂) are the angular operators
of internal rotation, jl (kr0) is the the spherical Bessel function
of the first kind, and Ŷl,m(�̂) are the spherical harmonics. The
coupling amplitude is given by

U δγμ

lαλ
(k) = Uα (k)

√
4π (2α + 1)(2l + 1)

2λ + 1
iλ−α−lCλ0

α0,l0C
λμ

αγ ,lδ,

(3)

where Cλμ

αγ ,lδ are the Clebsch-Gordan coefficients [48].
Following Ref. [37], we derive the interaction term (2)

by considering a local density-density interaction between
the impurity and the bosonic surroundings. Therefore, the
conservation of the total angular momentum in the system is
embedded in Eq. (2) by the presence of the aforementioned
Clebsch-Gordan coefficients. Moreover, the interaction term
of the Hamiltonian (1) already hints the mechanism of the
interaction between the external and the internal angular
momenta of the impurity. In particular, it couples these an-
gular momenta together through the angular momentum of a
bosonic bath, which signals that the SOC is mediated by the
phonon excitations in the bath.

It is straightforward to show that the derived Hamiltonian
is rotationally invariant. In other words, the total angular
momentum of the system K̂ = Ĵz + L̂z + �̂z is a constant of
motion, i.e., it commutes with the Hamiltonian. The latter
indicates that the energy eigenstate can be constructed from
the eigenstate of the total angular momentum, which will
be discussed below in a more detailed way. Furthermore,
it allows us to consider the problem in the reference frame
corotating with the molecule’s COM (x′, y′, z′). Namely, if we
introduce the following canonical transformation:

Ŝ(ϕ̂r ) = exp[−iϕ̂r (�̂z + L̂z )], (4)

with �̂ = ∑
kλμν σλ

μν b̂†kλμ
b̂kλν being the collective angular

momentum of the bosonic bath, the transformed Hamiltonian
becomes independent from the external rotational angle ϕ̂r ,

Ĥ′ ≡ Ŝ−1ĤŜ = Bext (Ĵz − �̂z ) + B0(Ĵz − L̂z − �̂z )2

+BL̂
2 +

∑
kλμ

ω(k)b̂†kλμ
b̂kλ + Ĥ′

int. (5)

Here, the molecule-bath coupling term is given by

Ĥ′
int =

∑
kλμ

∑
αγ

[
V γμ

αλ (k)Y ∗
α,γ (�̂)b̂†kλμ

+ H.c.
]
, (6)

with the interaction amplitude,

V γμ

αλ (k) =
∑

lδ

U δγμ

lαλ
(k) jl (kr0)Yl,−δ

(π

2
, 0

)
. (7)

The total angular momentum of the system in the coro-
tating frame, on the other hand, is equal to the angular
momentum of the circular motion,

Ŝ−1(Ĵz + L̂z + �̂z )Ŝ = (Ĵz − L̂z − �̂z ) + L̂z + �̂z = Ĵz. (8)
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Therefore, in the corotating frame, the eigenvalues of the
angular momentum Ĵz label the total angular momentum
numbers.

III. WEAK-COUPLING REGIME

Together with the conservation of the total angular momen-
tum, Eq. (8) results in a constraint on the trial wave function:
In the transformed frame, it should be an eigenstate of the Ĵz

operator. Therefore, one can write down such a wave function
with the explicit dependence on the external rotation angle ϕ̂r ,

〈ϕr |Ŝ(ϕ̂r )|ψ〉 = 1√
2π

exp[iMϕr]Ŝ(ϕr )|ψM〉, (9)

where M is the eigenvalue of total angular momentum opera-
tor.

The wave-function (9) is a tensor product of the circular
motion eigenstate and the eigenstate of a steady impurity
coupled to a bath. Let us assume that the characteristic en-
ergy of the interaction between the molecular impurity and

the many-particle environment is small compared to either
the molecular kinetic energy, parametrized by B and B0,
or the kinetic energy of the bath. In this case, we can con-
sider the Fock space alongside with truncating the number
of phonons. In order to solve the eigenvalue equation of the
Hamiltonian (5) in this regime, we introduce the following
single-phonon variational ansatz (similar to Ref. [37]),

|ψM〉 = g|LML〉|0〉 +
∑

kλμ jm

αkλμ jm| jm〉b̂†kλμ
|0〉, (10)

where L and ML are eigenvalues of L̂
2

and L̂z operators,
respectively, and g∗ and α∗

kλμ jm are variational parameters. The

minimization of the energy functional F = 〈ψ |Ĥ − E |ψ〉
with respect to parameters g∗ and α∗

kλμ jm, results in the self-
consistent Dyson equation,

BL(L + 1) + Bext (MJ + ML ) + B0M2
J − E − �

MJ
LML

(E ) = 0,

(11)

with MJ ≡ M − ML being the eigenvalue of the angular mo-
mentum of circular motion. The self-energy is given by

