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We study the magnetic and superconducting proximity effects in a semiconducting nanowire (NW) attached to
superconducting leads and a ferromagnetic insulator (FI). We show that a sizable equilibrium spin polarization
arises in the NW due to the interplay between the superconducting correlations and the exchange field in the
FI. The resulting magnetization has a nonlocal contribution that spreads in the NW over the superconducting
coherence length and is opposite in sign to the local spin polarization induced by the magnetic proximity effect
in the normal state. For a Josephson-junction setup, we show that the nonlocal magnetization can be controlled by

the superconducting phase bias across the junction. Our findings are relevant for the implementation of Majorana

bound states in state-of-the-art hybrid structures.

DOI: 10.1103/PhysRevB.101.180502

Semiconducting nanowires (NWs) in proximity to super-
conductors (SCs) are central to the creation of a topologi-
cally nontrivial superconducting state, which manifests itself
through Majorana zero modes at the edges of the NW [1-13].
The basic ingredients needed for the topological phase are
the spin-orbit interaction (SOI), superconducting correlations,
and Zeeman splitting [14-20]. Whereas SOI and supercon-
ductivity are intrinsic properties of the materials, the Zeeman
splitting is usually generated by applying a rather large mag-
netic field [1,2], which introduces technical limitations on the
use of superconducting elements.

Alternatively, such a spin splitting can be generated with-
out applying an external field by the magnetic proximity
effect from a magnetic insulator [21-27]. Indeed, a Zeeman-
like splitting at zero magnetic field has been observed in
superconducting Al layers in contact with the ferromagnetic
insulator (FI) EuS [28-33]. A recent article reports the first
hybrid epitaxial growth of InAs NWs in proximityto EuS
and Al [34]. Even though the experiment is inconclusive
with regard to Majorana physics, the NWs show signs of a
coexisting proximity-induced superconducting gap and spin
splitting. These proximitized NWs are pivotal in the study of
the topological superconductivity [35-37].

Motivated by this recent experiment [34], we study theo-
retically a multiband NW in the diffusive regime proximitized
by FIs and SCs [see the sketch in Fig. 1(a)]. We show that,
apart from the local spin polarization induced by the FI, a
nonlocal electronic spin polarization emerges in the NW as
a result of an interplay between the magnetic and super-
conducting proximity effects. The magnetic proximity effect
takes place at the FI/NW interface, where the conduction
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electrons in the NW interact with the local moments of the FI
via spin-exchange coupling. This interaction leads to a Pauli
paramagnetic response of the conduction electrons, which is
manifested as a locally induced magnetization in the NW at
the FI. In addition, the superconducting proximity effect at
the NW/SC interface allows for a leakage of Cooper-pair
correlations into the NW. The Cooper pairs become polarized
by the FI exchange field, admixing to the usual singlet pairing
a triplet component of the superconducting correlations. As a
result, the Pauli paramagnetic response at the NW /FI interface
becomes screened by a spin polarization, which spreads in the
NW over large distances, on the order of the superconducting
coherence length. This long-ranged component of magneti-
zation is opposite in sign to the Pauli magnetization and its
strength is proportional to the condensate density in the NW.
In this Rapid Communication, we calculate this nonlocal mag-
netization as a function of the system parameters, demonstrate
its control by the phase difference in a loop geometry, and pro-
pose a way of measuring it via spin-dependent spectroscopy.
It is illustrative to review the response of a conventional
SC to a Zeeman or exchange field A(r) [38—40]. In a normal
state, the response is local and leads to a Pauli magnetization
Mp,1i(r) = gupvrh(r) [the dotted black curve in Fig. 1(c)].
Here, g is the g-factor, up is the Bohr magneton, and vg
is the normal density of states (DOS) at the Fermi level
for each spin. When the temperature 7 is below the criti-
cal superconducting temperature, there exists an additional
nonlocal contribution to magnetization My (r) [dashed red
curve in Fig. 1(c)] from the superconducting condensate. In
a homogeneous SC at zero temperature, this contribution
exactly compensates the Pauli one, Mny = —Mpyyi, for fields
h smaller than the superconducting gap A. This explains the
zero magnetic susceptibility of a SC [41]. In the presence of a
spin relaxation (SR), the full magnetization cancellation fails,
according to Abrikosov and Gorkov’s theory of the Knight
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FIG. 1. (a) Sketch of a nanowire (NW) in proximity to supercon-
ductors (SCs) and ferromagnetic insulators (FIs). (b) Spin-resolved
density of states (DOS) of a spin-split SC. (c) Magnetizations in-
duced in a SC in an homogeneous Zeeman field 4. The dotted black
line describes Pauli magnetization Mp,,; and the solid lines plot the
total magnetization M for zero (red) and finite (blue) spin relaxation
(SR). The dashed lines show the nonlocal magnetization My, given
by the difference between M and Mp,,;, displayed for zero (red) and
finite (blue) SR.

