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Andreev spectroscopy of the triplet-superconductor state in the Bi/Ni bilayer system
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We calculate the Andreev spectroscopy between a ferromagnetic lead and a Bi/Ni bilayer system. The bilayer
system is described by the Anderson-Brinkman-Morel (ABM) state and mixing ABM and S-wave states. In both
the ABM state and ABM state is mixed with small S-wave state, the Andreev conductance is consistent with
that obtained in the point-contact experiment [Zhao et al., arXiv:1810.10403]. Moreover, the conductance peak
near zero energy is induced by the surface state of the ABM state. Our work may provide helpful clarification
for understanding recent experiments.
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I. INTRODUCTION

Triplet p-wave superconductors have received much in-
terest [1], providing insight into topological superfluidity
[2,3], superconductivity, and spintronics applications [4,5].
Topological p-wave superconductors [6–8] especially promise
quantum computing applications such as Majorana fermions
which locate at the edges and the vortex cores of supercon-
ductors [9–14]. Topological p-wave superfluids of 3He have
been reported [15] and superconductivity in Sr2RuO4 has been
suggested [16,17]. Another peculiar feature of topological
materials is gapless surface states [17–20]. Experimentally,
the surface state can be detected by the Andreev spectroscopy
[17,21,22].

Recent point-contact experiments have observed triplet su-
perconductivity in epitaxial Bi/Ni bilayers [23–25]. Triplet p-
wave superconductivity was inferred from the zero-bias peak
of the Andreev conductance between the epitaxial Bi/Ni bi-
layer and the ferromagnetic metal (FM). Furthermore, a quan-
titative analysis of the Andreev conductance revealed a triplet
p-wave Anderson-Brinkman-Morel (ABM) state [26,27] with
two Weyl nodes [3,28]. In contrast, a recent time-domain THz
spectroscopy experiment [29] has reported a nodeless bulk
superconductivity in the epitaxial Bi/Ni bilayer. In addition,
the inversion symmetry of the Bi/Ni bilayer is broken, sug-
gesting the mixing of different pairings such as S-wave and
p-wave [30,31]. The Bi/Ni bilayer system naturally raises
two questions: (1) Does the broken inversion symmetry admit
any superconducting pairing other than the ABM state at
the interface? (2) Given the importance of the behavior of
surface states in topological superconductors, how do those
surface states and bulk ABM states contribute to the transport
properties?
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We build a model that calculates the Andreev spectroscopy
and local density of states (LDOS) of superconducting materi-
als that may exist in the Bi/Ni bilayer, i.e., the ABM state and
the ABM state mixture with S-wave pairing. We first calculate
the conductance of the Andreev reflection in pure ABM
states using the Blonder-Tinkham-Klapwijk (BTK) method
[31,32] and its LDOS by the surface Green’s function method
[33–35]. Second, since there may be mixing in different super-
conducting states, we then calculate the Andreev conductance
of one of the possible mixed forms: ABM mixed S-wave
superconducting states. We find that the Andreev conductance
of both the pure ABM state and the mixed state with a small
S-wave component were consistent with the results of point-
contact experiments [24]. However, in mixed states with a
large S-wave component, the conductance deviated from the
point-contact results [24]. After computing the LDOS of those
states, we find nodes in the pure ABM state and the mixed
state with small S-wave components, but not in the mixed state
with a large S-wave component. The local density of states of
the mixed state with a large S-wave component is consistent
with the time-domain THz spectroscopy experiment [29]. We
also revealed that the conductance peak near the zero energy
is contributed by the surface state.

The remainder of this paper is organized as follows. Sec-
tion II introduces our model for calculating the conductance.
Sections III and IV calculate the conductances and the surface
states of the ABM state and an unconventional supercon-
ductivity state (an ABM state mixed with an S-wave state),
respectively. The paper concludes with a brief summary.

II. MODEL

Since the superconducting pairing function of the ABM
state is isotropic on the x-y plane, in order to better de-
scribe the topological properties of ABM state, we consider a
two-dimensional normal metal-superconductor (N-S) junction
located at z = 0 (where z > 0 represents the superconductor,
and z < 0 represents normal metal) as shown in Fig 1(a). In
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FIG. 1. Schematic diagram of (a) the transport system and (b) the
band structure of the ABM state. φ represents the angle between
the z axis of the p wave and the normal to the interface. The
transmitted holelike and electronlike quasiparticles have effective
pairing potentials of �e = �p sin(θ − φ) and �h = �p sin(π − θ −
φ), respectively.

addition, the results of the two-dimensional tunnel junction
can be extended to the three-dimensional case by integrating
on the x-y plane. The effective Hamiltonian in the Nambu
representation is given by [31]:

HS =
(

Ĥ0(k) �̂(k)

−�̂∗(−k) −Ĥ∗
0 (−k)

)
, (1)

where Ĥ0(k) = ζk , ζk = h̄2

2m k2 − μ, �̂(k) = i�σy for singlet
pairing and �̂(k) = [d̂ (k) · �σ ]iσy for triplet pairing [31].