�MJ ,LML (E ) =
∑

kλμ jm

∣∣ξLML
λμ, jm(k)

∣∣2
[Bext (MJ + ML − μ) + B0(MJ + ML − m − μ)2 + B j( j + 1) + ω(k) − E ]−1, (12)

where

ξ
LML
λμ, jm(k) =

∑
αγ

V γμ

αλ (k)

√
(2α + 1)(2 j + 1)

4π (2L + 1)
CL0

α0, j0C
LML
αγ , jm.

(13)
The energies for each set of the free parameters

{L, ML, MJ} that characterizes the state may be found self-
consistently via the poles of the Green’s function,

GMJ ,LML (E ) = 1

BL(L + 1) − �MJ ,LML (E ) − E
, (14)

and the entire excitation spectrum of the system may be
examined via the spectral function,

AMJ ,LML = Im[GMJ ,LML (E + i0+)]. (15)

In order to provide a quantitative description of the spectral
function, we adapt the parameters from Ref. [37], such as the
Bogoliubov dispersion relation,

ω(k) =
√

ε(k)[ε(k) + 2gbbn], (16)

where the boson-boson interaction is considered constant
gbb = 4πabb/mb and the boson-boson scattering length abb =
3.3/

√
mbB as well as the impurity-boson interaction potential,

Uλ(k) =
√

8nk2ε(k)

ω(k)(2λ + 1)

∫
dr r2 fλ(r) jλ(kr), (17)

with the Gaussian form factor fλ(r) = uλ(2π )3/2e−r2/(2r2
λ ) and

the parameters λ = {0, 1}, u0 = 1.75u1 = 218B, and r0 =
r1 = 1.5/

√
mbB. These parameters are chosen to approximate

the range and strength of a typical atom-molecule potential.
In Fig. 2, the spectral function (15) as a function of the

normalized energy Ẽ = E/B and normalized bath density

ñ = n(mbB)3/2 is presented. With the increasing density, as
the rotor and its surroundings begin to effectively interact,
the system’s energy levels split into two branches. The bright
and sharp lines correspond to stable quasiparticle states that
exhibit a negative shift in the energy and they are dressed
by bosonic excitations in the high-density regime. The darker
blurred regions, on the other hand, depict the metastable
excited states of the phonon continuum that become com-
pletely decoherent at large values of ñ due to the spontaneous
emission to the phonon vacuum. When the quasiparticle states
intersect with the phonon excitations, the angular momentum
is being transferred from the internal degrees of freedom to
the bath [37]. The transition occurs only if the intersection
reveals the disintegration of the stable quasiparticle state
(green circles), later referred to as instability, and does not
occur in other cases (red circle).

We picture the spectral function for those specific states
that permit the coupling between external and internal mo-
menta through the excitations in the many-body surround-
ings. For these states, the behavior of the spectral function
in the vicinity of the instability regions is governed by the
values of quantum numbers MJ and ML with respect to
each other. We will further use the notation |L, ML, MJ〉 to
define the state. In Fig. 2, state |2,−1, 2〉 has only two
allowed transitions, with lower levels: states |2, 0, 0〉 and
|0, 0, 2〉. The state with the inverted orientation of internal
rotation |2, 1, 2〉, on the other hand, exhibits an additional
transition from the |2, 0, 1〉 energy level. In Fig. 3, we
present the enlarged images of the transition regions. In the
regime where the angular momentum transfer does not occur
[see Fig. 3(a)], the quasiparticle state |2,−1, 2〉 maintains
its stability by crossing the phonon branch of state |2, 0, 1〉.
However, the quasiparticle state |2, 1, 2〉 disintegrates in the
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FIG. 2. The spectral function of the system AMJ ,LML as a function
of the normalized energy and bath density for different configurations
of the free parameters {L, ML, MJ}. State |2, 1, 2〉 exhibits an addi-
tional transition from the |2, 0, 1〉 state (green circles), whereas the
same state with the inverted orientation of internal rotation |2, −1, 2〉
does not reveal such a transition (red circle).

