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The effectiveness of the variational approach à la Feynman is proved in the spin-boson model, i.e., the
simplest realization of the Caldeira-Leggett model able to reveal the quantum phase transition from delocalized
to localized states and the quantum dissipation and decoherence effects induced by a heat bath. After exactly
eliminating the bath degrees of freedom, we propose a trial, nonlocal in time, interaction between the spin and
itself simulating the coupling of the two-level system with the bosonic bath. It stems from a Hamiltonian where
the spin is linearly coupled to a finite number of harmonic oscillators whose frequencies and coupling strengths
are variationally determined. We show that a very limited number of these fictitious modes is enough to get
a remarkable agreement, up to very low temperatures, with the data obtained by using an approximation-free
Monte Carlo approach, predicting (1) in the Ohmic regime, a Berezinski-Thouless-Kosterlitz quantum phase
transition exhibiting the typical universal jump at the critical value; and (2) in the sub-Ohmic regime (s � 0.5),
mean-field quantum phase transitions, with logarithmic corrections for s = 0.5.
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Introduction. The spin-boson model is a paradigmatic min-
imal model used for describing the quantum phase transition
(QPT) from delocalized to localized states induced by the
environment [1–3]. It also plays a significant role in under-
standing the relaxation processes, in particular the dissipation
and decoherence effects, in quantum systems [4,5]. The model
consists of a two-level system, i.e., a single quantum qubit or
spin, interacting with an infinite number of quantum oscilla-
tors whose frequencies and coupling strengths obey specific
distributions. Due to its versatility, it can catch the physics of a
large range of different physical systems going from defects in
solids and quantum thermodynamics [6] to physical chemistry
and biological systems [7–9]. It has been also used to study
trapped ions [10], quantum emitters coupled to surface plas-
mons [11], quantum heat engines [12], or superconducting
qubits strongly interacting with a set of individual microwave
resonators that reside in a restricted frequency range [13]. In
spite of its simplicity, an exact solution is not available and
a variety of approximated approaches have been adopted to
investigate the ground state physical properties of the quasi-
particle formed by the two-level system surrounded by the vir-
tual excitation cloud induced by the spin-bath coupling, i.e.,
the spin polaron [14–18]. Actually in the spin-boson model a
quantum critical transition between localized and delocalized
states is expected by increasing the coupling strength between
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the two-level system and the bosonic bath [2]. In particular, in
the Ohmic regime and for finite values of the bath cutoff, in the
literature there are predictions on this QPT, inferred from the
mapping between the spin-boson model and the Kondo model
that is based on the well-known equivalences between Fermi
and Bose operators in one dimension that, in turn, are strictly
valid only in the limit of a divergent cutoff [1,19]. In this
Rapid Communication we solve this long-standing problem,
definitely determining the nature of the QPT and the exact
values of the critical couplings by using two different ap-
proaches at finite temperature. The first one is unbiased, exact
from the numerical point of view, and based on the worldline
Monte Carlo (MC) technique. The other one is variational
and based on the idea of Feynman to describe the charge
polaron in the Fröhlich model [20]. We predict (1) in the
Ohmic regime, a Beretzinski-Thouless-Kosterlitz (BTK) QPT
exhibiting the typical universal jump at the critical value; and
(2) in the sub-Ohmic regime (s � 0.5), mean-field quantum
phase transitions, with logarithmic corrections for s = 0.5.

We emphasize that the variational approaches present in
the literature are limited to zero temperature, and none of
them is able to correctly describe the BTK QPT in the Ohmic
regime for finite values of the bath cutoff. In this Rapid
Communication we introduce a variational approach at finite
temperature providing an excellent description of different
quantities of physical interest at the thermodynamic equilib-
rium. It borrows from the idea of Feynman, based on the
path integrals, to describe the charge polaron. In the Fröhlich
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model, the high accuracy of the predicted free energy, polaron
mass, and optical properties by the Feynman approach has
been confirmed by numerically exact methods [21–23]. Here
we use a variational approach á la Feynman in the spin-boson
model. After exactly eliminating the bath degrees of freedom,
in analogy with the charge-polaron problem, we introduce a
simple trial retarded interaction between the spin and itself
simulating the true retarded spin-bath interaction. It stems
from a not exactly solvable model Hamiltonian where the
spin is coupled to a finite number of harmonic oscillators
whose frequencies and coupling strengths are variationally
determined. The comparison with the approximation-free MC
approach shows that a very limited number of these fictitious
modes is enough to correctly describe, up to very low tem-
peratures, any physical property. In particular, we show that
the more one increases the number of fictitious harmonic os-
cillators, simulating the coupling with the bath, the more one
is able to correctly describe the relevant physical properties at
lower and lower temperatures, correctly predicting the QPT in
both the Ohmic and sub-Ohmic regimes for any value of the
bath cutoff.