We first consider the superconducting order parameter �p

of a p-wave superconductor in the pure ABM state [26,27]:

�̂(k) =
[−�p sin θk 0

0 �p sin θk

]
, (2)

where sin θk ≡ kFx
kF

with kF being the Fermi momentum and
kFx being the x component of kF . According to BTK theory
[31,32], the wave function of a superconductor �s is given by

eikxx[c1ψ1eiq+
1zz + c2ψ2e−iq+

2zz + c3ψ3eiq−
1zz + c4ψ4e−iq−

2zz],
(3)

where q±
1(2)z =

√
q2

1(2),± − k2
Fx, q2

1(2),± ≈ kF . Here, ψ1(2) =
[u+

e(h), 0,−v+
e(h), 0]T denotes the electronlike (holelike) state

for spin index ↑, and ψ3(4) = [0, u−
e(h), 0, v−

e(h)]
T denotes

the electronlike (holelike) state for spin index ↓, u±
e =

√
1
2 (1 + ε±

e
|E | ), u±

h =
√

1
2 (1 + ε±

h
|E | ), v±

e = α±
e

√
1
2 (1 − ε±

e
|E | ),

v±
h = α±

h

√
1
2 (1 − ε±

h
|E | ), with α+

e(h) = α−
e(h) = sgn(sinθe(h) ).

Here, ε+
e(h) = ε−

e(h) =
√

|E |2 − �2
e(h), with �e(h) =

�p sin θe(h), θe = θk − φ, and θh = π − θk − φ denote
the effective pair potentials of electronlike and holelike
quasiparticles, respectively [24,31,36], where θk depicts the
electron incident angle and φ represents the angle between
the z axis of the p-wave and the normal to the interface
(similar to the angle α between the x axis of the d-wave the
interface normal in a d-wave superconductor [36]), as shown
in Fig. 1(b).

Second, we consider a mixed S-wave pairing and ABM
state, whose superconducting order parameter has the fol-
lowing form: �̂(k) = −�p sin θkσz + �siσy [31,37]. Then,
the superconducting order parameters split into two in-
dependent order parameters �+

e(h) = �p sin θe(h) + �s and
�−

e(h) = �p sin θe(h) − �s, respectively [38]. In this case, the
wave function changes to ψ1 = [u+

e , u+
e ,−v+

e , v+
e ]T , ψ2 =

[u+
h , u+

h ,−v+
h , v+

h ]T , ψ3 = [u−
e ,−u−

e , v−
e , v−

e ]T , and ψ4 =
[u−

h ,−u−
h , v−

h , v−
h ]T . Here, u±

e(h) and v±
e(h) have the same form

as the former case, with ε±
e(h) =

√
E2 − (�±

e(h) )
2, α±

e(h) =
sgn(�±

e(h) ).
The wave function in the lead region is derived from

the Hamiltonian: ĤN (k) = ζk − μ + �M · �V ; where ζk , and μ

denote the kinetic energy and the chemical potential, re-
spectively. The plane wave at the normal metal side can be
expressed by a four-component wave function in the Nambu
representation:

�N = e(ikF x)

⎛
⎜⎜⎜⎝

eikFz + b↑,↑e−ikFz

b↑,↓e−ikFz−γ

a↑,↑eikFz

a↑,↓eikFz+γ

⎞
⎟⎟⎟⎠. (4)

The first row eikFz + b↑,↑e−ikFz of Eqs. (4) describes an elec-
tron with a spin-up incident plane wave and a normal reflec-
tion wave. The second row b↑,↓e−ikFz−γ describes an electron
with a spin-down wave. The third row a↑,↑eikFz and the fourth
row a↑,↓eikFz+γ are hole descriptors with a spin-up and a
spin-down Andreev reflection wave, respectively. The γ = 0
in nonmagnetic metal (NM) lead and γ = ∞ in FM lead [39]
describe the evanescent wave. Note that we only consider the
incidence of spin-up electrons. Fully polarized ferromagnetic
leads contain only spin-up electrons whereas in nonmagnetic
leads, the spin-up and spin-down electrons are identical, so it
is sufficient to consider spin-up electrons only.