vicinity of the crossing [see Fig. 3(b)], which reveals the
angular momenta redistribution according to Ref. [37]. By
observing such a behavior of the spectral function, one may
suggest that the transition probability should depend on the
relative projections of the participating angular momenta.
In general, that would imply that the energy of each state
is dependent on the coupling between external and internal
angular momenta.

The quantitative evaluation of such coupling, however, is
not that straightforward. Provided that the interaction between
two angular momenta is mediated by the phonon exchange,

(a) (b)

FIG. 3. The enlarged regions of Fig. 2 in the vicinity of the
crossings between the metastable state of the phonon continuum
associated with impurity state |2, 0, 1〉 and stable quasiparticle
branches of states (a) |2, −1, 2〉 and (b) |2, 1, 2〉. From the behavior
of the spectral function, one can deduce the information about the
suppressed (a) and allowed (b) transitions.
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FIG. 4. The dependence of angular momentum correlation on
the density of the bosonic bath. In the ground-state |0, 0, 0〉, the Ĵz

and L̂z operators exhibit infinitesimally small correlation (the inset),
whereas, in the excited states, the two are coupled to each other in
the instability regime with the maximum amplitude dependent on the
relative projections of momenta.

we choose the correlation of Ĵz and L̂z operators as a measure
of the coupling. The energy solution to Eq. (11) together with
the normalization condition on the state (10) allows us to
obtain values of the variational coefficients g and α jmkλμ and
thereby numerically defines the trial state (10). With the wave
function of the system being numerically defined for each set
of {L, ML, MJ}, one can further calculate the expectation value
via the following relation:

C ≡ 〈ψ |ĴzL̂z|ψ〉 − 〈ψ |Ĵz|ψ〉〈ψ |L̂z|ψ〉 . (18)

The dependence of the coupling strength on the normalized
bath density, calculated within Eq. (18) is presented in Fig. 4.
We consider three sets of angular momentum projections:
|0, 0, 0〉—corresponding to the ground state of the system
where the correlation is infinitesimally low, however, not zero,
as shown in the inset and |2,−1, 2〉 and |2, 1, 2〉 for which
the results agree with the behavior of the spectral function
in Fig. 2. Nonzero values for the ground state (inset) are
explained by the fact of spontaneous creation of a phonon in
the system with zero initial rotations. Due to the conservation
of total angular momentum, such a phonon should induce both
rotations, thus, actuating the interaction between them. The
correlation, in general, is stronger for the positive values of
ML, given positive values of MJ , which allows us to draw a
parallel to a conventional term in the relation for the energy
representing the spin-orbit coupling: ∝ Ĵ · L̂. We, therefore,
conclude that the selective transition behavior illustrated in
Figs. 2 and 3 is a consequence of the interaction between
the internal (spin) and external (orbit) rotational degrees of
freedom of the impurity.

The results illustrated in Figs. 2 and 4 are also valid in the
limit Bext → 0. This means that the observed effect is only a
consequence of the interaction between two angular momenta
and is enhanced but not created by the external magnetic field.

Ultimately, the transitions depicted in Fig. 2 may be de-
scribed by a set of selection rules. The prohibited ones are
those preserving the quantum numbers L and ML + MJ = M
simultaneously. Using the classical interpretation of angular
momenta as vectors: In the case when the angular momentum
of impurity’s internal rotation does not change its absolute
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value, the induced change of the total angular momentum
of the impurity cannot be orthogonal to its external angular
momentum. This fact is also in agreement with the geometric
constraints that we consider.

