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Resonance phenomena in an annular array of underdamped Josephson junctions
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The appearance and origin of resonance phenomena are studied in an annular system of underdamped
Josephson junctions. If no fluxon is trapped in the system, the dynamics is governed by the motion of fluxon-
antifluxon pairs. If, on the other hand, trapped fluxons are present, in addition to their motion, the system can also
exhibit the simultaneous motion of trapped fluxons and fluxon-antifluxon pairs. Locking between the rotating
excitations (fluxons and antifluxons) and the Josephson frequency leads to the appearance of zero-field steps in
the current-voltage characteristics, whose number is determined by the number of junctions and the total number
of excitations present in the system. The obtained results clearly show that the branching of zero-field steps due
to resonance between the rotating excitations and plasma oscillations in their tails appears only at the lower
steps and completely disappears at the higher steps. A comparative analysis between systems without and those
with trapped fluxons shows a correlation between their current-voltage characteristics. From a high-resolution
analysis some special features of zero-field steps emerge such as an additional branch due to resonance between
the pulsating fluxon and the Josephson frequency. Examination of systems with the same number but different
types of excitations further reveals that their dynamics is determined not only by the number, but also by the type
of excitations, i.e., systems with the same number but different types of excitations have different current-voltage
characteristics.
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I. INTRODUCTION

Resonance phenomena in Josephson junction (JJ) systems
have been an active research topic in science and technology
for years. From the fundamental point of view JJs are ex-
cellent devices for studies of nonlinear dynamics of discrete
systems, as they represent an experimental realization of
the Frenkel-Kontorova model (discrete sine-Gordon model)
[1–7]. At the same time, regarding their applications, JJs are
promising devices for the development of various fields, from
the generation and detection of electromagnetic radiations
in the very low terahertz range [1], quantum information
technologies [8–18], and superconducting metamaterials [19]
to fields as distant as biology [20].

Systems described by sine-Gordon equations can exhibit
three types of dynamical solutions: small amplitude waves,
solitons, and breathers [1,2]. In JJ systems, the soliton so-
lution has a real physical meaning since it corresponds to a
quantum of flux trapped in a junction also called a fluxon
or Josephson vortex [5,6,21]. The idea that a fluxon behaves
as a particlelike solitary wave, which can be manipulated
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and controlled, motivated the creation of a new logic cir-
cuit by using Josephson fluxons as elementary bits of in-
formation [11–18]. In the creation of new logic elements,
particularly important are the long Josephson junctions de-
scribed by the continuous sine-Gordon equation and the
Josephson junction parallel array described by its discrete
counterpart, i.e., the Frenkel-Kontorova model [2–4]. A very
good overview of the most prominent fluxon dynamics re-
sults in both natural and man-made systems can be found
in Ref. [1].

The dynamics of long Josephson junctions have been
the subject of numerous theoretical and experimental studies
[1,22,23]. However, in long JJs, the motion of fluxons depends
on the geometry and boundaries of the junctions, which act as
a mirror reflecting the fluxon into the antifluxon (this process
can be viewed as a fluxon-antifluxon collision). Thus, the
current-voltage (I-V ) characteristics of long JJs can be very
complicated, which makes studies of fluxon dynamics very
challenging. These problems led to the creation of annular
Josephson junctions as well as annular systems of Josephson
junctions with a ring-shaped geometry [24]. Annular junctions
provide an undisturbed and very tunable fluxon motion, which
today makes them an ideal system for studies of fluxon
dynamics [25–34].
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One of the well-known properties of JJ systems is the
appearance of resonant steps in the current-voltage charac-
teristics in the absence of any external radiation [5,35,36].
Though the first experimental indication of their existence
was reported earlier [37], the name zero-field steps (ZFSs)
for the observed resonant structures and the first theoretical
explanation in terms of vortex motion inside the long junction
were introduced by Fulton and Dynes in their pioneering
work on the long Josephson junction [5]. The ever present
need for undisturbed fluxon motion without collisions further
motivated studies of resonance phenomena in annular sys-
tems [24–26,29,32], where the appearance of ZFSs can be
interpreted in terms of the circulating motion of fluxons and
antifluxons.