shift in SCs [38]. In Fig. 1(c), we include the SR due to
the SOI and static disorder (blue curves). For & > A, the
compensation is incomplete and the total magnetization reads
M = Mp,iv/h? — A2/h [42—44]. One can draw a connection
between the nonlocal magnetization and the modified spec-
trum of the SC [Fig. 1(b)]. The exchange field /4 leads to both
a splitting of the quasiparticle DOS and a reduction of the
superconducting gap. As far as the latter is finite, the total
magnetization is zero. For & > A, the gap closes and a finite
magnetization appears as a consequence of an incomplete
compensation |Mnr| < Mpai. The previous discussion has
been introduced for pedagogical purposes, as it is useful when
presenting our main results [45].

We now focus on an inhomogeneous system, as shown
in Fig. 1(a). It consists of a NW in contact with SCs and
FIs. To describe the superconducting proximity effect, we use
quasiclassical equations and assume the diffusive regime in
the NW. The characteristic length over which the Cooper-pair
correlations decay in the NW is denoted as &y. To describe
the magnetic proximity effect in the FI/NW interface, we
follow the approach of Ref. [46] and assume a region of
thickness b where the local magnetic moments of FI and
the itinerant electrons of NW interact via a spin-exchange
coupling. This interaction leads to an interfacial exchange
field &y acting on the itinerant electrons. Because b < &y, the
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FIG. 2. Nonlocal magnetization My induced in the NW in a
SC/NW-FI/SC setup [see inset of (c)]. (a) and (b) show My_ as
a function of (a) hr/ AR, and (b) ¢, respectively, in the absence of
SR. (c) and (d) show the same dependencies in the presence of SR
caused by static disorder and SOI. We have set ¢ =0 in (c) and
hr = 0.75AY in (d). Other parameters: T = 0 and A% = 0.02A.

exchange field can be described in the quasiclassical equations
by hy(y) = hexbd(y), where we denote with y the coordinate
axis perpendicular to the FI/NW interface [47]. At this stage
we can already anticipate the appearance of a nonlocal mag-
netization in the opposite direction to the one localized at
the FI/NW interface. The Cooper pairs in the NW consist of
electrons with opposite spins (singlet state). Energetically it
is favorable that one electron of the pair with spin parallel
to the local exchange localizes at the interface, while the
other with opposite spin remains in the NW. Thus, a nonlocal
magnetization opposite to the interfacial one is induced in
the NW and extends over the characteristic Cooper size &y.
This physical picture resembles the inverse proximity effect
in metallic superconductor-ferromagnetic junctions predicted
in Refs. [48-50] and experimentally verified in Refs. [S1-53].

To quantify this effect we calculate the nonlocal electronic
equilibrium spin polarization My, induced in the NW. This is
given by

My (X) l/ﬂo

dof(@)N'(w, X) = N'(w, X)], (1)
8IBVF 2

oo

where f(w) =1/ T 4+ 1)is the equilibrium Fermi distribu-
tion function, and NV (w, X) are the local DOS for spin-up
and spin-down electrons. The exchange field at the FI/NW
leads to N1 = NV and hence to a finite My; . In addition to the
nonlocal term, there is the Pauli magnetization localized at
the FI/NW interface Mpaui = giupvrhexbd(y). Thus, the total
magnetization equals Mp,y; + MNL.

