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Layered copper oxides have the highest superconducting transition temperatures at ambient pressure. Its
mechanism remains a major challenge in condensed matter physics. The essential physics lying in two-
dimensional copper-oxygen layers is well described by a single-band Hubbard model or its strong-coupling
limit t-J model in a two-dimensional square lattice. The recently discovered high-temperature superconductor
Ba2CuO3+δ with δ ∼ 0.2 has a different crystal structure with a large portion of in-plane oxygen vacancies. We
observe that an oxygen vacancy breaks the bond of its two neighboring copper atoms, and propose the ordered
vacancies in Ba2CuO3+δ lead to an extended t-J model on an effective brick-wall lattice. For the nearest-neighbor
hopping, the brick-wall model can be mapped onto the t-J model on a honeycomb lattice. Our theory explains the
superconductivity of Ba2CuO3+δ at a high charge carrier density, and predicts a time-reversal symmetry-broken
pairing state.
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Introduction. Understanding high Tc copper oxides [1–5]
remains a major challenge in condensed matter physics de-
spite intensive studies over the past 30 years. It is generally
accepted that the basic physics of high Tc cuprates is on
the CuO2 planes, and the half-filled dx2−y2 holes of formal
Cu2+ form a Mott insulator or charge transfer insulator. The
chemical doping of the parent compounds introduces addi-
tional holes and leads to d-wave superconductivity with the
highest transition temperatures at ambient pressure. Recently,
superconductivity was discovered in Ba2CuO3+δ material
with δ ≈ 0.2, which belongs to a different family of high Tc

cuprates [6,7]. The Meissner effect measurement shows that
the compound has a transition temperature Tc = 73 K, which
is much higher than that of a similar structure, the high Tc

cuprate La2−xBaxCuO4. It is then interesting and important
to examine the electronic structure and superconductivity of
Ba2CuO3+δ , which may also shed light on our understanding
of high Tc cuprates in general.

Ba2CuO3+δ has a compressed octahedron with apical oxy-
gen atoms closer to the central Cu atoms; the Cu-O bond
length for apical O is about 1.9 Å, shorter than the Cu-O
bond length on the Cu-O plane. This is different from all
other known cuprates, where the Cu-O bond along apical
O is longer. There are a large number of O vacancies in
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Ba2CuO3+δ , which are located on the CuO2 plane, as neutron
data showed [8]. These vacancies are expected to play an
important role in the electron structure and possibly super-
conductivity. First-principles calculations have been reported
by Liu et al. [9], who considered various possible crystal
structures. For δ = 0.25, they have found crystal structures
corresponding to lower total energies. There have been a
number of proposed theories for its electronic structure and
superconductivity. In the usual cuprates, the formal valence of
Cu is less than +2.2, corresponding to a hole concentration
on the CuO2 plane of less than 20%. In Ba2CuO3+δ , the
average valence of Cu is +2(1 + δ), corresponding to an
average hole concentration of 2δ � 0.2 for a value of the
given δ ∼ 0.2. This has led to the proposal of a two-band
Hubbard model to describe the compound [10,11]. A large
number of O vacancies has led to the proposal of a weakly
linked two-chain ladder for the superconductivity [12], whose
related physics has been previously examined extensively in
the study of Hubbard or t-J ladders [13].

In this Rapid Communication, we take the viewpoint that
the observed superconductivity in Ba2CuO3+δ results from
an ordered crystal structure and the O vacancy effectively
transforms the original square lattice of CuO2 to a different
lattice. We propose a crystal structure for Ba2CuO3+δ , where
layers of one-dimensional CuO chains and two-dimensional
(2D) CuO1.5 planes are alternating, as illustrated in Fig. 1(a).
We expect the CuO chains to serve as a charge reservoir, in
analogy to the CuO chains in YBa2Cu3O6+δ (YBCO), and
the CuO1.5 planes to contain the essential physics for the
superconductivity in Ba2CuO3+δ . We argue that the effective
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FIG. 1. (a) Proposed crystal structure for Ba2CuO3.25 with an
alternating Cu-O chain layer (middle layer) and Cu-O1.5 plane (top
and bottom layers). The apical O atoms are all occupied. The
Cu-O1.5 plane forms a brick-wall structure due to the missing O
atoms. (b) The brick-wall lattice formed by Cu (light blue for the
A sublattice and dark blue for the B sublattice) and O (red) atoms.
�α, α = 1, 2, 3 are the superconducting order parameters on the
corresponding bonds. The unit cell vectors are depicted as green
dashed lines with length a, while the next-nearest neighbors are
indicates by the red dashed arrows.