In this paper, we examine the underdamped dynamics of
an annular array of Josephson junctions (AAJJs), focusing
particularly on the origin and the appearance of various res-
onance phenomena in the absence of external radiation. Zero-
field steps have been studied previously in annular systems
of Josephson junctions [25,27], however, these studies have
focused only on systems with one trapped fluxon, and the
small region of I-V characteristics, i.e., the one correspond-
ing to the first (lowest) ZFS, has usually been examined.
In contrast to these studies [25,27], here we examine the
resonance phenomena in the AAJJ in various cases: without
trapped fluxons, where the dynamics is characterized by the
motion of FAPs, and with trapped fluxons. Our analysis is
performed in a wide range of currents and voltages—from the
regions which exhibit ZFSs all the way to the high-voltage
regions where ZFSs disappear—in order to get a full picture
of their behavior. This is particularly important in the case
of trapped fluxons. Namely, if we perform the analysis in
the same way as done previously [25,27], we would consider
only the dynamics, which are governed by the motion of
trapped fluxons. However, going beyond that limit and into
higher voltages, in addition to trapped fluxons, FAPs start to
appear and the dynamics is now characterized by the simulta-
neous motion of trapped fluxons and fluxon-antifluxon pairs,
which completely changes the system behavior. In order to
understand some of the properties of ZFSs we also perform a
comparative analysis between systems with different numbers
and systems with different types of moving excitations. This
enables us to observe some new properties of AAJJs which
otherwise could not be seen, such as the correlation between
the I-V characteristics of a system without and those of a
system with trapped fluxons. Our results also show that the
dynamics of the AAJJ depends not only on the number but
also on the type of excitations, i.e., systems with the same total
number of excitations but different types will have different
I-V characteristics.

The paper is organized as follows. The model is introduced
in Sec. II, while the simulation results are presented in Secs.
III–VII. The influence of the discreteness of the system on
the appearance of ZFSs is examined in Sec. III, while their
branching is analyzed in Sec. IV. The correlation between
the current-voltage characteristics in the case without and
those in the case with trapped fluxons is presented in Sec. V.
The appearance of a fine structure or an additional branch in
the current-voltage characteristics due to the presence of a
pulsating fluxon is shown in Sec. VI. A comparative analysis

of systems with the same number but different types of exci-
tations is performed in Sec. VII. Finally, Sec. VIII concludes
the paper.

II. MODEL

We consider an annular parallel array of N underdamped
Josephson junctions [25]. The total length of a chain is L =
Na, where a is the distance between neighboring junctions. In
order to derive dynamical equations for the description of such
discrete systems, we start from the equations for a continuous
annular JJ. In fact, the annular JJ is actually a long JJ with peri-
odic boundary conditions, and so, we start from the equations
for a long JJ. A Josephson junction is considered to be long
or short if its length is longer or shorter than the Josephson
penetration depth λJ = √

h̄S/(2eμ0DIc), respectively. Here
S is the surface area of the superconducting layer, e is the
electron charge, μ0 is the magnetic constant, D = 2λL + d is
the effective magnetic thickness, λL is the London penetration
depth, and d is the thickness of insulating layers.

According to the resistively and capacitively shunted junc-
tion model (RCSJ) [38,39] the total current through the junc-
tion is the sum of the Josephson supercurrent, quasiparticle
(resistive normal) current, and displacement (capacitive) cur-
rent,

I = Is + Iqp + Id ,

Is = Ic sin ϕ, Iqp = V

R
, Id = C

dV

dt
, (1)

where ϕ and V are the phase difference and voltage across the
junction, while R and C are the resistance and capacitance of
the JJ, respectively. The voltage V is given by the Josephson
relation

V = h̄

2e

dϕ

dt
= h̄

2e
ωJ , (2)

where ωJ is the Josephson frequency. In the case of the long JJ,
the surface current Is f along the superconducting layer, given
as