Next, we study the transport properties of the N/S junction.
We assume that the N/S interface located at z = 0 along the
x axis has an infinitely narrow insulating barrier described by
the delta function U = Uδ(z) [24,31]. Solving the following
boundary conditions [24,31,40]:

�S (0) = �N (0),
∂�S (z)

∂z
|z=0 − ∂�N (z)

∂z
|z=0 = U�S (0),

(5)
we obtain a↑,↑(↓) and b↑,↑(↓).
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For two-dimensional N/S junctions, the normalized con-
ductance with a bias voltage is [24,40]

σ (eV) =
∫ π/2
−π/2 gT (eV)cosθdθ∫ π/2
−π/2 gT (∞)cosθdθ

, (6)

where gT (eV) = ∫ 1
0 g(|eV + 1

β
ln 1− f

f |), and g(E ) = [1 +
1
2

∑
ρ=↑,↓(|a↑,ρ (θ, E )|2 − |b↑,ρ (θ, E )|2)], β = 1

kBT . We use
the parameter � to represents the energy broadening in the
calculation [39]. Here, we mainly study the Andreev conduc-
tance of the two-dimensional model in the x-z plane, while for
the three-dimensional model, the Andreev conductance needs
to be integrated in the x-y plane [41].

III. THE CONDUCTANCE AND SURFACE STATE
OF ABM STATE

First, we calculated the normalized Andreev conductance
between nonmagnetic leads and spin triplet superconducting
states at different incident planes, denoted by φ. Here, we
mainly calculate the Andreev conductance of two common
spin-triplet superconductors: the ABM state and the Balian-
Werthamer (BW) state [42]. We find that the ABM state can
explain the point-contact experiment of Bi/Ni bilayers, but the
BW state cannot. For detailed data on the comparison of the
two superconducting states, see Appendix A.

In fact, other experimental work has proposed that there
may be d-wave superconducting states [43] in Bi/Ni bilayers.
The possible existence of a gap-filling mechanism [44] in
Bi/Ni bilayer films is also discussed theoretically, which can
reasonably explain the experiment. However, in this paper, we
mainly study the possible spin-triplet superconducting states
in Bi/Ni bilayers based on the point-contact experiments of
ferromagnetic leads.

Then, we use the ABM state to fit the experimental results
of Bi/Ni bilayer films. Detailed information about the experi-
mental fitting procedure is detailed in Appendix B. Using the
parameters obtained from the fitting point-contact experiment,
we further calculate the Andreev conductance of ABM-state
superconductors. In the subsequent analysis, we mainly set φ

equal to 0◦ and 60◦. This is because the result of 60◦ is close
to the experimental result of the c plane, and the conductance
peak is also obvious.

As shown in Figs. 2(a) and 2(b), the conductance near the
zero energy changed from a valley to a peak as φ increased.
As φ is zero, the conductivity near the zero energy was valley
shaped. Increasing φ gradually increases the conductance at
zero energy and the conductance peak. Details of the transi-
tion of conductance from valley to peak are in Appendix C.

Comparing the density of states localized on the surface
(method of calculating LODS is in Appendix D) with the en-
ergy band of the ABM state, we observe that the conductivity
at zero energy is contributed by the projection of the surface
state between the two Weyl points on the incident plane at
the zero energy. First, as the local density of states on the
surface was consistent with the conductance spectrum, the
conductance could be attributed to the strength of the density
of states. At φ = 0◦ [Fig. 2(c)], the density of states exhibited
a funnel-like shape, forming a valley of conductance. As

FIG. 2. Conductance and density of states for different incidence
planes. Conductance of (a) φ = 0◦ and 60◦, (b) φ = 30◦ and 90◦;
density of states for (c) φ = 0◦, (d) φ = 30◦, (e) φ = 60◦, and (f)
φ = 90◦. Here, θ is the incident angle, φ is represents the angle
between the z axis of the p-wave and the normal to the interface.
As φ increases, the conductance near zero energy increases, and the
surface state near the zero energy becomes increasingly obvious. The
interfacial parameter was obtained by data fitting to the experimental
data of the c face of FM lead.