Hamiltonian of a CuO1.5 plane is described by a single-band
t-t ′-J model on an underlying brick-wall lattice, which is
shown in Fig. 1(b), with t and t ′ the nearest-neighbor (NN)
and next-nearest-neighbor (NNN) hopping integrals, and J the
NN spin-spin coupling of the spin- 1

2 Cu holes.
We use the renormalized mean-field theory (RMFT) [14]

to study the t-t ′-J model on the brick-wall lattice. We find that
the superconductivity extends to a hole density of as high as
40%, and the maximum of the pairing order parameter appears
at a larger hole concentration than the other cuprates due to
the shift of the van Hove singularity for the density of states
in the brick-wall lattice. The pairing symmetry depends on
the value of t ′/t and the hole concentration, and may break
time-reversal symmetry, which can be tested in a muon spin
rotation (μSR) experiment. The effects of bond disorder are
also studied, and the superconductivity is expected to survive
a weak bond disorder that deviates the structure from a perfect
brick-wall lattice.

Our theory appears to be consistent with the available ex-
periments and explains the superconductivity of Ba2CuO3+δ

with a relatively large hole concentration. We attribute the
change of the electronic structure in the planar layer of
the compound to the O vacancy, which in turn changes the
effective lattice. This may provide another route to study high
Tc in the future.

Model and effective lattice. As mentioned above, we con-
sider a crystal structure shown in Fig. 1(a), with alternating
layers of CuO chains and CuO1.5 planes (x-y plane). The
average δ is 0.25 in such a structure. The O vacancies (missing
O atoms) in the CuO1.5 layer form a square lattice and there
are three O atoms around each Cu atom on the plane. The
energy of the crystal structure has not been calculated, but
should be similar to the one of the lowest-energy crystal
structure calculated for Ba2CuO3.25 by Liu et al. [9], with
the difference being that in the latter case the O vacancies
form alternating chains along the x direction. We will focus
on the electronic structure of the CuO1.5 plane and consider

CuO chains to serve as a charge reservoir. While the aver-
age of the formal valence of Cu in Ba2CuO3.25 is Cu2.5+,
the formal valence of the Cu atom on the CuO1.5 layer
can be significantly smaller because of the compensation from
the CuO chains.

For each Cu atom on the CuO1.5 plane, there are five
nearest-neighbor O atoms including two apical O atoms, two
on the x axis, and one on the y axis. The possible antibonding
Cu-3d orbitals here are 3d3z2−r2 or 3dz2−x2 , whose relative
energies depend on the difference or ratio of the bond lengths
between the short apical Cu-O bond and the in-plane Cu-O
bond. Here, we assume orbital 3d3z2−r2 to have a higher en-
ergy, which is consistent with a density-functional calculation
for proper parameters [15]. Then the lowest energy of the
atomic 3d hole state is d3z2−r2 , which replaces 3dx2−y2 in
other cuprates as the relevant orbital. Considering Cu-3d10

and O-2p6 as the vacuum configuration, the formal Cu2+ thus
has one hole primarily on Cu-3d3z2−r2 . Because of the large
repulsive interaction U for two holes on the same Cu site, the
ground state at the half-filling, namely one hole per Cu atom in
average, will be a Mott insulator, similar to that of La2CuO4.

