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We discuss the influence of momentum-dependent correlations on the superconducting gap structure in
iron-based superconductors. Within the weak coupling approach including self-energy effects at the one-loop
spin-fluctuation level, we construct a dimensionless pairing strength functional which includes the effects of
quasiparticle renormalization. The stationary solution of this equation determines the gap function at Tc. The
resulting equations represent the simplest generalization of spin fluctuation pairing theory to include the effects
of an anisotropic quasiparticle weight. We obtain good agreement with experimentally observed anisotropic
gap structures in LiFeAs, indicating that the inclusion of quasiparticle renormalization effects in the existing
weak-coupling theories can account for the observed anomalies in the gap structure of Fe-based superconductors.
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I. INTRODUCTION

The role of electronic correlation effects on the properties
of iron-based superconductors (FeSC) has been explored from
a variety of different theoretical perspectives [1–6]. With
the five d orbitals of Fe actively participating in low-energy
processes, the possibility of orbital selective physics implies
that weak correlations may exist in the states of electrons
of one orbital type while strong correlations may occur in
others. This may lead to substantial differences in quasipar-
ticle weights, interactions, magnetism, and orbital ordering;
in addition, Cooper pairing itself can become orbital selec-
tive [7–10]. This many-body mechanism augments the gap
anisotropy that is already present in the conventional spin-
fluctuation pairing model, proposed as the dominant source of
Cooper pairing in FeSCs [11–13]. The usual argument leading
to s± pairing comes from interband pair scattering between
electron and hole pockets facilitated by enhanced nesting
[14]. Since the coherent d-orbital weight varies around any
given Fermi surface sheet, gap anisotropy is present [15]. To
the extent certain d orbitals are more incoherent than others
due to correlations, pairing in these channels may be further
suppressed, leading generally to enhanced gap anisotropy
[16].

The degree of electronic correlation is known to vary
considerably across the various families of Fe-based super-
conductors. Local-density approximation (LDA) + dynamical
mean-field theory (DMFT) calculations have suggested that
the 111 are considerably more correlated than, e.g., the well-
studied 122 materials and that stronger interactions lead to a
shrinkage of the inner hole pockets but the size and shape of
the electron pockets [4,17,18] is maintained. Indeed, LiFeAs
is one of several FeSCs known to have a Fermi surface
which is quite different from what is predicted from den-

sity functional theory (DFT). Angle-resolved photoemission
spectroscopy (ARPES) measurements [19,20] show that the
� centered dxz/dyz hole pockets are considerably smaller than
DFT predictions, and inclusion of local correlations within
a DMFT scheme does not seem to solve this discrepancy.
Recently, the Fermi surface was shown to be significantly
renormalized via nonlocal correlations within a two-particle
self-consistent approach [21], resembling ARPES findings.

Previous theoretical attempts [9,22–25] to understand the
ARPES-determined gap structure [19,20,26,27] were based
on a phenomenological tight-binding band structure consis-
tent with ARPES data [23], i.e., describing the correct spectral
positions of the bands. Despite some success in explaining
some features of the gap structure, not all were reproduced
properly; in particular, the large gaps on the inner hole pockets
were not recovered in the conventional spin fluctuation treat-
ments. Subsequently, Ref. [24] claimed a good overall fit to
experiment by including vertex corrections.

In Ref. [16], a phenomenological approach assuming or-
bital selective renormalization of quasiparticle weights, pri-
marily in the dxy channel, was used to test the proposition
that the discrepancies in calculated gap structures arose from
self-energy effects neglected in conventional spin fluctuation
theory. The results, applied to LiFeAs, FeSe crystals, and
FeSe monolayers showed good agreement with measured
magnitudes and anisotropies of gaps from ARPES [20] and
Bogoliubov quasiparticle interference (BQPI) experiments
[26], and yielded quasiparticle weights qualitatively consis-
tent with LDA+DMFT and other normal state studies. While
this approach lacked a microscopic framework within which
to calculate the quasiparticle weights, it showed that quasipar-
ticle renormalization effects were important.