We consider first the SC/NW-FI/SC setup sketched in
the inset of Fig. 2(c). The NW is in contact with a FI, and
sandwiched between two SCs. The phase difference between
the SCs, ¢, can be tuned by a magnetic flux, when the junction
is part of a superconducting loop. We assume a diffusive NW
in order to use the well-established Usadel equation [54]. In
this respect, our results apply straightforwardly to a metallic
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NW such as Cu. In semiconducting NWs, the degree of
disorder depends on doping. For example, the InAs wires
studied in the experiments of Refs. [55-58] are in a metallic
regime and are good candidates for the verification of our
predictions. We denote with x the axis of the NW of length
Ly. The NW-FI interface is orthogonal to the y axis and
the NW width in this direction is Wy. In this first example
we assume that Wy, Ly < &y and integrate the quasiclassical
equations over the volume of the NW. The integration in the y
direction results in an effective exchange field hr = heyb/Wy,
whereas the integration over x can be performed with the help
of the Kupriyanov-Lukichev boundary conditions [59] and
accounts for the superconducting proximity effect. In this way
we obtain a compact expression for the DOS [60],

Re{ wr + nhF }
V(o +nhp)? = (A2

where n = £1 for spin 1 / |. This expression has the same
structure as the BCS DOS of a spin-split superconductor
with renormalized frequency w, = w + 2i€,Gs and order pa-
rameter A, = 2¢, cos(¢p/2)Fs, where Gs = —iw/+/A? — w?,
Fs = A/ A? — 0% ¢, = D/(LyoyRp) is an energy propor-
tional to the tunneling rate across the NW /SC interface, where
R is the interface resistance per area, D is the diffusion
coefficient, and oy is the conductivity of the NW. Equation (2)
is the generalization of the short-junction limit expression for
the DOS [61-63] in the presence of a FI. With its help we
provide below a clear physical picture of the main effect by
making a connection between the spectrum of the junction and
the spectral properties of the bulk system.

From Eq. (2), one can calculate the gap induced in the
NW by the superconducting proximity effect. In the limit of
transparent contact, €, 3> A, this gap is of the same order as
the SC gap and the spin splitting is negligibly small. In the
case of a finite NW/SC barrier, when ¢, < A, Eq. (2) de-
scribes a NW with an induced minigap, Ay = AY cos(¢/2),
with A% = 2¢p, and a spin splitting in the DOS due to the
effective exchange field Ay. In all cases the minigap induced
in the NW is maximum when ¢ = 0 and vanishes at ¢ = 7.
By substituting Eq. (2) into Eq. (1), we obtain the nonlocal
magnetization My plotted in Fig. 2. As far as hr < Ay,
nonlocal magnetic moments My WyA compensate the Pauli
ones, [, Mpaui = gitpvrhexbA, localized at the FI/NW in-
terface, with A being the area of the FI/NW interface. At
hrp = Ay, Myp reaches a maximum value, gugvrAy, and
decays as hp — \/}112F — A,z\, for hp > Ay [42-44]. This is
the same behavior as the bulk superconductor discussed in
Fig. 1(c), after identifying A and h with the induced minigap
Ay and effective exchange field i, respectively. This analogy
is clearly seen if we plot the curves of Fig. 2(a) as a function
hr/Apy. In this case all curves collapse into one [inset of
Fig. 2(a)] coinciding with the behavior shown in Fig. 1(c).
In Fig. 2(b) we show the dependence of My on the phase
difference ¢ for different values of 7r. When hp < A%, ML
remains constant for all phases smaller than arccos hr/AY,
[red curve in Fig. 2(b)]. In other words, as far as i is smaller
than the induced gap Ay = A?\, cos(¢/2), the MnL(¢) curve
shows a plateau at the value opposite to Mp,y;. Interestingly,
the value of My is proportional to the distance between the
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FIG. 3. (a) Sketch of a SC-FI-SC NW structure with a tunneling
probe (bright blue). (b) DOS of the NW with L = 4.7&,. Here, the
orange and magenta curves correspond to DOS at the center (X =
Ly/2) and the end (X = Ly/6) of the NW, respectively. The dotted
lines show the BCS-like DOS with a gap equal to A*(X). The latter
is defined by the intersection point between the actual DOS and the
one in the normal state. (c), (d) Nonlocal magnetization My, induced
in the NW, as a function of (c) phase difference ¢ and (d) position X.
We have set L = 2.1&, and X = 0 in (c), while L = 4.7§yand ¢ = 0
in (b) and (d). In all panels, other parameters are chosen as follows:
T = 0, €50 = 0, €p = A/2, SO = «/D/A, andLs/LN = 1/3

coherent peaks in the spin-splitting DOS, similar to those
shown in Fig. 1(b). Indeed, in the present case when Ay < A,
according to Eq. (2), the peaks at positive energies occur
at w™¥ &~ Ay(¢p) = hy [60]. The maximum modulation is
achieved for hr = A,(z, [green curve in Fig. 2(b)] in which the
full screening of My only occurs at ¢ = 0. For larger values
of hp, the NW is gapless and My (¢) is overall reduced (blue
curve).

