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We derive an effective tight-binding model that captures, in real space and with only two parameters, the
dominant Coulomb interactions and superconducting pairing near half-filling of magic-angle twisted bilayer
graphene. We show that, in an antiferromagnetic Mott insulating ground state with intervalley coherence,
magnetic fluctuations and doping mediate superconducting pairing. We find the pairing wave function to have
chiral d-wave symmetry and obtain a self-consistent mean-field phase diagram in line with experiments on the
doping-induced insulator-to-superconductor transition. We further reveal the existence of chiral Majorana edge
modes implied by the nontrivial pairing symmetry, which establishes twisted bilayer graphene as a potential
platform for topological superconductivity. This effective model opens the door to systematic scrutiny of the
competition between correlated states in this system.
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Introduction. Correlated insulating phases and unconven-
tional superconductivity (SC) have been recently observed
in twisted bilayer graphene (tBG) near the magic angle θ ≈
1.1◦ [1–3], igniting a surge of interest due to the similarity
of its phase diagram and that of high-Tc superconductors.
Theoretical proposals emerged since to address the nature
of those phases from either a weak- or strong-coupling
limit of the electronic interactions [4–21]. In weak coupling,
van Hove singularities and Fermi surface nesting [22,23]
suggest the possibility of strong particle-hole fluctuations
that can lead to an insulating phase and SC upon doping
[5–7,10]. On the other hand, the multiple insulating phases
observed experimentally [3] favor strong coupling to be more
appropriate.

It has been shown that a minimal tight-binding (TB)
Hamiltonian must consist of two orbitals, of px and py

symmetry, per site of the emergent honeycomb spanned by
the regions of perfect AB and BA stacking [blue and red
sites in Fig. 1(a)] [9,11–13,24]. In this view, to each val-
ley ±K one associates a TB with a single px ± ipy orbital
on each site, thus generating a two-band model per valley
[11–13]. However, there is topological obstruction to describe
individual valleys by independent TB Hamiltonians while
maintaining the valley U (1) symmetry [11]. Although this
would force the four-band model as the minimal description,
phenomenological considerations and Hartree-Fock calcula-
tions suggest that the valley symmetry may be broken sponta-
neously above the Mott and SC transition temperatures [11].

In this scenario, the symmetry-broken state is characterized by
an intervalley coherence (IVC, where the valley pseudospin
acquires a polarization in the xy plane), and two pairs of
bands can split as schematically illustrated in Fig. 1(b) [11].
The Fermi level at a filling of two electrons per moiré unit
cell (half filling) is then at the Dirac points of the lower
band pair. The system is then semimetallic without further
symmetry breaking. The experimentally observed insulating
and SC phases are assumed to arise in this IVC state. This
picture is consistent with experimental Landau level degen-
eracy near half filling [1–3] as well as experiments that
suggest spin-singlet Mott-like behavior in the insulating phase
[1].

To adequately incorporate Coulomb interactions, one must
consider that the trilobed shape of Wannier functions [see
Fig. 1(a)] generates a cluster interaction, which leads to an
extended Hubbard model [11,12,24]. Reference [17] explored
its possible symmetry-broken phases using quantum Monte
Carlo and, as in monolayer graphene, the ground state in
the strong-coupling limit has antiferromagnetic (AFM) order
[25,26]. Reference [24], on the other hand, suggested a ferro-
magnetic ground state by calculating the exchange integrals
explicitly.