We next consider additional holes for the half-filled case.
As a soft-x-ray absorption experiment [6] showed, the addi-
tional hole largely goes to the O-2p orbitals, which implies
that the formal Cu3+ has one hole on Cu-3d3z2−r2 and the other
on O-2p. We expect them to form a spin singlet, similar to the
Zhang-Rice spin singlet [16] formed in other cuprates, and
move through the lattice as a charge carrier.

Since the hopping of the hole between the two neighboring
Cu atoms is essentially mediated by the oxygen 2p orbitals
in between, it is strongly suppressed if the oxygen between
the two Cu atoms is missing. Therefore, the nearest-neighbor
Cu-Cu bond may be effectively removed from the lattice if the
O atom between them is missing. This leads to an effective
brick-wall lattice as shown in Fig. 1(b).

As we discussed above, the physics in Ba2CuO3+δ may
be similar to that in other cuprates and we may consider the
material as a doped Mott insulator within a single orbital
model, although the relevant Cu-3d orbital and the underlying
lattice due to the missing O ions will be different from the
other cuprates. The low-energy physics of Ba2CuO3.25 is thus
described by a two-dimensional t-J model on a brick-wall
lattice,

H = −
∑

i j

(ti jPGc†
iσ c jσ PG + H.c.) + J

∑

〈i j〉
Si · S j, (1)

where ciσ and c†
iσ are the annihilation and creation operators

of electrons with spin σ at site i, respectively, ti j is the hopping
integral of electrons between site i and j, PG is the Gutzwiller
projection operator to project out doubly occupied electron
states on the Cu sites, and 〈i j〉 means NN pairs of i and j.
Repeated spin indices are summed. As we analyzed above,
the dominant orbital is 3d3z2−r2 , thus the hopping integrals
are isotropic along the x and y axes. We consider only the
case with NN and NNN hoppings, whose hopping integrals
are tnn = t and tnnn = t ′, respectively.

Mean-field results. As shown in Fig. 1(b), the supercon-
ducting order parameters of the brick-wall lattice are denoted
by �α with α = 1, 2, 3. Usually, the symmetry of a system
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TABLE I. Character table of group D2.

Reps e C2(z) σx σy

A +1 +1 +1 +1
B1 +1 +1 −1 −1
B2 +1 −1 +1 −1
B3 +1 −1 −1 +1

will impose some constraints on the order parameters. The
point group symmetry of the brick-wall lattice is D2, which
has four irreducible representations as listed in Table I. Since
we are only interested in spin singlet pairing, only the A and
B1 representations are relevant. For the A representation, we
have real pairings with �1 = �2. For the B1 representation
(which will be denoted as B hereafter), we have real pairings
with �1 = −�2, �3 = 0.

t ′ = 0 is a special case, where the Hamiltonian has a higher
symmetry than the lattice, the D6 symmetry. This can be
understood as follows. The brick-wall lattice can be treated as
a squeezed honeycomb lattice. If one considers only the NN
coupling, the model can be mapped onto a t-J model with the
NN hopping on a honeycomb lattice, and has a D6 symmetry
(see the details in the Supplemental Material [17]). Previous
studies [18–23] on the t-J model on a honeycomb lattice have
suggested a d + id-wave topological superconducting phase
which corresponds to a two-dimensional representation of the
D6 group. Although the D6 symmetry is reduced to D2 as
one turns on the NNN hopping, it is possible that the pairing
symmetry may still be d + id , or more precisely, A + iB in
the D2 case, where the 2D representation reduces to A ⊕ B,
for small t ′. In the following calculations, we will take the
A + iB ansatz �1 = �∗

2 = �xA + i�xB and �3 = �y, where
�xA, �xB, and �y are all real, as shown in Fig. 2(a). �xA

and �xB track the contribution from A and B, respectively,
a case with finite �xA and vanished �xB corresponds to a
pure A phase, while a case with finite �xB and �xA = �y = 0
corresponds to a pure B phase.