φ increased [Figs. 2(d)–2(f)], the density of states became
increasingly concentrated around the zero energy, leading
to a more pronounced peak in the conductance spectrum.
However, as shown in Fig. 1(b), the band structure of the
ABM state was similar to that of Weyl semimetals, with only
two Weyl points at zero energy. Previous work reported a
Fermi arc between the two Weyl points [45,46]. Comparing
the density of states with the band structure, we inferred that
the zero-energy state is the projection of the Fermi arc on the
incident plane.

Extending to the three-dimensional model, we find that
the normalized Andreev conductance is qualitatively consis-
tent with the two-dimensional model. Therefore, our con-
clusion can be extended to the three-dimensional model.
Conductance spectroscopy of the Andreev reflection between
ferromagnetic/nonmagnetic leads and the ABM state at dif-
ferent incident planes was consistent with the density of states
qualitatively. The interface barrier strength (Z), temperature
(T), and impurity multiple scattering (�) have influence on
the tunneling spectrum. When the interface barrier is stronger,
the transparency is lower, and the tunneling spectrum is closer
to LDOS. In addition, with the decrease of temperature and
multiple scattering, the tunneling spectrum is also closer to
LDOS.
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FIG. 3. Conductance with different �s at (a) φ = 0◦ and (b) φ = 60◦; density of states for different �s and (c) �s = 0.5�p, (e) �s = �p,
and (g) �s = 2�p at θ = 0◦, and (d) �s = 0.5�p, (f) �s = �p, and (h) �s = 2�p at θ = 60◦. At φ is 0, increasing the S-wave component
widened and deepened the valley in the conductance profile by widening the gap in density of states. At φ = 60◦ and when the S-wave
component is lower than the p-wave component, the surface state and conductance at zero energy gradually disappear with increase of S-wave
component. At φ = 60◦ and when the S-wave component exceeds the p-wave component and is further increased, a density of states energy
gap forms near the zero energy and the conductance valley widens.

IV. MIXTURE OF ABM STATE AND S-WAVE STATE

Different pairing states can mix in the Bi/Ni bilayer due
to the inversion symmetry breaking [30,31]. Here, we mainly
study one of the possible mixed forms: the mixing of p-wave
superconducting states and S-wave superconducting states.
Next, we studied the Andreev spectroscopy and topological
properties of unconventional superconductors composed of
the ABM state and S-wave superconductors.

The Andreev conductance was qualitatively consistent with
that of the pure ABM state when �s < �p [Figs. 3(a) and
3(b)], but with that of the pure S-wave state when �s � �p.
As the conductance at zero energy is mainly contributed by
the zero-energy surface state, we next investigated the effect
of the S-wave component on the surface state.

As the S-wave component increased, the surface and bulk
states near the zero energy gradually weakened and eventu-
ally disappeared [Figs. 3(c)–3(h)]. When φ = 0o, the S-wave
component split the funnel-like formation of the previous
density of states into two parts: a left and a right part. As the
S-wave component increased, the split widened and the two
nodes at zero energy gradually moved apart and disappeared,
thereby reducing the zero-energy conductance. The splitting
increased the density of states in the overlapping parts of
the two nodes. Increasing the S-wave component also shifted
the higher density region from zero energy, increasing the
conductance valley width. However, at φ = 60◦, as the S-
wave component increased from 0 to the p-wave component,
the surface state weakened and disappeared. When the S-
wave component exceeded the p-wave component, it split
the density of states into two parts. Further increases of the
S-wave component gradually increased the distance between
the two parts and diminished the conductance at zero energy,
widening the conductance valley. Therefore, when the S-
wave component is larger than the p-wave component, the

topological surface state disappears. From the perspective of
topological phase transition, this is consistent with previous
studies [47,48].

Extending to the three-dimensional model, we find that the
zero-energy surface state will split gradually with the gradual
rotation of the two-dimensional tunnel junction from the x-
z plane to the y-z plane. Therefore, the conductance of the
three-dimensional model will gradually become a more and
more obvious bimodal structure with the increase of the S-
wave component, and finally tend to the shape of the pure S-
wave case. In addition, when the S-wave component is very
small, the zero-energy conductance peak can still appear due
to the impurities’ multiple scattering and the influence of the
temperature.