These effects have previously been treated within the fluc-
tuation exchange approximation (FLEX) [28–30] but here
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we explore a multiorbital random-phase approximation (RPA)
which is more simply related to the results of the phenomeno-
logical treatment [16]. The approach we discuss in here can
be considered as a Fermi surface restricted one-loop FLEX
calculation. As such, it does not involve any ad-hoc restric-
tions and is numerically much less expensive. In our approach,
the spin and charge fluctuations are treated within the RPA
and their effect on both the paring and the single particle
self-energy channels are approximated by the zero frequency
RPA interactions on the Fermi surface.

In Sec. II we introduce the five-orbital tight-binding model
that we will study along with the multiorbital RPA effective
interactions. Following this, the eigenvalue equation for the
pairfield strength and the gap function along with the equation
for the single particle renormalization factor are discussed. In
Sec. III we demonstrate the results of solving these equations
for LiFeAs, and discuss this in comparison to experiments
(Sec. III A). In Sec. III B we analyze our results in terms of the
quasiparticle renormalization weights and the pairing vertex,
and in the following Sec. III C we discuss the tendency of iron-
based systems towards s± pairing symmetry due to electronic
correlations. Finally, we note the improvement obtained in
predicting the pairing structure when the single particle self-
energy is included. In the Appendix we give the derivation of
the dimensionless pairing strength functional and the resulting
stationary eigenvalue equation for the pairing strength and gap
function.

II. MODEL

We start with a five-orbital tight-binding Hamiltonian H0

and include local interactions via Hubbard-Hund terms:

H = H0 + HI

=
∑
i jσ

∑
qt

(
t tq
i j − μ0δi jδtq

)
c†itσ c jqσ

+U
∑

it

nit↑nit↓ + U ′ ∑
i,t<q

∑
σσ ′

nitσ niqσ ′

+ J
∑
i,t<q

∑
σσ ′

c†itσ c†iqσ ′citσ ′ciqσ

+ J ′ ∑
i,t �=q

c†it↑c†iq↓cit↓ciq↑, (1)

where the interaction parameters U,U ′, J, J ′ are given in
the notation of Kuroki et al. [31]. We consider cases which
obey spin-rotation invariance (SRI) through the relations U ′ =
U − 2J and J = J ′. The kinetic energy H0 includes the chem-
ical potential μ0 and is described by a tight-binding model
spanned by five Fe d orbitals [dxy, dx2−y2 , dxz, dyz, d3z2−r2 ].
Here q and t are the orbital indices and i, j is the Fe-atom
site. The spectral representation of the noninteracting Green’s
function is

G0
tq(k, ωm) =

∑
μ

at
μ(k)aq∗

μ (k)

iωm − Eμ(k)
, (2)

where the matrix elements aq
μ(k) = 〈q|μk〉 are spectral

weights of the Bloch state |μk〉 with band index μ and wave
vector k in the orbital basis and ωm = (2m + 1)πkBT are the

fermionic Matsubara frequencies for a given temperature T .
We will adopt Latin symbols to denote orbital indices and
Greek ones to denote band indices, throughout the rest of the
discussion.

The orbitally resolved noninteracting susceptibility is

χ0
pqst (q,�m) = − 1

Nkβ

∑
kωm

G0
tq(k, ωm)G0

ps(k + q, ωm + �m)

= − 1

Nk

∑
kμν

at
μ(k)aq∗

μ (k)ap
ν (k + q)as∗

ν (k + q)

i�m + Eμ(k) − Eν (k + q)

× { f (Eμ[k)] − f [Eν (k + q)]}, (3)

where Nk is the number of Fe lattice sites, β = 1/kBT is
the inverse temperature, and �m = 2mπkBT is the bosonic
Matsubara frequency. Within the RPA, the charge-fluctuation
and spin-fluctuation parts of the RPA susceptibility are given
by

χC (q,�m) = [1 + χ0(q,�m)UC]−1χ0(q,�m),

χS (q,�m) = [1 − χ0(q,�m)U S]−1χ0(q,�m). (4)

The interaction matrices UC and U S in orbital space have the
following elements:

UC
pppp = U, U S

pppp = U,

UC
ppss = 2U ′ − J, U S

ppss = J,

UC
pssp = J ′, U S

pssp = J ′,
UC

psps = 2J − U ′, U S
psps = U ′.