Then we solve the superconducting order parameters with
the standard renormalized mean-field theory approach (see
the details in the Supplemental Material [17]), and the results
for t ′ = 0, t ′ = 0.1, and t ′ = −0.1 are depicted in Figs. 2(b)–
2(d), respectively. The result for t ′ = 0 shows a time-reversal
symmetry-breaking A + iB-wave (d + id-wave) phase in the
large doping regime, which is consistent with the previous
studies on a honeycomb lattice. The optimal doping of the
superconducting dome corresponds to the van Hove singular-
ities as shown in the inset of Fig. 2(b). For small but finite
t ′ = ±0.1t , we still have the A + iB phase at low doping
(p < 0.15). But with increasing doping, the A + iB phase
becomes energetically unfavorable and is replaced by a pure
B phase (for t ′ = 0.1t) or a pure A phase (for t ′ = −0.1t)
[see Figs. 2(e) and 2(f)]. In each phase, we find that the
doping with a maximum superconducting order parameter
corresponds to the peak in the density of states, i.e., the van
Hove singularities.

We also perform the calculations for various dopings
and t ′, and the resultant phase diagram is shown in Fig. 3.
One can find a robust A + iB phase in a rather large

FIG. 2. The RMFT result of the A + iB phase. �xA (�xB) is
used to indicate the contribution from the A (B) representation,
respectively. The pairing order parameters on three distinct bonds
are indicated in (a). �xA, �xB, and �y obtained from the RMFT for
(b) t ′ = 0, (c) t ′/t = 0.1, and (d) t ′/t = −0.1 with J/t = 0.4 for all
cases. The insets in (b)–(d) are the density of states (DOS) and the
corresponding Fermi energy at the optimal dopings marked by the
arrows. The energy difference between the A + iB phase and the
pure B (A) phase for parameters of (c) [(d)] are shown in (e) [(f)],
respectively.

parameter regime and a phase transition from the A + iB
phase to A phase in the t ′ < 0 region and a transition from
the A + iB to B phase in the t ′ > 0 region. The different
behavior between positive and negative t ′ can be understood

FIG. 3. Phase diagram of different pairing symmetries obtained
from RMFT calculation. The yellow, green, and purple regions
corresponding to the A + iB, pure B, and pure A phases, respectively.
We also depict the typical Fermi-surface topology and quasiparticle
gap in the Brillouin zone for each phase (t ′ = 0 and p = 0.15 for the
A + iB phase, t ′ = 0.1t and p = 0.31 for the B phase, and t ′ = −0.1
and p = 0.36 for the A phase). The orange dotted lines are the
boundary of the reduced Brillouin zone, while the symbol h indicates
the region occupied by holes. The A + iB and B phases are gapped,
while the A phase is gapless with its nodes depicted as red spots in
the figure.
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from the Fermi-surface geometry. In Fig. 3, we depict the
typical Fermi surface for each phase. In the large doping
regime, the underlying Fermi surface for t ′ > 0 has very good
nesting along the kx direction that favors a one-dimensional
instability, while the Fermi surface for t ′ < 0 does not have
such a nesting and favors a two-dimensional instability. On
the other hand, the superconducting pairing in the B phase
is one dimensional (because �y = 0), while the pairing in
the A phase is more two dimensional. Thus one has the B
phase at t ′ > 0 and A phase at t ′ < 0 in the large doping
regime.

As we analyzed above, the A + iB phase at t ′ = 0 cor-
responds to d + id superconductivity, thus the A + iB phase
should also be a topological superconducting phase. To con-
firm that, we calculated the Chern number νCh associated with
each phase. We find that the A + iB phase has a Chern number
νCh = 4, while the pure A and B phase is topologically trivial
and has a Chern number νCh = 0. Thus, the phase transition
between them is indeed a topological phase transition associ-
ated with a gap closing behavior.

Effects of bond disorder. It is natural to expect the existence
of bond disorder in a system that deviates from the structure
of a perfect brick-wall lattice, and its effects on the supercon-
ductivity need to be investigated.