In summary, the S-wave component reduced the surface
state and the conductance at zero energy. Using the two-
dimensional tunnel junction model, we found that when the
S-wave component was less than the p-wave component, the
conductance profile resembled that of the pure ABM state.
Using the three-dimensional model, we find that when the
S-wave component is very small, the normalized conductance
of the mixing superconducting state and the pure ABM state is
qualitatively consistent and can also match the point-contact
experiment [24]. The energy band retained it’s zero-energy
nodes in this case. However, when the S-wave component
exceeded the p-wave component, the conductance profile
formed a shape of the valley and the energy band formed
a globe gap. Therefore, when the S-wave component was
small, the conductance was qualitatively consistent with the
point-contact results [24] but the energy band failed to explain
the time-domain THz spectroscopy [29]. In contrast, when the
S-wave component was large, the energy band was consistent
with the time-domain THz spectroscopy [29] but the conduc-
tance failed to explain the point-contact results [24].
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FIG. 4. Comparison of the Andreev conductance between ABM state (a) and BW state (b). At different incident planes, the Andreev
conductance of ABM state shows the structure of peak and valley, respectively. Therefore, the ABM state can be used to explain the point-
contact experimental results of Bi/Ni bilayers. However, the conductance of BW state always shows a peak structure at different incident
planes, so it cannot explain the point-contact experimental results of Bi/Ni bilayers.

V. SUMMARY

We studied the Andreev reflection conductance between
ferromagnetic lead and two types of superconductors (a pure
ABM state superconductor and a mixed state ABM state and
S-wave state) by the BTK method. First, we found that the
conductance of the pure ABM state is consistent with that
of point-contact experiments [24]. Second, the result of the
mixed state with a small S-wave component was qualita-
tively consistent with that of the pure ABM state and the
point-contact experiments [24]. However,when the S-wave
component was large, the conductance deviated from the
point results [24] because the gap opened and widened in the
energy band. We also calculated the local density of states
and attributed the conductance peak at zero energy to the
surface state of the ABM-state component. Our work provides
some complementary explanations for the results of recent
experiments.
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APPENDIX A: COMPARISON OF THE ANDREEV
CONDUCTANCE BETWEEN ABM STATE AND BW STATE

The common spin-triplet superconducting states include
the ABM state and BW state. To better understand the results
of the point-contact experiment, we compare the Andreev
conductance of the two superconducting states at different
incident planes.

As shown in Fig. 4, when the incident plane is different, the
Andreev conductance of ABM state superconductors appears
in the form of peak and valley respectively, which is similar
to the point contact experimental results of Bi/Ni bilayer
films. Therefore, the ABM state can be used to explain the
point contact experiment of Bi/Ni bilayer films. However,
due to the isotropic pairing potential in the BW state, the
normalized conductance does not change when the incident
surface is different. Therefore, the BW state can not be used
to explain the point contact experimental results of Bi/Ni
bilayers.

Comparing the Andreev conductance of the two spin triplet
superconducting states, we think that there may be ABM state
components in the Bi/Ni bilayers.

APPENDIX B: FITTING OF THE EXPERIMENTAL
RESULTS

Using our model developed in Section II we fited the
experimentally obtained normalized Andreev reflection con-
ductances in FM and NM lead (see Fig. 5). The fittings were
obtained different incident surfaces with different interface
parameters and different (φ).

For the results of the NM lead, the parameters were set
as follows: �0 = 2.2, Z = 2.2, � = 0.2, T = 1.43 K, φ =
0.25π in the a plane; �0 = 2.2, Z = 0.64, � = 0.33, T =
1.43 K, φ = 0.0π in the b plane; and �0 = 2.2, Z = 1.8, � =
0.2, T = 1.43 K, φ = 0.3π in the c plane. For the results
of the FM lead, the parameters were set to �0 = 2.0, Z =
1.8, � = 0.0.05, T = 1.43 K, φ = 0.3π in the a plane, �0 =
2.0, Z = 0.698, � = 0.6, T = 1.43 K, φ = 0.0π in the b
plane, and �0 = 2.0, Z = 2.6, � = 0.28, T = 1.43 K, φ =
0.21π in the c plane.
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FIG. 5. Fitting of the experimental conductance-energy profiles in different types of lead: FM(right) and NM(left). Here, the order
parameter in the pure ABM state is calculated by Eq (2).

APPENDIX C: THE CONDUCTANCE WITH DIFFERENT
INCIDENCE PLANE

To further study the transition of conductance from valley
to peak, we calculate the Andreev conductance when φ in-
creases gradually from 0◦. The results are plotted in Fig. 6. We
find that with the slow increase of φ, the conductance changes
slowly from valley to peak shape.