In this Rapid Communication, we adopt the IVC scenario
and concentrate on the vicinity of half filling. We derive an
effective model that, with minimal parameters, captures the
dominant AFM coupling and fluctuation-induced SC pairing
in tBG at the magic angle, which is the “t-J-D model” we
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FIG. 1. (a) Blue/red dots mark the places with perfect AB/BA
stacking in the moiré pattern, which define a honeycomb lattice.
The trilobed forms illustrate the shape of the Wannier functions.
The renormalized hopping, antiferromagnetic coupling, and pairing
strength are denoted as t̃ , J , and D, respectively, and vertical arrows
represent the short-range AFM order. (b) Intervalley coherence (IVC)
order splits the low-energy four-band sector into two pairs; at half
filling, the Fermi level is at the lowest Dirac crossings. (c) Quasipar-
ticle dispersion along the �-K-K ′-� line in the moiré Brillouin zone
when both AFM and SC gaps are finite and the system is doped away
from half filling (noninteracting spectrum in red). The SC gap opens
at the Fermi level (dashed line) while the AFM gap remains at the
Dirac point.

introduce here. It is governed by the effective Hamiltonian
H = Ht̃ + HJ + HD, where

Ht̃ ≡ −t̃
∑
〈i j〉,α

a†
iαb jα + H.c., (1a)

HJ ≡ J
∑
〈i j〉

�Si · �S j, (1b)

HD ≡ −D
∑
〈〈i j〉〉

h†
i j hi j . (1c)

The effective hopping t̃ takes into account the strong renor-
malization of the single-particle bandwidth due to electron
correlations (see Supplemental Material [27] for the order
of t̃). It describes the itinerancy of electrons among nearest-
neighboring sites i, j of the honeycomb lattice defined by
the AB/BA regions in the moiré lattice, a and b are the
electron operators on each sublattice, and α indicates spin.
The term HJ describes an AFM exchange interaction between
nearest-neighbor spins, �Si, and HD represents the fluctuation-
induced pairing with 〈〈i j〉〉 indicating third neighbors not
sharing an hexagon, such as the blue and red pairs repre-
sented in Fig. 1(a). hi j ≡ ai↑b j↓ − ai↓b j↑ is the intersublattice
singlet operator. We emphasize that, unlike in the approach
to cuprates or pnictides [28], in this model the SC pairing
couples not the nearest but remote neighbors, as schematically
shown by the dashed lines in Fig. 1(a).

In addition to deriving the effective model in Eq. (1),
we extract the implication that pairing should be chiral with

d + id symmetry, which tallies with conclusions from other
models [4,6,8,14,15,19,21]. We also show that the model-
derived phase diagram agrees with the experimental sequence
of transitions as a function of doping away from half filling.

Effective model. We start from the real-space Hamiltonian
H = Ht + HU on the honeycomb lattice spanned by the cen-
ters of the Wannier functions [see Fig. 1(a)]. As there is no
symmetry obstruction to building a two-band TB model in the
IVC state [11], we consider a single Wannier orbital per site
of the emergent honeycomb lattice. Hence

Ht ≡ −t
∑
〈i j〉,α

a†
iαb jα + H.c., (2a)

HU ≡ U
∑

R

(QR − 2)2. (2b)

Here, t is the bare hopping (i.e., the hopping in the absence
of interactions), R marks the position of each hexagon’s
center, U sets the strength of the repulsive interactions, and
QR ≡ ∑

i∈�
∑

α
niα
3 is the charge located at that position.

The unusual form of the interaction HU contrasts with the
more conventional on-site Hubbard interaction, which would
be overly simplistic here. This happens because symmetry
imposes the Wannier functions associated with the flat bands
to have a trilobed shape centered on the AB/BA sites [9,11–
13]. As illustrated in Fig. 1(a), each Wannier function is
shared by the three adjacent hexagons and its lobes extend
up to the centers of those hexagons. The electronic density
is therefore peaked at the positions of the dual triangular
lattice, which is seen experimentally [29]. This results in the
overlap of 3, 2, or 1 lobes when considering, respectively,
the interaction between electrons on the same site, nearest-
neighbor (NN), next NN (NNN), and third NN on a given
hexagon. Correspondingly, the ratios of the repulsion from
same site to third NN is 3:2:1:1 [12].

