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Phase-sensitive thermoelectricity and long-range Josephson effect supported by thermal gradient
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We demonstrate that a temperature gradient can strongly stimulate the thermoelectric signal, as well as
dc Josephson current, in multiterminal superconducting hybrid nanostructures. At temperatures T sufficiently
exceeding the Thouless energy of our device, both the supercurrent and the thermoinduced voltage are
dominated by the contribution from nonequilibrium low-energy quasiparticles and are predicted to decay slowly
(algebraically rather than exponentially) with increasing T . We also predict a nontrivial current-phase relation
and a transition to a π -junction state controlled by both the temperature gradient and the system topology. All
these features are simultaneously observable in the same experiment.
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Superconducting hybrid structures exposed to a temper-
ature gradient acquire a variety of intriguing properties.
One of them is the thermoelectric effect [1] implying the
presence of thermoinduced electric currents and/or voltages
inside the sample. At low temperatures, these thermoelectric
signals are phase coherent, which results in their periodic
dependence on the phase of a superconducting condensate.
Thermoelectricity gives rise to diverse applications ranging
from thermometry and refrigeration [2] to phase-coherent
caloritronics [3], paving the way to an emerging field of
thermal logic [4] operating with information in the form of
energy.

Superconducting circuits appropriate for such applications
may involve superconducting-normal-superconducting (SNS)
junctions of different geometries. In such structures, low-
temperature electron transport is strongly influenced by the
proximity effect implying penetration of superconducting cor-
relations deep into the normal metal. As a result, macroscopic
quantum coherence is established across the whole structure,
thus supporting the Josephson current IJ between supercon-
ducting terminals.

In equilibrium, the magnitude of this effect essentially
depends on the relation between temperature T and an effec-
tive Thouless energy ETh of an SNS device. As soon as T
strongly exceeds ETh, the supercurrent reduces exponentially
IJ ∝ e−√

2πT/ETh [5,6], and hence long-range phase coherence
gets effectively suppressed at such values of T . A similar
conclusion concerning the magnitude of the thermoelectric
voltage signal VT could be extracted from many previous
theoretical studies [7–9].

In this Rapid Communication, we will demonstrate that
by exposing the system to a temperature gradient, one can
effectively support long-range phase coherence at tempera-
tures strongly exceeding the Thouless energy ETh where the
equilibrium supercurrent becomes negligible.

Consider a long SNS junction with normal-state resistance
Rn and two extra normal terminals attached to the central N
wire as shown in Fig. 1. Provided these normal terminals
are maintained at different temperatures T1 and T2, the elec-
tron distribution function inside the junction is driven out of
equilibrium. Below we are going to demonstrate that in the
limit T1,2 � ETh the Josephson critical current IC—up to some
geometry factors—takes the form

IC ∼ E2
Th|1/T1 − 1/T2|/(eRn), (1)

thus being a lot bigger than the equilibrium current IJ at any of
the two temperatures T1 or T2. Also, in this regime, the system
is described by a nonsinusoidal current-phase relation (CPR)
and may exhibit a pronounced π -junction-like behavior.

Furthermore, below we will show that, depending on its
topology, the system can develop a large phase-coherent ther-
moelectric voltage signal that does not decay exponentially
even if temperature increases above ETh. Remarkably, at
T1,2 � ETh, the magnitude of this signal VT turns out to have
exactly the same temperature dependence as IC , i.e.,

VT ∼ ICRn. (2)

Both results (1) and (2) are due to the presence of nonequilib-
rium low-energy quasiparticles (which arise from the normal
terminals) suffering little dephasing while propagating across
the system.
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FIG. 1. X -junction structure under consideration.

The model and basic formalism. We will consider the
structure displayed in Fig. 1: It consists of two superconduct-
ing and two normal terminals interconnected by four normal
metallic wires of lengths LS1,2 , LN1,2 (being much shorter than
the inelastic relaxation length), and cross sections AS1,2 ,AN1,2 ,
respectively. For brevity in what follows, we will denote this
structure as the X junction. The superconducting terminals are
biased by the phase twist χ = χ1 − χ2 and the supercurrent
IS (χ ) can flow between these terminals for nonzero χ . The
two normal terminals are disconnected from any external
circuit and are maintained at different temperatures T1 and T2.