(5)

Defining U SC = U S + UC , the particle-hole (N) and the sin-
glet pairing particle-particle (A) interactions are

[Vpqst (q,�m)]N =
[

3

2
U SχS (q,�m)U S + 3U S

2

+ 1

2
UCχC (q,�m)UC − UC

2

− 1

4
U SCχ0(q,�m)U SC

]
pqst

,

[Vpqst (q,�m)]A =
[

3

2
U SχS (q,�m)U S + U S

2

− 1

2
UCχC (q,�m)UC + UC

2

]
pqst

. (6)

In the following we assume that the dynamics of the inter-
action is cut off on a spin-fluctuation energy scale and we
will restrict the treatment of the problem to Bloch states
on the Fermi surface. We have assumed that the leading
pairing instability occurs in the even-frequency channel. Odd-
frequency pairing, if it occurs, is expected to be associated
with a reduced critical temperature [32]. Assuming that no
bands cross each other in the vicinity of the Fermi level (i.e.,
�m = � = 0 eV), each Fermi momentum point corresponds
to a unique band quantum number, i.e., k ∈ μ and k′ ∈ ν. The
corresponding band representation for the interaction vertices,
describing scattering of particles between (kμ, k′

ν ) states at the
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FIG. 1. (a) Fermi surface at kz = π plane for LiFeAs represented by its corresponding dominant orbital character as indicated in the color
legend. (b) Orbital weight along the β1 electron pocket plotted as a function of angle φ shown in (a). (c) Diagonal orbital components of the
static particle-particle effective interaction [Vpppp(q, 0)]A along high-symmetry path Z-R-X ′-Z-Y ′ with U and J as indicated. Plots as a function
of the angle φ around the Fermi pockets are done with the angle measured counterclockwise from the kx axis.

Fermi level, is

[V (kμ, k′
ν, 0)]N = Re

∑
pqst

{
aq∗

μ (kμ)as∗
ν (k′

ν )

× [Vpqst (kμ − k′
ν, 0)]N at

μ(kμ)ap
ν (k′

ν )
}
,

[V (kμ, k′
ν, 0)]A = Re

∑
pqst

{
ap∗

μ (kμ)at∗
μ (−kμ)

× [
Vpqst (kμ − k′

ν, 0)
]

Aaq
ν (k′

ν )as
ν (−k′

ν )
}
.

(7)

The symmetrized singlet pairing vertex is then given by

[V (kμ, k′
ν, 0)]A = 1

2 {[V (kμ, k′
ν, 0)]A + [V (−kμ, k′

ν, 0)]A}.
(8)

As discussed in the Appendix A, the stationary solution of the
pairing strength functional [Eq. (A22)] is determined by the
eigenvalue equation:

λg(kμ) = − 1

(2π )d

∮
k′

ν∈FS

[V (kμ, k′
ν, 0)]A

Z (k′
ν )

dd−1k′
ν

|vF (k′
ν )|g(k′

ν ),

(9)

with

Z (kμ) = 1 + 1

(2π )d

∮
k′

ν∈FS
[V (kμ, k′

ν, 0)]N
dd−1k′

ν

|vF (k′
ν )| . (10)

Here vF (k′
ν ) is the Fermi velocity of band ν and the integration

is over its corresponding Fermi surface. The eigenfunction
g(kμ) then determines the symmetry and structure of the
leading pairing gap close to Tc. Traditional spin-fluctuation
pairing calculation sets Z (kμ) to unity. Instead, we use the
solution for Z (kμ) from Eq. (10) in Eq. (9). Solving Eq. (9)
for the eigenfunction g(kμ) corresponding to the leading
eigenvalue λ gives the modified gap function (kμ) = g(kμ )

Z (kμ ) .
Note that we adopt here the notation Z (k) consistent with
Eliashberg’s convention, such that Z 
 1 corresponds to a
highly incoherent quasiparticle. This is in contrast to the
notation adopted in much of the orbital selective literature,

where Z rather than Z−1 is the quasiparticle weight (see, e.g.,
Sprau et al. [10]).