Isf = Icλ
2
J

∂2ϕ

∂x2
, (3)

should also be taken into account.
Using Eqs. (1), (2), and (3), the total or bias current I

through the junction can be written as

h̄C

2e

∂2ϕ

∂t2
− Icλ

2
J

∂2ϕ

∂x2
+ Ic sin ϕ + h̄

2eR

∂ϕ

dt
= I. (4)

In the normalized form, Eq. (4) for the phase difference in JJs
can be simplified as

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+ sin ϕ + α

∂ϕ

∂t
= I, (5)

where the time is normalized with respect to the inverse
plasma frequency ω−1

p , ωp = √
2π Ic/(�0C), the coordinate

is normalized with respect to λJ , and the bias current I with
respect to the critical current Ic. The dissipation parameter
is given as α =

√
�0/(2π IcR2C), where L0, C, and R are

the inductance, capacitance, and differential resistance of a
single cell, respectively, and �0 = h

2e is the flux quantum
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[40]. Equation (5) represents the well-known perturbed sine-
Gordon equation. The boundary conditions for the long JJ
described by Eq. (5) have the form ∂ϕ/∂x|x=0 = ∂ϕ/∂x|x=L =
Bext, which for the annular case are periodic, i.e., ϕ(x = 0) =
ϕ(x = L) + 2πM, where Bext is the external magnetic field
and M represents the number of trapped fluxons inside the
system.

The annular system that we consider here can be described
by the discrete version of the perturbed sine-Gordon equation,
which is well known as the dissipative Frenkel-Kontorova
model [2],

d2ϕi

dt2
− ϕi+1 − 2ϕi + ϕi−1

a2
+ sin ϕi + α

dϕi

dt
= I, (6)

where ϕi is the phase difference across the ith junction. The
coupling between the neighboring junctions is described by
the constant 1

a2 , where a = √
2πL0Ic/�0 is the discreteness

parameter, i.e., the distance between two junctions normalized
to the λJ .

Equation (6) can be linearized around a solution consisting
of a traveling kink (fluxon) and a small linear wave (perturba-
tion) [25]. The dispersion law for linearized waves is given as

ωm =
√

1 + 4

a2
sin2

(
πma

L

)
, (7)

where m is an integer.
In order to calculate the I-V characteristics of the AAJJ we

have used Eq. (6) and the Josephson relation,

Vi = dϕi

dt
= ωJ , (8)

where Vi is the voltage of the ith junction normalized to V0 =
h̄ωp/2e, and the Josephson frequency ωJ is normalized to the
plasma frequency ωp.

Our numerical simulations were performed for periodic
boundary conditions, which in the discrete case have the form

ϕN+1 = ϕ1 + 2πM, ϕ0 = ϕN − 2πM, (9)

where the spatial points i = 0 and i = N + 1 are assumed
to be equivalent to i = N and i = 1. We have applied the
well-known procedure used in Refs. [41] and [42]. The algo-
rithm for calculating the I-V characteristics consists of several
stages. First, for the given value of the bias current I , Eqs. (6)
and (8) are solved numerically in the time interval [0, Tmax]
using the fourth-order Runge-Kutta method with the corre-
sponding boundary conditions, (9), and the initial conditions
ϕi(0) = 0, Vi(0) = 0 at I = 0. As a result we obtained the time
dependence of ϕi(t ) and Vi(t ) for a fixed value of the bias
current. Then, using the expression

〈Vi〉 = 1

Tmax − Tmin

∫ Tmax

Tmin

Vi(t )dt, (10)

where Tmin is the time necessary for the system to reach steady
state, we calculated the average voltage for each junction in
the system. Further, the total average voltage V was obtained
using the expression V = ∑ 〈Vi〉/N . In this way, for a given
value of the bias current I the corresponding voltage V was
found. Next, we changed the bias current for some value

	I and repeated the above procedure in order to obtain the
next point. By repeating this procedure for every value of the
current, the I-V characteristic was produced. We note that the
solutions ϕi(Tmax) and Vi(Tmax) obtained for the time Tmax at
certain values of I were used as the initial condition for the
calculation of the next point at the bias current value I + 	I .