In order to proceed we will make use of the standard
quasiclassical formalism of the Usadel equations [5]

iD∇(
Ǧ∇Ǧ

) = [
�̂1̌, Ǧ

]
, ǦǦ = 1̌, (3)

which allow us to evaluate the 4×4 Green-Keldysh matrix

functions Ǧ =
(ĜR ĜK

0 ĜA

)
for our X junction. Here, D stands

for the diffusion constant, and ĜR,A =
(GR,A F R,A

F̃ R,A −GR,A

)
are

retarded and advanced 2 × 2 Green’s function matrices in the

Nambu space, �̂ =
(
ε + eV �

−�∗ −ε + eV

)
, where ε, V , and

� denote, respectively, the quasiparticle energy, electrostatic
potential, and superconducting order parameter. The Keldysh
matrix has the form ĜK = ĜRĥ − ĥĜA, where ĥ is the matrix
distribution function. The current density j is expressed by
means of the standard relation

j = − σ

8e

∫
dε tr

(
τ̂3Ǧ∇Ǧ

)K
, (4)

where σ is the normal Drude conductivity and τ̂3 is one of the
Pauli matrices in the Nambu space.

It is convenient to decompose the matrix distribution func-
tion as ĥ = hL + τ̂3hT . In the normal wires the functions hL

and hT obey the diffusionlike equations

iD∇[DT ∇hT + Y∇hL + jεhL] = 0, (5)

iD∇[DL∇hL − Y∇hT + jεhT ] = 0. (6)

Here, DT/L = ν2 ± |F R ± F A|2/4 defines the two kinetic co-
efficients and ν = Re GR is the local electron density of states.
The third kinetic coefficient Y = (|F̃ R|2 − |F R|2)/4 accounts

for the presence of particle-hole asymmetry in our system and

jε = 1
2 Re(F R∇F̃ R − F̃ R∇F R) (7)

defines the spectral current.
As usual, the above equations should be supplemented

by proper boundary conditions at the intermetallic interfaces.
Here, we assume that all interfaces between the wires and the
terminals are fully transparent and hence the Green’s func-
tions are matched continuously at these interfaces. The same
applies to the contact between the wires (point c in Fig. 1). We
also assume that all four normal wires are thin enough and
long enough enabling one (a) to fully ignore their effect on
the bulk terminals and (b) to consider the effective Thouless
energy of our device ETh = D/L2

S (with LS = LS1 + LS2 ) as the
only relevant energy scale in our problem. This is appropriate
provided ETh � |�|. The latter inequality—combined with
the condition T1,2 � |�|—implies that our analysis can be
restricted to subgap energies. The temperatures of the super-
conducting terminals are also assumed to be well below the
superconducting gap, rendering them irrelevant for our further
analysis.

Long-range phase coherent thermoelectricity. Applying a
thermal gradient to normal terminals N1 and N2, one in-
duces thermoelectric voltages V1 and V2 at these terminals
[7–13]. These voltage signals are in general not small and
depend periodically on the phase χ , as it was repeatedly
observed in experiments [14–17]. Both these features are
direct consequences of the particle-hole asymmetry generated
by the mechanism of sequential Andreev reflection at two NS
interfaces [9].

The quasiparticle distribution function inside the X junc-
tion is recovered from the diffusionlike equations (5) and (6)
combined with the condition that no electric current can flow
into normal terminals N1 and N2. With this in mind, we get

hT/L
N1,2

= 1

2

[
tanh

ε + eV1,2

2T1,2
∓ tanh

ε − eV1,2

2T1,2

]
(8)

at the interfaces between the N wire and the corresponding N
terminal, while at both SN interfaces we have hT = 0.

To begin with, we note that in partially symmetric
X junctions with (i) LS1 = LS2 = LS/2 and (ii) AS1 = AS2 , the
kinetic coefficient Y is equal to zero in the crossing point c
and everywhere in the N wires attached to normal terminals
N1 and N2. In order to prove this property, one should bear in
mind that Y is an odd function of the phase χ . Interchanging
the terminals S1 ↔ S2 and inverting the phase sign χ → −χ ,
under the conditions (i) and (ii) we arrive at the same X
junction as the initial one. Hence, in this case, Y should also
be an even function of χ , which is only possible if Y ≡ 0.