In the results presented here, we perform 2D calculations
with a k mesh on the order of 100 × 100 in the unfolded
Brillouin zone (BZ), and ≈500 total number of Fermi surface
points. We set kBT = 0.01 eV for the rest of this paper.

III. RESULTS

To study the effects of momentum-dependent correlations
on the pairing structure, we have chosen the electronic dis-
persion relevant to LiFeAs as in Ref. [23]. Certain Fermi
sheets in LiFeAs are known to have significant kz dispersion.
However, to compare with experimental data of measured
gap magnitudes, we only consider the kz = π plane for our
analysis, where all the Z = (0, 0, π )-centered hole pockets
are present. We stress that the 3D properties of the dispersion
do not affect the conclusions of our results, since χ (q, 0) is
nearly independent of qz [23].

As shown in Fig. 1(a), for the undoped material with a
filling of n = 6 in the 1-Fe BZ, the Fermi surfaces include two
small hole pockets α1 and α2 at the Z point with dominant
dxz/dyz orbital characters, a large hole pocket γ at the R =
(π, π, π ) point of predominantly dxy orbital character, and
two electron pockets β1 (β2) situated at X ′ = (π, 0, π ) [Y ′ =
(0, π, π )] points of dyz/dxy (dxz/dxy) orbital characters. Since
the Y ′-centered pocket is symmetry related to the X ′ pocket in
this tetragonal system, it will not be discussed separately. In
Fig. 1(b) we show the corresponding orbital weight |at

μ(k)|2
for the β1 pocket as a function of the angle φ. We will relate
this to Z (kμ) and the modulation in gap amplitude in the
following analysis of our results.

Now we will present our solutions to Eqs. (9) and (10) for
Z (kμ) and the leading pairing eigenvectors (gap functions).
We have evaluated the results for two sets of Hubbard-Hund
parameters (U = 0.7 eV, J = 0.26 eV) and (U = 0.79 eV,
J = 0.2 eV). These parameters are close to the standard
parameters used in the literature employing the RPA approach
to the pairing vertex.
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FIG. 2. Z (φ) along Fermi pockets α2, β1, and γ evaluated from
the static particle-hole effective interaction defined in Eq. (10).

First, we will discuss the results for U = 0.7 eV, J =
0.26 eV and compare with experimental data. In Fig. 1(c) the
diagonal components of the static particle-particle effective
interaction [Vpppp(q, 0)]A evaluated from Eq. (6) is plotted
along the high-symmetry path Z-R-X ′-Z-Y ′. The RPA sus-
ceptibility shows an enhanced incommensurate peak around
q = π (1, 0.15) (similar to the findings in Ref. [23]). The dxy

orbital channel is the largest in magnitude as a consequence
of favorable nesting condition between dxy-dominated parts
of the electron pocket at X ′/Y ′ and the hole pocket at R.
The phase space for scattering of quasiparticles between the
dxz/dyz-dominated parts of the Fermi surfaces is restricted
due to small pocket sizes of the α hole pockets and their
unfavorable nesting conditions in connection to the electron
pockets. Thus, the magnitude of the dxz/dyz orbital channel for
[Vpppp(q, 0)]A is much lower than the dxy channel. Both the
static particle-particle effective interaction [Vpqst (q, 0)]A and
particle-hole effective interaction [Vpqst (q, 0)]N is dominated

by the RPA spin-susceptibility contribution, and hence their
underlying momentum structure is similar.

In Fig. 2 we plot Z (kμ) evaluated from Eq. (10) as a
function of the angle φ around the α2, β1, and γ Fermi
pockets. Evidently, Z (φ) around the β1 pocket follows the
orbital content of the dxy orbital [compare to Fig. 1(b) for
an angular plot of the orbital weight around the β1 pocket].
This is expected from the current Fermi surface topology
depending on two factors: (1) the interaction vertices are
dominated by intraorbital processes, and (2) the dxy orbital
with large weight at certain positions on the Fermi surface can
take advantage of the strong peak in the susceptibility for scat-
tering vectors kμ − k′

ν ≈ π (1, 0.15) roughly connecting kμ

and k′
ν across Fermi pockets. For the β1 pocket, this happens

around [0◦, 180◦]. For the γ pocket, maxima in Z (φ) are seen
at [0◦, 90◦, 180◦, 270◦]. Due to the lower magnitude of the
[Vpppp(q, 0)]N vertex for the dxz/dyz orbitals, the magnitude of
Z (φ) around the α2 pocket is smaller than around the β1 and
γ pockets.