The model. The spin-boson Hamiltonian is written as

H = HQ + HB + HI , (1)

where (1) HQ = −�
2 σx represents the free qubit contribu-

tion: here � is the tunneling matrix element; (2) HB =∑
i ωia

†
i ai describes the bath, modeled by means of a col-

lection of bosonic oscillators of frequencies ωi; and (3) HI =
σz

∑
i λi(a

†
i + ai ) is the spin-bath interaction: λi represents the

coupling strength with the ith oscillator. In Eq. (1), σx and
σz are Pauli matrices with eigenvalues 1 and −1, and ai and
a†

i denote bosonic creation and annihilation operators. The
spin-bath couplings λi are determined by the spectral function
J (ω) = ∑

i λ
2
i δ(ω − ωi ) = α

2 ω1−s
c ωs�(ωc − ω), where ωc is

a cutoff frequency. Here the adimensional parameter α mea-
sures the strength of the coupling, while the parameter s
distinguishes among the three different kinds of dissipation:
Ohmic (s = 1), sub-Ohmic (s < 1), and super-Ohmic (s > 1).
We use units such that h̄ = kB = 1.

The methods. We investigate the physical features of this
Hamiltonian, at thermal equilibrium, by using two different
approaches. The first of them is based on the path integral
technique. Here the elimination of the bath degrees of freedom
leads to an effective Euclidean action [2,24]:

S = 1

2

∫ β

0
dτ

∫ β

0
dτ ′σz(τ )K (τ − τ ′)σz(τ ′), (2)

where the kernel is expressed in terms of the spectral
density J (ω) and the bath propagator: K (τ ) =∫ ∞

0 dω J (ω)
cosh[ω( β

2 −τ )]

sinh( βω

2 )
. In particular, for 1

ωc
� τ � β/2,

it has the behavior K (τ ) � α(ωc )1−s�(1+s)
2τ 1+s , that for s = 1

becomes simply K (τ ) = α
2τ 2 . The functional integral has

to be done, with Poissonian measure, over all the possible
piecewise constant functions, i.e., the worldlines σz(τ ), with
values 1 and −1, periodic of period β = 1/T , where T is
the system temperature. We emphasize that β represents the
size of the classical interacting spin system. An efficient
sampling of the path integral can be performed adopting a
cluster algorithm [24–26], based on the Swendsen and Wang

approach [27]. The critical properties of the spin-boson model
in the sub-Ohmic regime have been successfully investigated
through this MC technique [24]. Here we extend this kind
of calculation to the Ohmic regime. We emphasize that this
approach is exact from a numerical point of view and it is
equivalent to the sum of all the Feynman diagrams. It will
be used also as a test for the variational approach described
below.

The second method is based on the variational princi-
ple and it is strictly related to the approach introduced by
Feynman within the Fröhlich model [20]. For the sake of
clarity we resume the main steps. In general, in a many-body
problem, one uses the Feynman-Dyson perturbation theory
[28,29] starting from the Hamiltonian without interactions,
so the more the strength of the coupling increases, the more
the number of Feynman diagrams to be considered increases.
To overcome this difficulty, in the charge polaron problem,
Feynman introduced, as a starting point for the perturbation
theory, a smart variational action that the expansion to the first
order is already enough to obtain an excellent description of
the physics for arbitrary coupling strength. Here we follow
this idea. We adopt the ordered operator calculus [30], i.e., the
operator equivalent of the Feynman path integral [31]. The
first step is the calculation of the partition function [28,29]
Z = Tr[e−βH ] = Z0U (β ), where U (β ) = 〈Tτ e− ∫ β

0 dτ ′H (0)
I (τ ′ )〉0.

Here Z0 is the free partition function (related to H0 = HQ +
HB), Tτ is the time ordering operator, H (0)

I represents the
Hamiltonian HI in the interaction representation, and 〈· · · 〉0

denotes the ensemble average with respect to H0. By choos-
ing, for the trace, the basis of H0 (it is factorized), it is possible
to exactly eliminate the bath degrees of freedom by using the
Bloch-DeDominicis theorem [28,29]. The partition function
becomes

Z = ZQZB〈Tτ eφ〉Q, (3)

where

φ = 1

2

∫ β

0
dτ

∫ β

0
dτ ′σ (0)

z (τ )K (τ − τ ′)σ (0)
z (τ ′). (4)