The magnetic field in the array has been calculated by the
expressions

B1 = ϕ1 − ϕN + 2πM

a
, Bi = ϕi − ϕi−1

a
, (11)

where Bi is normalized to B0 = h̄c/(2eDλJ ). During our
analysis, calculation of the magnetic-field time dependence in
JJs was often necessary in order to understand the origin of
the observed features in the I-V characteristics.

III. ZERO-FIELD STEPS

In the AAJJ that we consider, in the absence of any external
radiation, rotating excitations (fluxons and antifluxons) pass
repeatedly through the junctions, which leads to resonance
between the circulating excitations and the Josephson fre-
quency. The signature of this effect is the zero-field steps
(ZFSs) in the I-V characteristics of the system. Depending
on the system properties and the circulating excitations, these
steps can exhibit various properties.

A. Zero-field steps in systems near a continuum

In nonlinear systems, which exhibit resonance phenomena,
discreteness plays an important role. Let us then examine first
how discreteness of the AAJJ affects the zero-field steps. We
start with a case close to the continuum limit. If we have an
AAJJ of length L = Na = 10, then the near-continuum limit
can be achieved by placing N = 100 junctions at the distance
a = 0.1 along the circle. In Fig. 1 the current-voltage charac-
teristics of an annular system with 100 Josephson junctions
is presented for M = 0 [Fig. 1(a)] and M = 1 [Fig. 1(b)],
while the result for the long Josephson junction is shown in
Fig. 1(c) for comparison. The presented curves are produced
in the following way: starting from 0, the current is increased
until the system transfers to the high-voltage state. Then it
is decreased to 0, revealing a staircase structure; after that it
is increased again till the system is in the high-voltage state.
From there, the current is decreased to the first step. From the
first step it is again increased to the high-voltage state, and
from there it is decreased to the next step. In this way, the
current is swept up and down several times, and the procedure
repeated for all the steps.

These steps in Fig. 1 represent the well-known ZFSs that
appear when the voltage V , i.e., the Josephson frequency,
satisfies the resonant condition ωJ = 2πnu

L , where u is the
speed of a moving fluxon (antifluxon). Here, n is the total
number of excitations in the system, which can be written as
n = n f + naf = 2np + M, where n f , naf , and np represent the
number of fluxons, antifluxons, and fluxon-antifluxon pairs,
respectively.

The AAJJ is a topologically closed system, therefore the
number of trapped fluxons M must be conserved and new
fluxons can be created only in the form of FAPs [34]. In
the case where M = 0 (there are no trapped fluxons), the
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FIG. 1. Current-voltage characteristics of an annular array of
Josephson junctions for N = 100, a = 0.1, α = 0.1, and (a) M = 0
and (b) M = 1. (c) The I-V characteristics of a single long JJ.
Numbers mark the total numbers of fluxons and antifluxons in the
system, n.

dynamics is characterized by the motion of FAPs. Thus, in
Fig. 1(a) the system exhibits only even mode resonances,
where n is an even number, which corresponds to the number
of fluxons and antifluxons created in pairs in the system. If
we introduce one fluxon, in which case M = 1, we can see
in Fig. 1(b) that only odd mode resonances appear, where n
corresponds to the sum of the trapped fluxon and the number
of fluxons and antifluxons, which come in pairs. On the other
hand, the long JJ in Fig. 1(c) is not topologically closed, and
it can exhibit both even and odd mode resonances.

B. Zero-field steps in discrete systems

In highly discrete systems the fluxon dynamics changes
significantly. In order to discretize our system, we reduce the
number of junctions to N = 10, while keeping the same total
length L = 10 (a = 1) as in the previous case. In Fig. 2 the I-V
characteristic for the case M = 0, where there are no fluxons
trapped in the system, is presented. The curves are produced
following the same procedure as for Fig. 1. In this case, the
resonances come from the motion of FAPs, and the four ZFSs
correspond to n = 2, 4, 6, and 8. If we compare this result with
the one in Fig. 1(a), we can see that in the highly discrete case
the number of steps is significantly reduced. This reduction of
resonances comes from the fact that in order for a resonance to
appear there should be a certain balance between the number
of rotating excitations and the junctions in the system, i.e.,
the existence of stable fluxon-antifluxon pairs requires that
the system is sufficiently large to permit the pair dynamics
[33]. When the number of rotating fluxons and antifluxons
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8