As the interaction is still larger on site than among NN,
an AFM coupling J ∼ t2/U arises to leading order in per-
turbation theory for U  t [30], which defines our term HJ

in Eq. (1b). This exchange term is further validated by the
discovery of AFM order in quantum Monte Carlo calcula-
tions [17]. Furthermore, we note that the puzzle of Landau
level degeneracy reduction seen in magnetic quantum oscilla-
tion experiments [1–3] can be qualitatively explained in our
model; considering that the saddle points lie extremely close
(≈0.1 meV) to the moiré Dirac point energies [12], one indeed
expects [31–34] an experimental degeneracy of 2 (spin) at
half-filling within IVC, as observed.

Unlike in cuprates and iron pnictides [28], in tBG one
expects NN pairing to be inefficient due to the strong re-
pulsion (governed by HU ) between electrons sharing a given
hexagon. Therefore, we consider the pairing between the
closest electrons not coupled by HU . These are the six sites
marked by the red disks in Fig. 1(a), which lie closest to the
site highlighted in blue. We now show the basic physics of
how AFM fluctuations mediate an effective pairing between
electrons at these sites (see Supplemental Material [27] for a
more detailed treatment).

Decoupling the AFM order parameter �mi ≡ 〈�Sa〉−〈�Sb〉
2 in

the electronic interaction leads to a local magnetic coupling
Hi = λ �mi · �σαβ (a†

iαaiβ − b†iαbiβ ), where λ ∼ J is the coupling
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strength [35]. Here we consider the effect of magnetic fluctu-
ations in the absence of long-range AFM order. The intersub-
lattice effective electron-electron interaction can be obtained
by integrating out the spin fluctuations, and reads

Hi j = λ2χi j �σαβ · �σγ δa†
iαaiβb†jγ b jδ. (3)

It arises in an approximation that neglects retardation effects,
where χi j ∝ g−1e−Ri j/ξ is the static spin susceptibility, with
Ri j the distance between moiré unit cells i and j, ξ the
magnetic correlation length, and g the spin stiffness (see
Supplemental Material [27] for the meaning of g). One sees
that Hi j is attractive for antiparallel spins (α = β = −γ =
−δ), and should hence support singlet SC [36], in line with
experimental observations [2]. The pairing strength in Eq. (1c)
is determined by D ∼ λ2χi j and will be significant as long
as spin fluctuations are strong (ξi j is large). Since the spin
stiffness is controlled by J , D should also be of order J . More-
over, similar arguments show that the intrasublattice interac-
tion between antiparallel spins is repulsive. Such a staggered
“attractive-repulsive” profile is similar to cuprates, where it
arises from Fermi surface nesting [36–38]. Even though these
similarities provide universal points of contact between tBG
and high-Tc materials, we underline the unique features of the
t-J-D model in Eq. (1), where AFM interactions in (1b) are
governed by NN exchange, as in a conventional t-J model
[39–41], whereas fluctuation-induced pairing (1c) is relevant
only among more distant sites.

In order to establish the basic phenomenology implied by
this model, we investigated its phase diagram at the mean-
field level. In the remainder, we study the ground state of
Hamiltonian (1) considering only pairing among sites such as
those connected by the dashed lines in Fig. 1.

Pairing symmetry. Before studying the interplay between
AFM and SC phases, we tackle the case with J = 0 in Eq. (1)
to identify the symmetry of the dominant pairing instability.
Decoupling the interaction in Eq. (1c) at the mean-field level
we have

HMF
D =

∑
i,a

−�ah†
i,i+a − �∗

ahi,i+a + 6N

D
|�|2

� −
∑

k

Dk c†k↑c†−k↓ + H.c. + 6N

D
|�|2, (4)

where �a ≡ D〈hi,i+a〉 denotes the pairing between electrons
at i and i + a, and a represents the six vectors connecting blue
and red sites in Fig. 1. In the second line, c is the conduction-
band fermion operator and Dk ≡ ∑

a �a cos(k · a − φk ) de-
fines the SC gap, with φk ≡ arg(

∑
δ eik·δ) and δ being the three

vectors connecting the NN sites. This result (4) retains only
intra-conduction-band pairing terms, since these are the most
important at finite chemical potential which is the situation
where SC is observed experimentally (see Supplemental Ma-
terial [27] for more details of the calculation).