APPENDIX D: SURFACE GREEN’S FUNCTION

Here, we briefly introduce the method of calculating the
surface Green’s function [49]. First, we discretize the Hamil-
tonian along the z direction and label each layer with its cor-

FIG. 6. The variation of conductance with the incident plane.
With the change of φ, the conductance gradually changes from valley
to peak.

responding z value (layer i = 1 − n). Then, the Hamiltonian
is given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

H0l,0l H0l,1l

H1l,0l H0l,0l

. . .
. . .

. . . H0l,0l H0l,1l

H1l,0l H0l,0l

⎞
⎟⎟⎟⎟⎟⎟⎠

, (D1)

where Hil,i′l denotes the coupling between the i and i’ layers.
After discretizing the Hamiltonian, the surface Green’s func-
tion is obtained by the following procedure: First, define the
parameters:

α0 = (ω − H0l,0l )
−1H1l,0l , β0 = (ω − H0l,0l )

−1H0l,1l .

(D2)
Second, iterate the expressions until αi → 0, βi → 0:

αi = (1 − αi−1βi−1 − βi−1αi−1)−1α2
i−1,

βi = (1 − αi−1βi−1 − βi−1αi−1)−1β2
i−1. (D3)

Third, define T = α0 + β0α1 + · · · + β0β1 · · · βn−1αn. The
surface Green’s function is :g00 = {ω − H0l,0l − H0l,1l T }−1.
From this function, we obtain the density of states on the
superconductor surface.

APPENDIX E: INFLUENCE OF S-WAVE COMPONENTS ON
ENERGY BAND, CONDUCTANCE, AND SURFACE STATES

We first calculated the density of states for different S-
wave components and incident planes. The S-wave exerted
a huge influence on the energy band and density of states,
splitting both the original energy band [Figs. 7(a)–7(d)] and
the original hourglass profile [Figs. 7(e)–7(g)] into two parts.

As shown in Figs. 7(i)–7(k), 7(m)–7(o), and 7(q)–7(s),
the S-wave component also decreased the surface density of
states. At �s = �p, the surface states disappeared completely.
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FIG. 7. Influence of �s on the band structure and local density of states for different incident faces between the FM lead and
superconductor. (a)–(d) show the energy band in pure ABM states, �s = 0.5�p, �s = �p, and �s = 2�p, respectively; (e)–(h), (i)–(l),
(m)–(p), and (q)–(t) show the local density of states when φ = 0◦, φ = 30◦, φ = 60◦, and φ = 90◦ in those superconductivity states. The
�s decreases the conductance near zero energy and suppresses the surface state. When �s � �p and φ > 0, the surface state and conductance
peak vanished.

Moreover, the S-wave component created a growing gap
in both the energy band and density of states for different
incident planes [Figs. 7(c) and 7(d), 7(k) and 7(l), 7(o) and
7(p), 7(s) and 7(t)].

Second, we calculated the influence of the S-wave compo-
nent on the conductance for different incident planes between
the FM lead and superconductor. As shown in Figs. 8(e)–8(h),
the S-wave component decreased the conductance near zero
energy. When �s < �p, the conductance profile resembled

that of Andreev conductance in the pure ABM state; when
�s � �p, it was similar to the Andreev conductance in a pure
S-wave superconductor.

The influence of the S-wave component on the conductance
spectrum for different incident planes is shown in Figs. 8(e)–
8(x). The conductance spectrum resembled that of the local
density of states. When �s < �p and φ was nonzero, the
S-wave component decreased the conductance near the zero
energy by decreasing the surface density of states near zero
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FIG. 8. Influence of �s on the conductance and its spectrum for different incident planes between the FM lead and superconductor.
(a)–(d) show the schematic diagram of energy band in pure ABM states, �s = 0.5�p, �s = �p, and �s = 2�p, respectively; (e)–(h) show
the conductance in those superconductivity states; (i)–(l), (m)–(p), (q)–(t), and (u)–(x) show the conductance spectrum when φ = 0◦, φ = 30◦,
φ = 60◦, and φ = 90◦ in those superconductivity states. The �s decreases the conductance near the zero-energy region. When �s � �p, the
conductance peak vanishes.
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energy. However, when �s < �p and φ = 0, it decreased the
conductance near zero energy by splitting the density of states.
Finally, when �s � �p, it decreased the conductance far from
zero energy by expanding the gap between the high density of
states regions.

Next, we calculated the influence of the S-wave component
on the conductance for different incident planes between NM
leads and superconductors. The conductance and its spectrum
were different in magnitude but qualitatively consistent with
those of FM leads in the same situations.
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