FIG. 2. Current-voltage characteristic of an annular array of
Josephson junctions for N = 10, a = 1, α = 0.1, and M = 0. Num-
bers mark the total numbers of fluxons and antifluxons. Arrows show
the direction in which the current was changed.

increases, the time interval between their two consecutive
passages is reduced. Consequently they are constantly passing
through the junctions at a frequency much higher than ωJ ,
leaving no time for any resonance to appear. Further, we
present some specific phenomena that we observed in our
examination of ZFSs.

IV. BRANCHING OF ZERO-FIELD STEPS

If we perform a high-resolution analysis of the zero-field
steps in Fig. 2, a complex structure is revealed. The enlarged
regions of the I-V curves corresponding to each of four ZFSs
are presented in Figs. 3(a)–3(d), respectively. The first two
steps, in Figs. 3(a) and 3(b), exhibit branching. Namely,
an excitation moving through the system excites small-
amplitude linear waves in its tail, which are called Josephson
plasma waves due to their plasma-type dispersion relation
[see Eq. (7)]. The resonance appears due to frequency locking
between the moving excitation and the small-amplitude oscil-
lations or plasma waves (created by its motion), which results
in the appearance of a series of branches at the zero-field steps
in the I-V characteristics of the junction. While the ZFSs
appear in both continuous and discrete systems, branching
can be observed only in discrete ones [25,27]. When M = 0,
the dynamics is characterized by the motion of FAPs, i.e.,
equal numbers of fluxons and antifluxons are circling in the
opposite direction to each other along the AAJJ. A branch of
order m appears when two consecutive passings of excitations
through a junction correspond to the mth oscillation of the
plasma (linear) wave. As shown in Fig. 3(a), for n = 2, where
one pair, i.e., one fluxon and one antifluxon, rotate, the ZFS
beside the main branch, which corresponds to the frequency
ωJ = 1.107, also has additional branches, corresponding to
the frequencies ωJ = 0.985, 0.882, 0.823, 0.69, and 0.635.
For two FAPs in the system in Fig. 3(b), the position of the
ZFS n = 4 corresponds to the frequency ωJ = 2.185, with
an additional two branches corresponding to the frequencies
ω = 1.977 and 1.87. On the other hand, in Figs. 3(c) and 3(d)
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FIG. 3. High-resolution plots of the ZFSs shown in Fig. 2 for
(a) n = 2, (b) n = 4, (c) n = 6, and (d) n = 8. Arrows mark the value
of I at the end of each branch. Other parameters are the same as in
Fig. 2.

no branching appears in the case of ZFSs with n = 6 (ωJ =
3.234) and n = 8 (ωJ = 3.81), respectively.

Let us now examine the three highest branches, ωJ =
1.107, 0.985, and 0.823, in Fig. 3(a) and analyze the time
dependence of the magnetic field B at the end of each branch
for the values of the current I marked by arrows. The time
dependence of magnetic field B at different branches of the
n = 2 ZFS is presented in Fig. 4. For the lowest branch in
Fig. 4(a), we can see that each consecutive passage of a fluxon
(an antifluxon) corresponds to the fifth plasma oscillation. At
the next branch, in Fig. 4(b), as the speed and the frequency of
the moving fluxon increase, the time between two consecutive
passages of excitations decreases, and the branch appears
due to the resonance with the fourth plasma oscillation. In
Fig. 4(c), which corresponds to the third branch, the speed of
the fluxon and antifluxon increases further so that their motion
locks with the third plasma oscillation.