The pairing symmetry in the ground state has been
obtained by the self-consistent mean-field solution using
the Hamiltonian (4). The pairing function is written as
�a = � f (θa ), where θa is the angle between bond a
and the x axis [see θ in Fig. 1(a)]. We use fs(θ ) = 1,
fdx2−y2 (θ ) = cos(2θ ), fdxy (θ ) = sin(2θ ), and fd+id (θ ) = ei2θ

FIG. 2. Solution of gap equation (5) for different pairing sym-
metries. The s-wave order parameter is always negligibly small,
while the other symmetries develop order at finite D. The solutions
for dx2−y2 and dxy are degenerate, which is protected by symmetry.
The critical pairing (Dc) is smallest for d + id symmetry. The inset
shows the magnitude (radius) and phase (color) of the s and d + id
gap functions along a circle centered at the Dirac point with radius
k = 0.1/a when �a = 1. The outer (inner) ring represents d + id
(s) symmetry. For visibility, the magnitude of the s-wave order
parameter has been increased fivefold.

in our calculation. The quasiparticle spectrum is given by
Ek = ±

√
(εk − μ)2 + |Dk|2, where μ is the chemical po-

tential measured with respect to the Dirac points and εk ≡
t̃
√

3 + 2 cos(
√

3ky) + 4 cos(
√

3ky

2 ) cos( 3kx
2 ) is the dispersion

of free electrons in the emergent honeycomb lattice [42] (see
Supplemental Material [27] for the calculation). By minimiz-
ing the energy, we obtain the gap equation:

1

N

∑
k

| ∑a f (θa )|2
Ek

= 12

D
, (5)

where N is the number of unit cells. The solutions of this
equation as a function of V for each symmetry are shown in
Fig. 2, where we chose μ = 0.2t̃ for illustration. For repulsive
interaction (D < 0), there is obviously no SC at all. For attrac-
tive interactions (D > 0), while the s-wave order parameter
remains zero for D up to 10, a d-wave emerges at a finite
critical interaction, Dc. The case d + id has both the smallest
Dc and the largest magnitude at a given D, which implies the
ground state should have d + id symmetry. We can under-
stand why d + id is favored in relation to s-wave symmetry
by inspecting the different gap functions in momentum space
(Dk) while setting the real-space amplitudes to �a = 1 [28].
As the condensation energy is dominated by the opening of
the SC gap at the Fermi surface, in the inset of Fig. 2 we
show a polar representation of Dk along the circle centered
at the Dirac point with radius k = 0.1/a (a is the moiré lattice
constant) for the cases of s and d + id wave. This confirms
directly that D(s)

k � D(d+id )
k and, in addition, shows that the

case d + id displays a nontrivial winding phase of 2π around
each moiré Dirac point (see Supplemental Material [27] for
more information of Dk). To reveal the nontrivial topology
of the d + id explicitly, we show the Bogoliubov quasi-
particle spectrum in the superconducting phase with ribbon
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FIG. 3. Mean-field phase diagram for μ = 0 (blue) and μ = 0.5
(red). Cooper instability predicts SC ground states for arbitrarily
weak attractive interactions, but the critical temperature becomes
exponentially small when the interaction is too weak. To take this
into account we stipulate that the system is in the SC or in the AFM
state only when the corresponding order parameter exceeds 0.01t̃ ,
which corresponds to a critical temperature of 2 mK—the lowest
temperature accessible experimentally. Our phase diagram can be
understood as being essentially the phase diagram at T ∼ mK. The
system is a semimetal in the weak-coupling region, an AFM insulator
at large J , and SC at large D. Arrow 1 highlights the increase in Jc and
decrease in Dc upon doping, while arrow 2 shows the transition from
AFM state to SC observed experimentally when tuning chemical
potential (see text). The inset shows the Bogoliubov quasiparticle
spectrum in the superconducting phase with ribbon geometry.

geometry in the inset of Fig. 3 (see Supplemental Material
[27] for more details). Two chiral Majorana modes are ob-
served and they have a fingerprint of quantized Hall conduc-
tivity which may be detected in transport experiments similar
to those of Ref. [43].