Setting Y = 0 in Eqs. (5) and (6) in the wires connected
to the N terminals, one may verify that hT ≡ 0 becomes a
trivial solution of these equations everywhere in our system.
Combining this solution with Eq. (8), we observe that both
voltages V1,2 vanish identically in this case. Then the kinetic
equations (5) and (6) reduce to DL∇hL = C1 and hL = C2

(with C1 and C2 being constants) in the N wires connected
respectively to the N and to S terminals. Resolving these
equations, we recover the distribution function hL inside the
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wires attached to the superconducting terminals,

hL = rL
N2

hL
N1

+ rL
N1

hL
N2

, (9)

where rL
Ni

= RL
Ni

/(RL
N1

+ RL
N2

) and

RL
Ni

= 1

ANiσ

∫
LNi

dx

DL
, i = 1, 2 (10)

are spectral resistances of the N wires attached to the normal
terminals N1 and N2.

The above simple analysis demonstrates that no thermo-
electric effect may occur in our X junction provided the
kinetic coefficient Y vanishes in the N wires attached to the
normal terminals. We now lift the conditions (i) and (ii) and
evaluate the thermoelectric voltages V1 and V2.

The corresponding derivation is outlined in the Supple-
mental Material (SM) [18], and here we only quote the final
result. Assuming that both temperatures strongly exceed the
Thouless energy T1,2 � ETh, for the thermoelectric voltage
induced at the terminal N1 we obtain

eV1 = rN1

4

(
1

T2
− 1

T1

)∫
εdε

∫
LN1

Y dx

LN1

, (11)

where rNi = RNi/(RN1 + RN2 ) and RNi=LNi/(ANiσ ) (i=1, 2)
are normal-state resistances of the wires attached to normal
reservoirs. The function Y in Eq. (11) can be evaluated
numerically or estimated analytically extrapolating the results
derived in the limit |ε| � ETh to lower energies. The latter
procedure allows us to perform the integrals in Eq. (11)
and get

eV1 ≈ γ κ
2rN1 (LS1 − LS2 )E2

Th

LN1 (3 + 2
√

2)

(
1

T2
− 1

T1

)
sin χ, (12)

where γ = (L2
S + 2LS1 LS2 )L4

S/(L2
S1

+ L2
S2

)3 and κ = 4
√
AS1AS2

/(AS1 + AS2 + AN1 + AN2 ) are dimensionless geometric
factors.

Equations (11) and (12) represent the first key result of our
present work. The periodic dependence of the thermoelectric
signal (12) on the phase χ demonstrates that long-range
phase coherence in our X junction is well maintained even
at high enough temperatures T1,2 � ETh. It is also remarkable
that under this condition the amplitude of the thermoinduced
voltage V1 (12) decreases with increasing temperature only as
a power law, i.e., much slower than it was previously reported
elsewhere [7–9].

The thermoelectric voltage V2 induced at the second nor-
mal terminal N2 can be obtained from the above Eqs. (11)
and (12) by interchanging the indices 1 ↔ 2. In symmetric
structures with LN1 = LN2 and AN1 = AN2 , one readily finds
V2 = −V1.

In addition to the above analysis, we resolved the Us-
adel equations numerically and evaluated the thermoelectric
voltages V1,2 employing no approximations. Our numerically
exact results for V1 are displayed in Figs. 2 and 3 (solid lines)
together with Eq. (11) (where Y was evaluated numerically)
and Eq. (12) indicated respectively by long and short dashed
lines.

Long-range Josephson effect. We now turn to dc Josephson
effect in the presence of a temperature gradient. For simplicity,

FIG. 2. Thermoelectric voltage V1 at χ = π/2, T1 = 20ETh, and
T2 = 30ETh as a function of LS1 for LN1 = LN2 = LS and AS1 =
AS2 = AN1 = AN2 . Inset: The same voltage as a function of LN1 =
LN2 for LS1 = 0.3LS .

in what follows we again impose the symmetry conditions
(i) and (ii) and denote AS1,2 = AS . As we demonstrated above,
in this particular case no electron-hole asymmetry is generated
and hence no thermoelectric effect occurs, i.e. V1,2 = 0. Fur-
thermore, the distribution function hT is equal to zero, while
the function hL inside the wires is defined by Eq. (9).