Examination of the time dependence of the magnetic field
can also give us an answer to why the branching is most
prominent for n = 2 in Fig. 3(a), and as the number of pairs,
i.e., fluxons and antifluxons, increases to n = 4 in Fig. 3(b),
the number of branches decreases, completely disappearing
for n = 6 and 8 in Figs. 3(c) and 3(d), respectively. In Fig. 5,
the time dependence of magnetic field B corresponding to
zero-field steps for n = 2, 4, 6, and 8 is presented. The
magnetic field is measured at the resonant point (the end)
of each step. If only one or two FAPs are moving, such as
in Figs. 5(a) and 5(b), respectively, the time between each
passage of a fluxon or an antifluxon is long enough so that
plasma oscillations can synchronize with their motion. As the
number of FAPs increases, the time between each passage
decreases more and more. A large number of fluxons and
antifluxons will therefore leave no time for plasma oscillations

t

B

0 20 40

-5

0

5
p

af

pp
f

p

2I=0.28

t

B

0 20 40

-5

0

5

p

2

af

pp

f
I=0.4

t

B

0 20 40

-5

0

5
2

af

p p
f

I=0.52

FIG. 4. Time dependence of the magnetic field B corresponding
to the first three branches of the n = 2 ZFS with ω = 1.107, 0.985,
and 0.823 measured at I = 0.28, 0.4, and 0.52 in (a), (b), and (c),
respectively. The oscillations corresponding to the fluxon, antifluxon,
and plasma modes are labeled ”f,” ”af,” and ”p.”

between each of their passages as we can see in Figs. 5(c) and
5(d), and consequently, there will be no resonance.

Resonances between the fluxon and the plasma waves have
been studied previously in annular systems of underdamped
Josephson junctions with one trapped fluxon [25], where the
analysis focused only on the region of the I-V characteris-
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FIG. 5. Time dependence of the magnetic field B at the zero-field
steps (a) n = 2, (b) n = 4, (c) n = 6, and (d) n = 8, measured at the
value of current I , which corresponds to the resonant point at the end
of each step.
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FIG. 6. (a) Current-voltage characteristics of an annular array of
Josephson junctions for N = 10, a = 0.1, α = 0.1, and M = 0 (red)
and M = 1 (green). (b) High-resolution plot of the cross section
between the two curves.

tics, which corresponds to the first step, i.e., one circulating
fluxon, and an examination of the voltage-time dependence
was performed. In our case, instead of the voltage it is more
appropriate to use the magnetic-field time dependence since
in this case fluxons can be distinguished from antifluxons.

V. CORRELATION BETWEEN THE STEP FOR M = 0 AND
THE STEP FOR M = 1

So far, we have presented only the results obtained for M =
0, but we have also analyzed systems with trapped fluxons,
M �= 0. In Fig. 6 the current-voltage characteristics for the
cases M = 0 and M = 1 are presented. As in the case for
M = 0, for M = 1, in Fig. 6(a), four ZFSs will also appear, but
this time only for odd values of n (n = 1, 3, 5, and 7), so that
n = 1 corresponds to one rotating fluxon, n = 3 to one fluxon
and one fluxon-antifluxon pair, etc. In the high-voltage state
there is no difference between the curve for M = 0 and that
for M = 1, however, in the region of ZFSs the curves intersect
each other. The steps for even values of n (M = 0) alternate
with the steps for odd values of n (M = 1) passing in between
each other.