A. Gap structure

We show the results for the leading gap structure in
Fig. 3(a) obtained from traditional spin-fluctuation calcula-
tion with Z (k′

ν ) set to unity in Eq. (9). Figure 3(b) is the
most important result of this work, displaying the modified
gap structure obtained by inclusion of momentum-dependent
correlation effects Z (kμ) �= 1 via the linearized Eliashberg
equations (9) and (10). For comparison of our calculations
to experimental results, we have plotted C4-symmetrized
ARPES data for the gap magnitude taken from Ref. [20] and
BQPI data from Ref. [26] for the three Fermi pockets α2, β1, γ
in Fig. 3(c). ARPES sees only one band crossing at the Fermi
level at Z on the kz = π plane with a large gap of the order
of 6 meV. However, our current DFT-derived tight-binding
structure always produces two α pockets. Hence, we will
consider it to be roughly appropriate to speak of an average
gap on the α pockets assigned to α2. In both Figs. 3(a) and
3(b) we find an s±-wave state with highly anisotropic but full

FIG. 3. Results for LiFeAs: (a) Angular plot of the s-wave gap function evaluated from traditional spin-fluctuation theory, around the
Z-centered outer hole pocket α2, X ′-centered electron pocket β1, and R-centered hole pocket γ . (b) The modified gap function obtained
from the linearized Eliashberg equations (9) and (10) with quasiparticle renormalization Z (k) included. (c) Experimental results: Measured
magnitudes of the gap from an ARPES experiment [20], symmetrized and displayed as diamonds and those from Bogoliubov QPI experiment
[26] displayed as crosses. All calculations are done for U and J as indicated.
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FIG. 4. Heat map plots of (a) the singlet pairing vertex [V (kμ, k′
ν, 0)]A matrix resulting in the gap function plotted in Fig. 3(a) from

the tight-binding model. (b) Matrix elements of the quantity [V (kμ, k′
ν, 0)]Adk′

ν/|vF (k′
ν )|. (c) Matrix elements of the quantity

[V (kμ, k′
ν, 0)]Adk′

ν/|vF (k′
ν )|/Z (k′

ν ). The value at any given point is proportional to the brightness of the color. The rows and the columns
of the tiles of (a)–(c) correspond to the Fermi points kμ and k′

ν arranged in ascending order of their corresponding polar angle φ = 0◦ to 360◦

around each Fermi sheet. Band indices μ and ν represent the Fermi sheets α1, α2 at the Z , γ at the R, β1 at the X ′, and β2 at the Y ′ point.
Unequal areas of the tiles are due to unequal number of Fermi points around each of the sheets.

gaps on the electron (negative gap) and hole (positive gap)
pockets.

With self-energy effects included, the gap functions un-
dergo a remarkable change [Fig. 3(b)] relative to the tradi-
tional spin-fluctuation calculation [Fig. 3(a)]. First, we find
a stronger tendency towards s± pairing symmetry, even for
small values of J . We will discuss this in further detail in
Sec. III C. Second, Z (kμ) induces a momentum-dependent
modulation of the gap function on various pockets. Most
importantly, in Fig. 3(b) we see that Z (kμ) enhances the mag-
nitude of the nearly isotropic gap on the small Z-centered hole
pocket α2. This brings the results of spin-fluctuation theory
much closer in line with experimental data, and corrects the
crucial discrepancy in the calculation of Wang et al. [23]
relative to experiment. Although the angular positions of the
gap maxima and minima on the γ pocket and the average gap
magnitude is in agreement with experiment, we do not obtain
a suppression of the anisotropy. We find weaker anisotropy of
the gap function on the β1 pocket and an average gap magni-
tude comparable to experiment. However, the theoretical gap
structure has two global maxima as opposed to four in the
experimental data, and these maxima are located at positions
where the experimental data has minima. In the next section
we will analyze the results for the gap structure in terms of
the quasiparticle renormalization factor Z (kμ) and the pairing
vertex.