Let us introduce the function W (ε) = rL
N2

rN1 − rL
N1

rN2 and
identically rewrite Eq. (9) in the form

hL = rN2 hL
N1

+ rN1 hL
N2

+ W (ε)
(
hL

N1
− hL

N2

)
. (13)

The first two terms on the right-hand side of Eq. (13) represent
a superposition of the equilibrium distribution functions hL

N1

and hL
N2

with energy-independent prefactors, while the last
term is essentially nonequilibrium in nature. The function
W (ε) vanishes identically in structures with LN1 = LN2 , oth-
erwise it remains nonzero at low enough energies and decays
exponentially provided |ε| exceeds the Thouless energy of our
device ETh.

FIG. 3. Thermoelectric voltage V1 as a function of temperature
T2. The notations and the values of χ , T1, LS1 are the same as in
Fig. 2 and LN1 = LS/2, LN2 = LS .
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With the aid of Eq. (13), we immediately recover the
expression for the supercurrent IS flowing between the su-
perconducting terminals S1 and S2 across the normal wire of
length LS . We obtain

IS = rN2 IJ (T1, χ ) + rN1 IJ (T2, χ ) + Ine
S (T1, T2, χ ), (14)

where

IJ (T, χ ) = −σAS

2e

∫
jε tanh

ε

2T
dε (15)

is the equilibrium Josephson current and

Ine
S = σAS

2e

∫
jεW (ε)

(
tanh

ε

2T2
− tanh

ε

2T1

)
dε. (16)

Equations (14)–(16) define the second key result of this
work. It demonstrates that provided our X junction is bi-
ased by a temperature gradient, the supercurrent IS consists
of two different contributions. The first one is a weighted
sum of equilibrium Josephson currents IJ (15) evaluated at
temperatures T1 and T2 and the second one Ine

S (16) accounts
specifically for nonequilibrium effects.

Our numerical analysis indicates that provided at least one
of the two temperatures remains below the Thouless energy
ETh, the current IS (14) is dominated by the first (quasiequi-
librium) contribution, while the nonequilibrium one (16) can
be safely neglected. In the opposite limit T1,2 � ETh, the
equilibrium contribution to IS [cf. Eq. (15)] gets exponentially
suppressed as (cf. Refs. [19,20])

IJ = 16κ

3 + 2
√

2

ETh

eRn

(
2πT

ETh

)3/2

e−√
2πT/ETh sin χ, (17)

where Rn = LS/(ASσ ) and the prefactor κ is taken at AS1,2 =
AS . Thus, at T1,2 � ETh, the supercurrent can already be
dominated by the nonequilibrium term Ine

S . Evaluation of the
energy integral in Eq. (16) yields (see Ref. [18])

Ine
S � 0.21κ

3rN1 rN2

E2
Th

eRn

(
1

T1
− 1

T2

)

×
(

LS

LN2

− LS

LN1

)
sin χ cos2(χ/2). (18)

This result is remarkable in several important aspects. First
of all, we observe that at temperatures strongly exceeding
the Thouless energy, the supercurrent IS � Ine

S decays with
increasing min(T1, T2) only as a power law, in contrast to the
equilibrium Josephson current in long SNS junctions which is
known to decay exponentially. This behavior is due to driving
the electron distribution function hL out of equilibrium by
applying a temperature gradient. In Figs. 4 and 5 we show
the critical Josephson current IC as a function of T2 for fixed
T1. We indeed observe that at large temperatures, T2 � ETh, IC
significantly exceeds both equilibrium values IJ (T1) and IJ (T2)
and even starts to grow for T2 � T1. Hence, we predict strong
supercurrent stimulation by a temperature gradient.

Another interesting feature of the result (18) is the non-
sinusoidal CPR that persists at temperatures well above ETh.
For comparison, the dependence of the equilibrium Josephson
current on the phase χ in SNS junctions remains nonsinu-
soidal only at T � ETh and reduces to IJ ∝ sin χ at higher
temperatures.