Interestingly, the examination of the I-V characteristics
of the AAJJ with one trapped fluxon (M = 1) can help us
understand some of the features which appear in the ZFSs
when M = 0. Namely, the high-resolution analysis of the I-V
characteristics for M = 0 reveals another specific property. In
Fig. 6(b), we see a fine structure (a small peak), which appears
at step n = 4, at I = 0.23. The origin of this effect can be
understood from the comparative analysis of the I-V curves
for both values of M. As we can see, the appearance of this
defect at step n = 4 is at the current value (I = 0.23) for which
the I-V curve for M = 1 changes from the n = 5 to the n = 3
state. For given system parameters the ability of the annular
Josephson junction to exhibit a certain number of FAPs is
determined by the current I . Thus, as the current is decreased
from the high-voltage state, at some value of I , the AAJJ
transfers to the state n = 8 (four fluxons and four antifluxons),
and as we decrease I further, we can see that at certain values
of the current, the AAJJ can be in states with n = 7, 6, . . . , 1
excitations. In Fig. 6(b), at step n = 4 (M = 0), we have two
fluxon-antifluxon pairs moving along the AAJJ, and when the
current decreases to the value I = 0.23, the AAJJ is in the
I-V region, which corresponds to the n = 3 state. However,
it is impossible for the AAJJ to transfer to that state due to
conservation of M (n f = naf for M = 0). On the contrary, the
two pairs will, due to their inertia, continue moving till the
current decreases to the value at which the system is reduced
to the n = 2 state with only one FAP. Also in Fig. 6(b), we
can see that the curve for M = 1 is slightly shifted to the
right compared to the curve for M = 0. This might be due
to the inertial effect, since for M = 1 the system contains one
more fluxon in addition to fluxon-antifluxon pairs, and more
fluxons will simply have more inertia. Thus, when the current
is decreased, three fluxons and two antifluxons (n = 5) would
keep moving longer than two fluxons and two antifluxons
(n = 4).

VI. A PULSATING FLUXON

Let us now examine step n = 1 for an AAJJ with one
trapped fluxon, M = 1. The high-resolution plot of the I-V
curve in Fig. 6 corresponding to step n = 1 (one-fluxon state)
is presented in Fig. 7. As in the previous case for M = 0 in
Sec. IV, now for M = 1 in Fig. 7(a) step n = 1 also exhibits
branching. If we analyze the voltage-time dependence, for
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FIG. 7. (a) I-V curve of the AAJJ for M = 1 in the region of
the step n = 1 for the one-fluxon state. (b) Voltage-time dependence
at the upper branch of the one-fluxon zero-field step for the current
value marked by the arrow.
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FIG. 8. (a) High-resolution plot of the area within the dashed
circle in Fig. 7(a). Voltage-time dependence at (b) I = 0.29 and
(c) I = 0.3.

example, for a given value of I marked by the arrow at
step n = 1 in Fig. 7(a), we can see in Fig. 7 (b) that the
upper branch corresponds to the fluxon passing at every fourth
plasma oscillation.

However, besides branching, when M = 1 the step in
Fig. 7(a) exhibits an interesting feature (an additional branch),
enclosed by the dashed circle, which does not appear in the
I-V characteristics of the AAJJ with no trapped fluxons (M =
0). In Fig. 8, a high-resolution plot of the area within the
dashed circle in Fig. 7(a) and the corresponding voltage-time
dependence at two values of current I for the AAJJ with one
trapped fluxon (n = 1) are presented. Looking at Fig. 8(a),
at first it might seem that there is an additional branch,
nevertheless, the voltage-time dependence at the two current
values marked by arrows in Figs. 8(b) and 8(c) shows that
in both cases we have resonance of order m = 4 (the fluxon
passes every fourth plasma oscillation). However, in Fig. 8(b)
for the current value I = 0.29, we can clearly see changes in
the maxima corresponding to the fluxon, which we therefore
call a pulsating fluxon. The observed feature is a result of the
resonance between the pulsating fluxon and the Josephson
frequency. We performed simulations for different system
parameters and discovered that this phenomenon existed only
in the underdamped case and disappeared as damping was
increased.

VII. COMPARATIVE ANALYSIS OF THE I-V
CHARACTERISTICS FOR M = 0 AND M = 2

In order to further examine how the type of excitations
affects the AAJJ, let us compare two cases: M = 0 and M =
2. At first one might expect that the I-V characteristics for
M = 0 and M = 2 should be the same since in both cases
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FIG. 9. (a) I-V characteristics of the AAJJ for N = 10, a = 1,
α = 0.1, and M = 0 (red) and M = 2 (green). (b) High-resolution
plot of the n = 2 step.