A similar d + id SC phase is obtained in monolayer
graphene if one considers only NN pairing [44,45]. Hence
d + id pairing is likely a robust feature of correlation-driven
SC in honeycomb lattices in strong coupling. But, crucially,
whereas in a monolayer the interaction is too weak (U/t ∼
3.3 [46,47]), in tBG, the quasiflat band drives the system
into strong coupling making it an ideal platform to realize
topological SC.

Parameters. A central aspect of the electronic structure of
tBG is the extremely small value of the bare hoppings (t �
1 meV [1,12,13,48]) and the much larger interaction strength
that justifies our strong-coupling approach (U ≈ 40 meV, us-
ing results of Ref. [12] and encapsulated in boron nitride;
hence U/t � 40). In turn, this leads to an estimate of the AFM
exchange J = 2t2/U ≈ 0.05 meV. Moreover, the effective
hopping t̃ that governs the electronic motion in the effective

Hamiltonian (1) is estimated in the Supplemental Material
[27], Sec. S1, to be t̃ ∼ J/3 ≈ 17 μeV. Consequently, since
Fig. 2 shows Dc/t̃ ∼ 2, the stability of a SC phase requires
only that the pairing strength D exceeds a few μeV. This is
consistent with the facile observation of SC in experiments
where tBG is slightly doped away from the half filled corre-
lated insulator state [2].

Interplay of AFM and SC. Reinstating the AFM interaction
(J �= 0), we now probe the relative stability of the two phases
according to the full Hamiltonian in Eq. (1). According to the
discussion above, we consider only d + id pairing symmetry.
Figure 3 shows the mean-field phase diagram (see Supple-
mental Material [27]for the calculation), where the blue (red)
lines were obtained for μ = 0 (μ = 0.5t̃). The system is
(semi)metallic in weak coupling, where both D and J are
small. From here, increasing J or D leads to a transition to
either an AFM or SC state as expected. Arrow 1 highlights
that departing from half filling stabilizes the SC phase at
the expense of AFM order. SC is favored at higher densities
because the AFM gap is pinned to the Dirac point, indepen-
dent of μ. As a result, the energy gained by transitioning to
the AFM state is maximum at half-filling but decreases with
doping. In contrast, the SC gap lies at the Fermi level; the
associated energy gain is operative at any μ and becomes
more pronounced with doping because of the increase in
Fermi surface. When μ = 0, the transitions from SM to either
the AFM or SC phases are continuous, while the AFM-SC
transition is of first order; at finite chemical potential, the
SM-AFM evolves to first order (see Supplemental Material
[27]for details).

The phase diagram in Fig. 3 tallies with experiments: while
tBG is insulating at half filling and low temperature, doping
drives it to a SC state [1,2]. If J/t̃ � 3.5, our framework
obtains indeed an insulator at half filling with a gap �AFM,
and should display AFM order. We note that Fig. 3 has been
obtained with J , D, and μ as free, independent parameters.
In reality, doping will have two consequences on the effective
couplings: (i) a decrease of J/t̃ since more carriers destabilize
the effective exchange and increase the effective bandwidth
[49]; (ii) an increase of D due to stronger magnetic fluctu-
ations [cf., Eq. (3)] when departing from half filling [50].
These effects further facilitate the doping-induced transition
from the insulating/AFM to the SC state, as schematically
illustrated by arrow 2. To accommodate the extreme doping
sensitivity of the insulating state seen experimentally, the
diagram in Fig. 3 constrains J/t̃ to be near 3–4. We expect the
renormalized hopping to be t̃ ∼ J/3 near half filling, which
places our predictions in line with experiments.
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[46] T. O. Wehling, E. Şaşıoğlu, C. Friedrich, A. I. Lichtenstein,
M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805
(2011).