Note that, in Eq. (3), the ensemble average is with respect to
HQ and that, differently from the path-integral representation,
i.e., Eq. (2), in Eq. (4) spin operators and not their eigenvalues
appear. So far no approximation has been used. In order to go
ahead with the calculation, one can expand the exponential
and use the standard perturbation theory in the many-body
problem. In order to avoid evaluating a huge number of
diagrams when the coupling with the bath increases, we
follow Feynman’s idea and introduce a trial Hamiltonian (Htr),
where we replace the bath, characterized by a continuum
distribution of harmonic oscillators, with a discrete collection
of N bosonic fictitious modes:

Htr = HQ +
N∑

i=1

ω̃ib
†
i bi + σz

N∑
i=1

λ̃i(b
†
i + bi ), (5)

where the parameters ω̃i and λ̃i have to be variationally
determined as specified in the following. Also in this case, due
to the linearity of the coupling term, we can exactly eliminate
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(a) (b)

(c) (d)

FIG. 1. (a), (b), and (c) −〈HQ〉, −〈HI 〉, and 〈HB〉 (measured with
respect to the value in the absence of interaction), in units of �,
vs α for ωc = 10�: comparison between the MC method and the
variational approach with one fictitious mode (in the inset −〈HQ〉 for
N = 2); (d) �r/T (dashed line) and the entropy (solid line) vs α.

the bosonic degrees of freedom, getting

Ztr = ZQZBtr〈Tτ eφtr〉Q, (6)

where

φtr = 1

2

∫ β

0
dτ

∫ β

0
dτ ′σ (0)

z (τ )Ktr(τ − τ ′)σ (0)
z (τ ′), (7)

and Ktr(τ ) contains the propagator of these trial modes and

the coupling strengths: Ktr(τ ) = ∑N
i=1 λ̃2

i
cosh[ω̃i (

β

2 −τ )]

sinh( βω̃i
2 )

. Now it

is straightforward to prove that the second derivative of the
function f (x) = −T ln〈Tτ eφtr+x(φ−φtr )〉S is negative for any
value of x in the range [0,1] [32]. This property gives rise to
the following inequality: f (x = 1) − f (x = 0) � f ′(x = 0),
i.e., an upper bound for the free energy F = −T ln Z:

F − FB � Ftr − FBtr − T
〈Tτ eφtr (φ − φtr )〉Q

〈Tτ eφtr〉Q
. (8)

This is exactly the same inequality found by Feynman within
the Fröhlich model (Feynman-Jensen inequality) [20,33]: it
is a generalization of the well-known Bogoliubov inequality
[33]. We emphasize that, in this variational formulation, only
the free energy of the model Hamiltonian and the first correc-
tion enter. The knowledge of the eigenvalues and eigenvectors
of Htr, through numerical diagonalization [34,35], allows us to
calculate the right side of Eq. (8) [36] and then the parameters
ω̃i and λ̃i. Finally, by considering the partial derivative of the
free energy with respect to �, ωi, and λi, and replacing, at
the end of the calculation, φ with φtr, it is possible to obtain
the average values of the three terms of the Hamiltonian, i.e.,
〈HQ〉, 〈HB〉, and 〈HI〉.

The results. We first focus our attention on the most in-
teresting case from the physical point of view, i.e., Ohmic
regime s = 1. In Figs. 1(a), 1(b), and 1(c), we plot −〈HQ〉,

(a) (b)

(c) (d)

FIG. 2. m2 vs α for four temperatures: comparison between the
MC method and the variational approach with different fictitious
modes for ωc = 10�.

−〈HI〉, and 〈HB〉, respectively, as a function of α, at T =
10−4�, by using only one fictitious mode [N = 1 in Eq. (5)].
As expected, by increasing the coupling spin-bath strength
α, −〈HQ〉 reduces, indicating a progressive decrease of the
tunneling between the two spin levels, whereas 〈HB〉 and
the absolute value of 〈HI〉 increase. It is also clear that
the Feynman picture provides very good estimates of the
average values at thermal equilibrium independently of the
value of the coupling α. We emphasize that, for a fixed N ,
the agreement between the two approaches improves more
and more by increasing the temperature. By fixing T , the
very small differences between the two approaches practically
vanish by increasing the number of fictitious modes [see inset
of Fig. 1(a)]. In Fig. 1(d) we plot the gap between the first
two eigenvalues of the model Hamiltonian, �r , scaled with
T , and the thermodynamic entropy as a function of α, for
different temperatures and N = 1. The plot points out that,
at any temperature, there is a value of α where �r becomes
smaller than T and, at the same time, the entropy increases
from zero to ln 2. This behavior suggest the presence of an
incipient QPT. Actually, the existence of a QPT in the spin-
boson model has been largely debated in literature [1,37,38].
Usually the critical properties are inferred from the mapping
between the spin-boson and Kondo model that is based on the
well-known equivalences between Fermi and Bose operators
in one dimension that, in turn, are strictly valid only in the
limit of ωc → ∞ [1,19]. It is also worth noting that the
renormalization-group equations of the two models are iden-
tical [39,40]. On the basis of these reasonings, it is generally
believed that, at s = 1, the QPT belongs to the class of BTK
transitions with a critical value of α, αc, around 1. In order to
clarify the existence of a QPT and characterize it, we study the
temperature dependence of the squared magnetization m2 =
1
β