In the presence of SOI, electron spin channels are mixed.
In this case the DOS of the NW is described by Eq. (2),
after replacing w, and A, by o] = w + iA?VQs + 2iewG;,"
and Al = AyFs + 2¢€,,Fy ", respectively. Here, Fy] and Gy,
are the normal and anomalous parts of the retarded Green’s
function of the NW, respectively [60]. €;, is the spin-relaxation
rate due to SOI. The effect of a finite SR is shown in Figs. 2(c)
and 2(d). As expected from the analogy with the bulk SC,
Fig. 1(c), the main effect of the SR is the uncompensated
screening of the Pauli magnetization, —My; < Mpayi, as
shown by the green and blue curves in Fig. 2(c). In addition,
the SR leads to a shift of the maximum of the My (kg ) curves
towards larger values of hp, such that, for hr > Ay, MnL
is enhanced by the SR. This is due to the reduction of the
effective exchange field [64], which results into the right shift
of M, with respect to i in analogy with the bulk case shown
by the dotted-dashed blue curve of Fig. 1(c).

So far we have analyzed a short NW sandwiched between
two SCs. In a more realistic setup, the length of the NW,
Ly, can be larger than the &y. Moreover, in typical lateral
structures the NW is partially covered by SC films of length
Lg. Such a lateral setup is sketched in Fig. 3(a). We assume
that the NW is grown on top of a FI substrate, and that its
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cross-section dimensions are smaller than &y. In this case one
can integrate the Usadel equation over the cross section and
reduce the problem to an effective one-dimensional (1D) ge-
ometry (details are given in the Supplemental Material [60]).
Hereafter, we assume a symmetric setup with Ly = Ly /3 and
Lr = Ly (other situations are analyzed in the Supplemental
Material [60]), such that the distance between the SCs is
L = Ly/3, and solve the Usadel equation numerically. We
neglect the effect of SOI. This is a good approximation
if the NM is a metal such as Cu, for which the SR rate
is much smaller than the gap [65]. But also in InAs, the
typical SR time is 7, ~ 0.02-1.00 ns [66—68], which corre-
sponds to €, = Ii/t; ~ 1-30 eV, whereas the induced gap
may reach 150 eV or even larger [12,69], such that the
ratio €;5,/A < 1.

Once induced, the minigap is constant in all the NW [70].
Its value depends on the distance between the supercon-
ducting electrodes and the characteristic barrier energy €, =
D/(WyRpoy). In the short limit, Ly < &y, My is almost
constant in the NW and the results are similar to those shown
in Figs. 2(a) and 2(b) [60]. More interesting is the case when
Ly is of the order of &y. Numerical results of the spatial
dependence M (X) for Ly = 4.7§p and different values of
hr are shown in Fig. 3(d). Remarkably, the shape of the
My (X) curve depends on the strength of 4y. These different
behaviors can be explained in light of Eq. (1). The integrand
in this expression can be well approximated by replacing the
exact DOS, N(w, X) by a BCS-like one, Npcs[w, A} (X)],
with a position-dependent pseudogap Ay (X) defined as the
energy where N(w) intersects with the one in the normal
state Nyo(w) = 1, as shown in Fig. 3(b). Whereas the real
minigap Ay is position independent, Ay}, is not. In fact, the
pseudogap is smaller in the middle of the wire, becoming
larger in the regions below the SCs [see also Fig. 2(d) in
the Supplemental Material [60]]. The shape of the Mny(X)
is determined by the ratio hr/A}(X) in the same way as in
the short-junction limit Az / AR, determines My [see Figs. 2(a)
and 2(c)]. Indeed, for a given hr with hp < A} (X) for all
X, the values of |Myy| increase towards the middle of the
wire [blue curve in Fig. 3(d)]. In contrast, if A*(—L/2) >
hg > A*(0), then a double-minima curve is obtained (green
curve). Larger values of ip lead to |My(X)| with a minimum
at X = 0 (red curve). The actual shape of the curve can be
inferred from the X dependence of A* which is shown in
Fig. 2(c) in the Supplemental Material [60]. Finally, Fig. 3(c)
shows the phase dependence of My, calculated in the center
of the wire for different values of hr. The result at low
temperatures is qualitatively similar to the one obtained for the
simpler setup analyzed in Fig. 2(b): For values of iy smaller
than the pseudogap A}, MnrL(¢) remains almost constant
up to the value of ¢ for which A} (¢) = hr [red curve in
Fig. 3(c)].