FIG. 4. Josephson critical current IC ≡ max|IS| as a function of
T2. Inset: CPR evaluated at T2 = 50ETh (a), 60ETh (b), and 75ETh

(c). Solid lines correspond to the exact numerical solution, dashed
lines indicate the result (14) combined with (17) and (18), and
the dotted line is the quasiequilibrium contribution rN2 IJ (T1, π/2) +
rN1 IJ (T2, π/2) to IS . The parameters are T1 = 70ETh, LS1,2 = LS/2,
LN1 = 3LS , LN2 = LS , and AS1 = AS2 = AN1 = AN2 .

In addition, we observe that the sign of the supercurrent in
Eq. (18) is controlled by those of both length and temperature
differences, LN1 − LN2 and T1 − T2. For instance, by choosing
LN1 < LN2 and T1 < T2 we arrive at a pronounced π -junction-
like behavior (see also Fig. 5).

Previously switching to the π -junction state in a config-
uration similar to ours was realized by applying an external
voltage bias V to normal terminals [21–24]. In this case, the
electron distribution function is also driven out of equilib-
rium, however, unlike here, the magnitude of the supercurrent
remains exponentially small for eV, T � ETh [22]. Alterna-
tively, by creating nonequilibrium conditions with the aid of
an external rf signal, it is possible to efficiently stimulate the
supercurrent in long SNS junctions [25,26]. However, no π -
junction behavior could be obtained in this way. In contrast to

FIG. 5. The same as in Fig. 4. The parameters are the same
except LN1 = LS , LN2 = 3LS . Temperature values in the inset are
T2 = 65ETh (a), 75ETh (b), and 85ETh (c).
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the above examples, exposing the X junction to a temperature
gradient makes both nontrivial features—supercurrent stim-
ulation and π -junction states—simultaneously observable in
the same experiment.

The supercurrent IS was also evaluated numerically without
employing any approximations. The corresponding results are
displayed in Figs. 4 and 5 together with Eq. (14) combined
with Eqs. (17) and (18). In Fig. 4 the parameters are chosen
such that the nonequilibrium term Ine

S remains negative for
T2 < T1, and the π -junction states may only exist in a tiny
interval of T2 below T1. In contrast, in Fig. 5 the π -junction
behavior is realized practically at any T2 > T1 [cf. curves (b)
and (c) in the inset] since the term Ine

S takes negative values at
such temperatures.

Note that here the transition between 0- and π -junction
states does not correspond to a vanishing Josephson critical
current IC ≡ max|IS|. It follows from a nonsinusoidal form of
CPR (18), in contrast to the standard situations. The value IC
may be achieved either at χ < π/2 or at χ > π/2 depending
on whether the maximum or the minimum of Ine

S (18) is
reached at χ = π/3. Furthermore, the competition between
the terms ∝IJ and Ine

S may also cause an extra maximum and
minimum of the dependence IS (χ ) [cf. curve (b) in Fig. 4

and curves (b) and (c) in Fig. 5], since in a narrow vicinity
of χ = π the contribution containing IJ ∝ (π − χ ) always
dominates over the nonequilibrium one, Ine

S ∝ (π − χ )3.
In summary, we have demonstrated that clear manifesta-

tions of long-range phase coherence may persist up to much
higher temperatures as compared to ETh provided our X
junction is exposed to a thermal gradient. In particular, at
T1,2 � ETh, both the Josephson critical current IC and the
magnitude of the phase-coherent voltage signal VT = maxV1,2

exhibit exactly the same algebraic dependence on T1 and T2

[cf. Eqs. (1) and (2)]. In both cases long-range phase coher-
ence is maintained due to nonequilibrium quasiparticles with
energies below ETh propagating across the system without
any significant phase relaxation [27]. Our results indicate that
quantum properties of X junctions can be efficiently con-
trolled and manipulated with the aid of both superconducting
phase and temperature gradient, thereby opening up different
opportunities for a variety of applications of such structures
as central elements in superconductivity-based quantum elec-
tronics and quantum information devices.

Two of us (M.S.K. and A.D.Z.) acknowledge partial sup-
port by RFBR Grant No. 18-02-00586.
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