∫ β

0 dτ 〈σz(τ )σz(0)〉. In Fig. 2 we plot m2 as a function of α

for different temperatures. The behavior of m2, from about 0 to
about 1 by increasing the coupling strength, in a steeper and
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(a) (b)

(c) (d)

FIG. 3. The function G(α, β ) vs β for five values of α around αc:
comparison between the MC method and the variational approach
with different fictitious modes for ωc = 10�. In the inset αc vs 1/ωc.

steeper way by lowering T , signals again an incipient QPT.
Indeed, in the BTK transition, the quantity m2 should exhibit
a discontinuity, just at αc, for T = 0 [41,42]. The plots point
out that the variational approach provides excellent agreement
with the numerically exact data of the MC method, although
one has to introduce more and more modes by decreasing
the temperature.

In order to get a precise estimation of αc, we adapt the
approach suggested by Minnhagen et al. in the framework of
the X -Y model, where the logarithmic behavior of the chirality
as a function of the system size at the critical point is exploited
[43,44]. In the present context, the roles of the chirality
and the lattice size are played by squared magnetization and
inverse temperature β, respectively. Defining the scaled order
parameter (α, β ) = αm2, the BTK theory predicts

(αc, β )

c
= 1 + 1

2(ln β − ln β0)
, (9)

where β0 is the only fitting parameter and c = (αc, β →
∞) is the universal jump that is expected to be equal to 1. In
this scenario, the function G(α, β ) = 1

(α,β )−1 − 2 ln β should
not show any dependence on β at α = αc. In order to test the
validity of this scenario, in Fig. 3 we plot the function G(α, β )
as a function of ln β for different values of α around 1. The
plots clearly show that there is a value of α such that G is
independent of β. It determines αc, that, for ωc = 10�, turns
out to be about 1.05. In the inset of Fig. 3(a) we plot the value
of αc for different values of ωc. The data point out that αc is
always greater than 1 and tends to 1 only when ωc → ∞. We
emphasize that c = 1 and αc > 1 imply m2 < 1 for α > αc

and T = 0. The presence of residual tunneling, due to a not
full magnetization, explains why 〈HQ〉, in Fig. 1(a), assumes,
for α > αc, a finite value different from zero. It is also worth
noting that four fictitious bosonic modes, variationally deter-
mined á la Feynman, provide excellent agreement with the

(a) (b)

(c) (d)

FIG. 4. m2 vs α for two different values of s: s = 0.5 in (a) and
(b), and s = 0.2 in (c) and (d). In the insets −〈HQ〉, in units of �, vs
α. Comparison between the MC method and the variational approach
à la á la Feynman for ωc = 10�.

numerically exact MC data, even around the critical value of
the spin-bath coupling, up to T � 10−4–10−5�. This confirms
the power of this variational approach: in this regard, it is
worth mentioning that, so far, there is no other variational
formulation, based on the wave functions and without using
the time-ordered operators, able to restore the above found
variational results.

In Fig. 4, we plot m2 and −〈HQ〉 vs α at two different values
of β, for s = 0.5 and s = 0.2, i.e., sub-Ohmic regime [26].
The variational approach á la Feynman with three fictitious
modes provides remarkable agreement with the MC data,
again confirming the effectiveness of this approach in any
regime and for any value of the spin-bath coupling. Further-
more we emphasize that our data are in perfect agreement
with the results obtained by Winter et al. [24] both at s = 0.2
and s = 0.5. In particular, the finite β scaling analysis for
s = 0.5 points out the presence of logarithmic corrections to
the mean-field theory.

Conclusion. We investigated the spin-boson model by us-
ing two different approaches: one unbiased, exact from the
numerical point of view and based on the worldline MC tech-
nique, and the other one variational and based on the method
proposed by Feynman to treat the charge polaron problem. We
proved that this variational approach is extremely powerful
and efficient providing an excellent description of the physical
features of the spin polaron in any regime. In particular, we
confirmed that, within the Ohmic regime, a BTK quantum
phase transition sets in, proving that αc > 1 and αc → 1 when
ωc → ∞. These results can open the way to the study of out-
of-equilibrium properties [45,46], such as ultrafast processes
and dynamics in the presence of strong driving fields, where
standard perturbation theories fail. Work in this direction is in
progress.
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