[47] H.-K. Tang, E. Laksono, J. N. B. Rodrigues, P. Sengupta,
F. F. Assaad, and S. Adam, Phys. Rev. Lett. 115, 186602
(2015).

[48] N. N. T. Nam, and M. Koshino, Phys. Rev. B 96, 075311 (2017).
[49] F.-C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond. Sci.

Technol. 1, 36 (1988).
[50] A. Abanov, A. V. Chubukov, and J. Schmalian, Adv. Phys. 52,

119 (2003).

180506-5

https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1016/j.ssc.2018.07.013
https://doi.org/10.1016/j.ssc.2018.07.013
https://doi.org/10.1016/j.ssc.2018.07.013
https://doi.org/10.1016/j.ssc.2018.07.013
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevB.98.045103
https://doi.org/10.1103/PhysRevB.98.045103
https://doi.org/10.1103/PhysRevB.98.045103
https://doi.org/10.1103/PhysRevB.98.045103
https://doi.org/10.1038/s41535-019-0153-4
https://doi.org/10.1038/s41535-019-0153-4
https://doi.org/10.1038/s41535-019-0153-4
https://doi.org/10.1038/s41535-019-0153-4
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevB.97.235453
https://doi.org/10.1103/PhysRevB.97.235453
https://doi.org/10.1103/PhysRevB.97.235453
https://doi.org/10.1103/PhysRevB.97.235453
https://doi.org/10.1016/j.scib.2019.01.026
https://doi.org/10.1016/j.scib.2019.01.026
https://doi.org/10.1016/j.scib.2019.01.026
https://doi.org/10.1016/j.scib.2019.01.026
https://doi.org/10.1103/PhysRevB.98.075154
https://doi.org/10.1103/PhysRevB.98.075154
https://doi.org/10.1103/PhysRevB.98.075154
https://doi.org/10.1103/PhysRevB.98.075154
https://doi.org/10.1103/PhysRevB.98.121406
https://doi.org/10.1103/PhysRevB.98.121406
https://doi.org/10.1103/PhysRevB.98.121406
https://doi.org/10.1103/PhysRevB.98.121406
https://doi.org/10.1103/PhysRevB.98.085435
https://doi.org/10.1103/PhysRevB.98.085435
https://doi.org/10.1103/PhysRevB.98.085435
https://doi.org/10.1103/PhysRevB.98.085435
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevB.98.075109
https://doi.org/10.1103/PhysRevB.98.075109
https://doi.org/10.1103/PhysRevB.98.075109
https://doi.org/10.1103/PhysRevB.98.075109
https://doi.org/10.1103/PhysRevB.99.161405
https://doi.org/10.1103/PhysRevB.99.161405
https://doi.org/10.1103/PhysRevB.99.161405
https://doi.org/10.1103/PhysRevB.99.161405
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.122.246402
https://doi.org/10.1103/PhysRevLett.122.246402
https://doi.org/10.1103/PhysRevLett.122.246402
https://doi.org/10.1103/PhysRevLett.122.246402
https://doi.org/10.1126/science.aao2934
https://doi.org/10.1126/science.aao2934
https://doi.org/10.1126/science.aao2934
https://doi.org/10.1126/science.aao2934
http://link.aps.org/supplemental/10.1103/PhysRevB.101.180506
https://doi.org/10.1007/s11434-016-1037-7
https://doi.org/10.1007/s11434-016-1037-7
https://doi.org/10.1007/s11434-016-1037-7
https://doi.org/10.1007/s11434-016-1037-7
https://doi.org/10.1103/PhysRevLett.121.037702
https://doi.org/10.1103/PhysRevLett.121.037702
https://doi.org/10.1103/PhysRevLett.121.037702
https://doi.org/10.1103/PhysRevLett.121.037702