We start with an N = 32 × 32 brick-wall lattice of periodic
boundary condition, in which there are 3N/2 NN bonds with a
nonzero hopping integral t and superexchange J , forming the
structure depicted in Fig. 1(b). Note that, as compared with the
square lattice, there are N/2 NN bonds missing in the brick-
wall lattice. To introduce bond disorder, Ndis NN bonds are
redistributed randomly. Explicitly, we take out Ndis bonds ran-
domly from the 3N/2 NN bonds of the brick-wall lattice and
then distribute them randomly to the place of N/2 previously
missing bonds. Clearly, Ndis takes an integer value between 0
and N/2, and the strength of the bond disorder is measured by
a value of η = 2Ndis/N . At a given η, we generate 20 disorder
realizations and obtain the ground state of each realization
self-consistently. We stay with t ′ = 0 and doping concentra-
tion ρ = 0.25 where the superconducting brick-wall lattice
is in the A + iB phase. The average renormalized pairing of
each disorder realization, �̃ = 2

3N

∑
〈i, j〉 gt

i j |�i j |, at zero tem-
perature is plotted in Fig. 4(a) as crosses at various disorder
strengths η, with the solid line representing their ensemble
averages. The ensemble-averaged �̃ decreases linearly as
the disorder strength η increases, and saturates to a nonzero
minimum value at η 
 0.09. We thus expect the superconduc-
tivity on the perfect brick-wall lattice to survive weak bond
disorders. To estimate the effects of bond disorder on the
superconducting transition temperature Tc, the temperature
dependence of �̃ is plotted in Fig. 4(b) for η 
 0.038 and η 

0.078, with the result in the absence of disorder (η = 0) also
shown for comparison. Clearly, the suppression of the mean-
field critical temperature by bond disorder is much weaker
than the suppression of the ensemble-averaged �̃ at zero
temperature.

Figure 5(a) shows the evolution of the DOS, ensemble
averaged over 20 disorder realizations, as a function of
the bond disorder strength η, with the DOS of each disor-
der realization provided in Figs. 5(b) and 5(c) for, respec-
tively, Ndis = 1 and Ndis = 10. Clearly, the redistribution of a
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dependence of the ensemble-averaged �̃ at bond disorders η =
0, η 
 0.039, and η 
 0.078. Crosses represent the data of each
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single NN bond in the brick-wall lattice can already pro-
duce some in-gap states. This implies that the effect of
bond disorder is more than providing a scattering poten-
tial. Furthermore, the full superconducting gap in the clean
A + iB phase closes at roughly Ndis = 8, as is evident by a
nonzero DOS at the Fermi energy. It would be interesting
to study the topology of the superconducting state with bond
disorder.

Conclusion. In summary, we have proposed an effective
brick-wall t-t ′-J model for a recently discovered high Tc

superconductor. By using renormalized mean-field theory, we
have demonstrated that the superconductivity extends to a
very large hole concentration, and the pairing order parameter
is peaked at a larger hole concentration. The pairing symmetry
can be complex and breaks time-reversal invariance, similar to
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bottom, Ndis = 0, 1, 2, 4, 6, 8, 10, and 20. (b) The individual DOS
of 20 disorder realizations with Ndis = 1. (c) Same as (b) but for
Ndis = 10. All curves are offset vertically for clarity.
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the superconductivity theoretically studied for the t-J model
on the honeycomb lattice. The broken time-reversal symmetry
and the chiral edge states originating from its topological
nature may be observed with various techniques, such as μSR,
Kerr effect, superconducting quantum interference device
(SQUID), etc. We note that the Hubbard model on a square
lattice has recently been studied using more sophisticated
numerical methods. Our study, based on renormalized mean-
field theory on the brick-wall lattice, may be viewed as a
starting point for these more advanced numerical methods.
Our mean-field result on the bond disorder effect suggests a
relatively weaker reduction to the superconductivity transition
temperature.
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