ZFSs appear at n = 2, 4, 6, and 8, however, this is not the case.
In Fig. 9, the I-V characteristics for the case M = 0, with no
trapped fluxon, and the case M = 2, with two trapped fluxons,
are presented. As we can see in Fig. 9(a), the steps are shifted
with respect to each other. At the ZFS n = 2, for M = 0 we
have one fluxon and one antifluxon, while for M = 2 we have
two fluxons. At the next step, n = 4, we will have two fluxons
and two antifluxons for M = 0, while for M = 2 there will be
three fluxons and one antifluxon, etc. So, although the total
number of excitations n is the same for both values of M, the
numbers of fluxons and antifluxons are different. For M = 0
we always have the same number of fluxons and antifluxons,
n f = naf , while for M = 2, in addition to fluxon-antifluxon
pairs we have two trapped fluxons, so that n f �= naf , and this
completely changes the dynamics of the system.

In the high-resolution plot of step n = 2 presented in
Fig. 9(b), we can also see that for M = 2 the voltage goes
to 0 as I goes to 0, while for M = 0 the voltage goes to 0
around I = 0.14. This stems from that fact that for M = 0,
a fluxon-antifluxon pair can exist only above some critical
current. So, when I becomes smaller than that value, there are
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no fluxon-antifluxon pairs, and consequently, V drops to 0.
On the other hand, if we have two trapped fluxons, they will
be moving as long as I �= 0, and as I goes to 0, their speed
and, consequently, the voltage will go to 0.

VIII. CONCLUSION

In this work, the resonance phenomena in the absence of
external radiation in an annular array of Josephson junctions
have been analyzed in a wide range of currents and voltages
for different numbers and types of excitations present in the
system: from the case of no trapped fluxons, i.e., circulating
fluxon-antifluxon pairs, to the cases of trapped fluxons and
their simultaneous motion with the pairs. The obtained results
showed that the appearance and the number of zero-field steps
were determined by the number of junctions and the excita-
tions present in the system. A high-resolution analysis of the
current-voltage characteristics showed that the branching of
zero-field steps due to locking between rotating excitations
and plasma oscillations in their tails was the most prominent
at the lowest step and, as the number of excitations increased,
gradually disappeared at the higher steps. A comparative
analysis between two different systems, one without and one
with one trapped fluxon, revealed a correlation between the
two current-voltage characteristics. In the case of one trapped
fluxon, in the region of the first (lowest) zero-field step, a
special feature, i.e., an additional branch, was observed, which
appeared as a signature of the pulsating fluxon resonating at
the Josephson frequency. Examination of systems with the
same total number but different types of excitations showed
that the dynamics of the AAJJ was determined not only
by the number, but also by the type of excitations, i.e., the
current-voltage characteristics differed depending on the type
of excitations. In other words, a system with one fluxon and
one antifluxon, for example, does not behave the same as a
system with two trapped fluxons, although the total number
of excitations is the same.

All these phenomena that we observed are not just related
to this particular system of Josephson junctions, annular ge-
ometry, or zero-field steps but could be relevant for a wide
variety of underdamped Josephson junction systems, which
can exhibit resonance, interference, and other frequency lock-
ing phenomena based on the flux-quanta motion [43–45].
Regarding the relevance of our results for other frequency

locking phenomena, such as, for example, Shapiro steps, we
just showed, in a separate study of an underdamped Josephson
junction system under external radiation, that the ability of the
system to exhibit Shapiro steps was determined not just by the
number but also by the type of excitations circulating in the
system [46].

Annular Josephson junctions possess an enormous poten-
tial for various technological applications [1]. Superconduct-
ing digital technology is capable of achieving much higher en-
ergy efficiencies than other technologies [10–18], and fluxon
dynamics as well as resonance phenomena are at the core
of some of the most advanced ideas in these fields. Another
interesting application of annular Josephson junctions is in
superconducting metamaterials with a number of unique prop-
erties, which are difficult to achieve in any other way [19].
A generic element of such a material is a superconducting
ring split by a Josephson junction, and one of the most
recent theoretical and experimental studies is dedicated to the
resonant response of such metamaterials to the external signal
in strongly nonlinear regimes [19]. Regardless of the field in
which annular Josephson junctions have application, a good
understanding of their dynamics is crucial. For this reason, the
resonance phenomena that we have presented require further
experimental examination, which we will report in the future.
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