https://doi.org/10.1103/PhysRev.79.350
https://doi.org/10.1103/PhysRev.79.350
https://doi.org/10.1103/PhysRev.79.350
https://doi.org/10.1103/PhysRev.79.350
https://doi.org/10.1103/PhysRevB.84.195437
https://doi.org/10.1103/PhysRevB.84.195437
https://doi.org/10.1103/PhysRevB.84.195437
https://doi.org/10.1103/PhysRevB.84.195437
https://doi.org/10.1103/PhysRevB.84.045436
https://doi.org/10.1103/PhysRevB.84.045436
https://doi.org/10.1103/PhysRevB.84.045436
https://doi.org/10.1103/PhysRevB.84.045436
https://doi.org/10.1103/PhysRevLett.107.216602
https://doi.org/10.1103/PhysRevLett.107.216602
https://doi.org/10.1103/PhysRevLett.107.216602
https://doi.org/10.1103/PhysRevLett.107.216602
https://doi.org/10.1103/PhysRevB.85.195458
https://doi.org/10.1103/PhysRevB.85.195458
https://doi.org/10.1103/PhysRevB.85.195458
https://doi.org/10.1103/PhysRevB.85.195458
https://doi.org/10.1103/PhysRevB.51.6076
https://doi.org/10.1103/PhysRevB.51.6076
https://doi.org/10.1103/PhysRevB.51.6076
https://doi.org/10.1103/PhysRevB.51.6076
https://doi.org/10.1103/PhysRevB.35.6694
https://doi.org/10.1103/PhysRevB.35.6694
https://doi.org/10.1103/PhysRevB.35.6694
https://doi.org/10.1103/PhysRevB.35.6694
https://doi.org/10.1103/PhysRevB.39.2956
https://doi.org/10.1103/PhysRevB.39.2956
https://doi.org/10.1103/PhysRevB.39.2956
https://doi.org/10.1103/PhysRevB.39.2956
https://doi.org/10.1103/PhysRevB.42.786
https://doi.org/10.1103/PhysRevB.42.786
https://doi.org/10.1103/PhysRevB.42.786
https://doi.org/10.1103/PhysRevB.42.786
https://doi.org/10.1103/PhysRevLett.43.1957
https://doi.org/10.1103/PhysRevLett.43.1957
https://doi.org/10.1103/PhysRevLett.43.1957
https://doi.org/10.1103/PhysRevLett.43.1957
https://doi.org/10.1103/PhysRev.157.295
https://doi.org/10.1103/PhysRev.157.295
https://doi.org/10.1103/PhysRev.157.295
https://doi.org/10.1103/PhysRev.157.295
https://doi.org/10.1103/PhysRevLett.54.1317
https://doi.org/10.1103/PhysRevLett.54.1317
https://doi.org/10.1103/PhysRevLett.54.1317
https://doi.org/10.1103/PhysRevLett.54.1317
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1103/PhysRevB.92.140503
https://doi.org/10.1103/PhysRevB.92.140503
https://doi.org/10.1103/PhysRevB.92.140503
https://doi.org/10.1103/PhysRevB.92.140503
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1088/0953-8984/26/42/423201
https://doi.org/10.1103/PhysRevLett.106.236805
https://doi.org/10.1103/PhysRevLett.106.236805
https://doi.org/10.1103/PhysRevLett.106.236805
https://doi.org/10.1103/PhysRevLett.106.236805
https://doi.org/10.1103/PhysRevLett.115.186602
https://doi.org/10.1103/PhysRevLett.115.186602
https://doi.org/10.1103/PhysRevLett.115.186602
https://doi.org/10.1103/PhysRevLett.115.186602
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1088/0953-2048/1/1/009
https://doi.org/10.1088/0953-2048/1/1/009
https://doi.org/10.1088/0953-2048/1/1/009
https://doi.org/10.1088/0953-2048/1/1/009
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1080/0001873021000057123