IV. STRONG-COUPLING REGIME

In the strong-coupling regime, the deformation of the
bath by the presence of the impurity is macroscopic, hence,
the problem can no longer be approached by considering

a single-phonon variational ansatz (10). Therefore, in this
regime, we consider the Hamiltonian (1) and apply the Pekar
approach [46]. Similar approaches have been used for the
polaron [49] and angulon [50] quasiparticles as well as for
the rotating polaron [45]. The trial wave function is defined
as a tensor product of the impurity state |φimp〉 and the bath
state |ξbos〉,

|ψ〉 = |φimp〉 ⊗ |ξbos〉, (19)

and is used to define the Hamiltonian projected on the impu-
rity state,

ĤR = 〈Ĥ〉 = Bext〈Ĵz + L̂z〉 + B0〈Ĵ2
z 〉 + B〈L̂2〉 +

∑
kλμ

{
ω(k)b̂†kλμ

b̂kλμ + [〈V̂kλμ(ϕ̂r, �̂)〉b̂†kλμ
+ H.c.

]}
, (20)

where 〈Â〉 ≡ 〈φimp|Â|φimp〉 and the interaction matrix element,

〈V̂kλμ(ϕ̂r, �̂)〉 =
〈∑

lδαγ

U δγμ

lαλ
(k)Ŷ ∗

l,δ

(
π

2
, ϕ̂r

)
Ŷ ∗

α,γ (�̂)

〉
. (21)

The projected Hamiltonian (20) can be diagonalized
with respect to bosonic operators via the following unitary
coherent-state transformation,

Û = exp

⎡
⎣−

∑
kλμ

1

ω(k)
(〈V̂kλμ(ϕ̂r, �̂)〉b̂†kλμ

− H.c.)

⎤
⎦. (22)

The energy functional is, subsequently, obtained by taking the
expectation value with respect to the ground state of bosonic
bath |0〉,

ER = 〈0|Û −1ĤRÛ |0〉 = Bext
〈
Ĵz + L̂z

〉 + B0
〈
Ĵ2

z

〉
+B

〈
L̂

2〉 − ∑
kλμ

ω−1(k)|〈V̂kλμ(ϕ̂r, �̂)〉|2 . (23)

In other words, we have chosen the bosonic state to be
|ξbos〉 = Û |0〉. Such a state accounts for an infinite amount of

phonon excitations summarized in a coherent way, i.e., it is
the coherent state of the bath.

In general, the impurity state is given by a superposition of
the angular momentum eigenstates,

|φimp〉 =
∑
jmn

β jmn|n〉| jm〉, (24)

which mixes external |n〉 and internal | jm〉 rotational states.
The energy functional may, therefore, be written as a function
of the variational coefficients β jmn,

ER =
∑
jmn

|β jmn|2[Bext (n + m) + B0n2 + B j( j + 1)]

−
∑
kλμ

1

ω(k)

∣∣∣∣∣∣∣∣∣∣∣
∑
jmn

j′m′n′

β∗
j′m′n′β jmnŨ kλμ

jmn, j′m′n′

∣∣∣∣∣∣∣∣∣∣∣

2

, (25)

with the coupling,

Ũ kλμ

jmn, j′m′n′ =
∑
αl

Uα (k)

√
(2α + 1)2(2l + 1)(2 j′ + 1)

(2 j + 1)(2λ + 1)
iλ−α−l jl (kr0)Yl,δ

(π

2
, 0

)
C j0

α0, j′0C
jm
αγ , j′m′Cλ0

α0,l0C
λμ

αγ ,lδ, (26)

where γ = m − m′ and δ = μ − m + m′ are subjected to the
restrictions of the Clebsch-Gordan coefficients.

Provided that the emergent interaction between external
and internal angular momenta in the weak-coupling regime
is a consequence of a phonon exchange, we would expect to
observe a similar, yet more pronounced, effect, considering
the ansatz with the multitude of phonons. The correlation can
be written in terms of the variational coefficients as

C =
∑
jmn

mn|β jmn|2 −
⎛
⎝∑

jmn

m|β jmn|2
⎞
⎠

⎛
⎝∑

jmn

n|β jmn|2
⎞
⎠.

(27)

For the numerical evaluation of Eqs. (25) and (27), we use a
simplified model of interaction potential between the impurity
and the bath degrees of freedom,

Uλ(k) = ak√
2λ + 1

e−k, (28)

with a being a free parameter defining the strength of interac-
tion. This model potential resembles the behavior of Eq. (17),
and together with the simplified dispersion relation ω(k) ≡ 1,
it effectively decreases the complexity of computations.