Finally, we discuss the possible ways of detecting Mnr
via its dependence on the phase difference in a Josephson
junction geometry. As discussed above, the magnetic mo-
ment My depends crucially on the spectral properties of
the proximitized NW, which in turn can be controlled by
tuning the phase difference. This has been demonstrated
experimentally in spectroscopy measurements, for example,
by using a superconducting quantum interference proximity

transistor (SQUIPT) [71-74], sketched in Fig. 3(a), or by
combining scanning tunneling microscopy/atomic force mi-
croscopy (STM/AFM) techniques [70]. In these experiments
the phase difference, and hence the minigap, is controlled by
the magnetic flux through a superconducting the loop [75,76].
In the present case the wire is in contact with a FI, and hence
the DOS in the NW is spin split due to the exchange field at
the FI/NM interface. This should manifest as a splitting of the
peaks at the edge of the gap. According to our predictions,
if the SR is negligibly small, the observed splitting of the
peaks remains almost constant, as far as the phase-dependent
pseudogap A} is larger than the effective exchange field [see
red curves in Figs. 2(b) and 3(c)]. The splitting in the DOS
of the NW can be detected by measuring the differential
conductance with a tunneling probe attached to the NW, as
shown in Fig. 3(a). When the phase difference is larger than
arccos (hp/ A%), then we predict a rapid suppression of the
splitting as the phase difference is further increased. The
results of Fig. 3 are obtained when SOI is negligible. If it is
not, the all sharp features will vanish, and the red curve in
Fig. 3(c) will be modified similarly to those in Fig. 2(d) when
increasing €,,. It is also interesting to note that the tuning of
minigap with the phase difference can lead to a phase-tuned
topological superconductivity [77]. Moreover, a comparison
of experimental results with the curves in Figs. 2(b) and 3(c)
may provide useful information about the proximity-induced
gap and field in the NW.

A more direct measurement of My and its phase de-
pendence can be achieved by using a ferromagnetic probe,
tunnel-coupled to NW, as shown in Fig. 3(a). We assume
that the polarizations of the probe and the FI can be tuned
between parallel (P) and antiparallel (AP) configurations. The
measured differential conductance at low temperature is pro-
portional to the DOS in the NW. In particular, the difference
between the conductances in the P and AP configurations is
proportional to the spectral magnetization induced in the NW.
Namely, Gp(V) — Gap(V) = pGo[N4(V) — N (V)], where p
is the polarization of the probe/NW tunnel junction and
Gy is normal-state tunneling conductance. The total induced
magnetization can then be obtained from Eq. (1) by know-
ing the normal-state properties of the tunneling contact. By
using the SQUIPT setup of Fig. 3(a), one can tune the phase
difference by an external magnetic field and measure the
NnL(¢) curve. From a material perspective, our theoretical
description is based on the diffusive approach and therefore
our findings can be best verified in metallic NM, as Cu, or
highly doped semiconducting nanowires, as those used in
Refs. [55-58]. For the FI, EuS is the best candidate. Interfacial
exchange fields of the order of tens of tesla has been reported
in a system combing EuS with metals and graphene [26,31]
which would lead to effective hr ~ 1072-10~! meV such
that one can reach all regimes studied above. Moreover, the
strength of the effective exchange field can be tuned by an
external magnetic field [78].

In conclusion, we predict the appearance of a nonlocal
magnetization My in a NW when proximitized to SCs and
a FI. This magnetization appears as a consequence of the
interplay between the long-range superconducting correla-
tions induced in the NW and the exchange field localized
at the FI/NW interface. The sign of My is opposite to the
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local Pauli spin polarization right at the FI/NW interface
and its value can be controlled by the phase difference be-
tween superconducting electrodes in a Josephson junction
setup.
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