The Pekar energy functional (25) is minimized with re-
spect to the variational coefficients to define the energy of
the ground state, which is presented in Fig. 5(a). Energy
values exhibit a smooth behavior and experience a decay with
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FIG. 5. (a) Ground-state energy dependence on the impurity-
bath interaction strength. The values are obtained through the min-
imization of Pekar functional (25). (b) Angular momentum corre-
lation dependence on the interaction strength. At the critical value
of ac ≈ 8.3, the system exhibits transition to the spin-orbit coupled
regime. (c) Dependence of the variational coefficient amplitudes on
the interaction amplitude. The transition to the correlated regime is
explained by the redistribution of coefficients’ amplitudes at values
higher than the critical strength ac.

increasing interaction strength. In Fig. 5(b), we show the
angular momentum correlation dependence on the interaction
amplitude. The correlation function, similar to Ref. [50], ex-
hibits a sharp transition to nonzero values at the critical point
ac ≈ 8.3 and shows a saturation at high values of a. To explain
this behavior, in Fig. 5(c), we show the dependence of varia-
tional coefficients β jmn amplitude on the interaction strength.
In the low impurity-bath interaction regime, the system is
in its ground-state |0, 0,−1〉 with the first term in Eq. (25)
dominating. At the transition threshold ac, however, the ex-
change between internal and external rotations occurs, and
the system exhibits the states that maximize the interaction
with the surroundings: |1,−1, 0〉, |1, 0,−1〉, and |1, 1, 0〉.
Consequently, the second (interaction) term in Eq. (25) starts
prevailing, manifesting the correlation. It is worth noting that

the energy of the system, depicted in Fig. 5(a), does not
show a kink, implying that the transition between different
angular momentum configurations occurs within the same
energy level.

These results explicitly connect the angular momentum
exchange between internal and external rotations with the
correlation of the angular momentum operators. Since the
latter was chosen as a measure of the spin-orbit coupling
in the system, the strong-coupling approach indicates that
such interaction is mediated by excitations in the many-body
environment.

It is worth pointing out that the strong- and weak-coupling
regimes consider the opposite limits of the coupling strength
between the impurity degrees of freedom and the bath. The
deformations of the bath induced by the presence of a molec-
ular impurity in different regimes are, thus, on different scales.
Consequently, none of the trial wave-functions (10) and (19)
can be represented as a limiting case of the other. Although
the results of Secs. III and IV are in agreement with each
other, they cannot be deduced from one another, and each of
the approaches is required to examine the problem in a more
general way.

V. CONCLUSIONS

To summarize, we have obtained the effective Hamiltonian
of a rotating mobile impurity immersed in a bosonic medium
in the case where the center of mass motion is confined to
a ring. We calculated the spectral function of the system in
the regime of weak coupling between the molecule and the
many-body environment. We observed transitions between
distinct energy levels occurring in the vicinity of the angulon
instability [37]. The transition probabilities were found to be
dependent on the relative angular momenta orientations in the
system. This leads to a conclusion that the energy of each
state depends on the coupling between external and internal
rotations, similar to the conventional spin-orbit interaction.
We have used the correlation between angular momentum
operators as a quantitative measure of such coupling. The
numerical calculation has shown that the amplitude of this
correlation depends strongly on the relative orientations of the
angular momenta. This allowed us to connect the excitations
in the phonon continuum observed in the spectrum with the
interaction between external and internal rotational degrees of
impurity.

To provide a broader view on the problem, we applied a
Pekar approach to the regime where the impurity is strongly
interacting with the medium. In this case, we considered a
coherent state of phonon excitations, instead of the single-
phonon variational ansatz used in the weak-coupling regime.
Thus, the spin-orbit interaction was expected to be more pro-
nounced. The numerical study revealed that the main factor
inducing the coupling between internal and external degrees
of freedom is the redistribution of the state amplitudes above
the critical interaction strength. Since the moment when the
interaction with surroundings starts dominating, the system
chooses to occupy the states that maximize this interaction.
This induces the correlation between external and internal
angular momenta. This result implies the existence of an
effective spin-orbit interaction mediated by the many-body
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environment. The sharp transition to the interacting regime is
promising for the applications either directly in few-impurity
systems in the presence of a medium (similar to Refs. [5–7])
or in a large set of collective phenomena that arise as a
consequence of such interactions, i.e., spintronics phenomena
[15,16] or topological electronic states [26–28].
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