B. Analysis of the gap structure in terms of quasiparticle
weights and the pairing vertex

We investigate the structure of the effective pair vertex
from its graphical representation in Figs. 4(a)–4(c). Each
block demarcated by white lines in the image represents a
matrix (kμ, k′

ν ) consisting of values corresponding to the
pairing vertex, with the Fermi points kμ and k′

ν arranged
in ascending order of their corresponding polar angle φ =
0◦ to 360◦ around each Fermi sheet (α1, α2, β1, β2, γ ). By
construction, as in Eq. (8), [V (kμ, k′

ν, 0)]A is a symmetric
matrix with respect to the interchange kμ ↔ k′

ν as seen in
Fig. 4(a). Figure 4(b) shows matrix elements of the quantity

[V (kμ, k′
ν, 0)]Adk′

ν/|vF (k′
ν )|. This is the matrix which is di-

agonalized in traditional spin-fluctuation theory to obtain the
leading eigenstate. It is not symmetric under the exchange
kμ ↔ k′

ν . Here dk′
ν is the length element of the Fermi sheet

at the k′
ν th Fermi point. The factor 1/|vF (k′

ν )| acts as a
momentum-dependent density of states for the corresponding
band ν at the Fermi level.

In the figures the brightest set of blocks are the ones
representing scattering processes among the pockets γ and
β1 (β2). It is visually prominent that the dominant scattering
processes occur for γ → β1 (β2). As discussed earlier, scatter-
ing between the dxy-dominated part of the Fermi pockets con-
tributes to the primary pairing interaction leading to supercon-
ductivity. Although angular positions of [0◦, 90◦, 180◦, 270◦]
on the γ pocket are favored to take advantage of the dxy-
dominated scattering to either β1 or β2 pocket, positions of
[45◦, 135◦, 225◦, 315◦] take advantage of simultaneous scat-
tering to β1 and β2 pockets. This renders gap maxima around
[45◦, 135◦, 225◦, 315◦] on the γ pocket [refer to Fig. 3(a)]. It
also explains why gap maxima occur at [0◦, 180◦] on the β1

pocket due to favorable dxy scattering to the γ pocket. Due
to restricted scattering between α2 and the other pockets, the
overall gap magnitude is very low on this pocket.

In Fig. 4(c) we show matrix elements of the quantity
[V (kμ, k′

ν, 0)]Adk′
ν/|vF (k′

ν )|/Z (k′
ν ). The leading eigenfunc-

tion g(kμ) of this matrix gives the modified gap function as
(kμ) = g(kμ )

Z (kμ ) . Compared to Fig. 4(b), the first noticeable
difference is the enhanced pairing (brighter spots) occurring
between the α2 pocket and the β1 (β2) pockets. It appears
as if the electronic correlations tend to lift the restriction on
the phase space of scattering between the non-nested dxz/dyz-
dominated parts of the α2 Fermi pocket. This is one of the
main effects of the momentum-dependent modulation of the
pairing vertex due to Z (k′

ν ). In addition, due to the smaller
magnitude of Z (kα2 ) (refer to Fig. 2), the final gap function
(kα2 ) undergoes further enhancement in its magnitude as
seen in Fig. 3(b). We also find that the gap maxima shifts
to [90◦, 270◦] on the β1 pocket due to enhanced pairing to
the α2 pocket via the dyz orbitals, combined with the effect of
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FIG. 5. Angular plots of the gap function evaluated around the
Fermi pockets as indicated by the color legend. The calculations
show a change in the gap symmetry of the leading eigenfunction
from (left) d wave (obtained from traditional spin-fluctuation theory
with Z (k) = 1) to (right) s wave [obtained from linearized Eliashberg
equations with Z (k) included]. Both calculations are done for U and
J as indicated.

momentum modulation by Z (kβ1 ) on the final gap function.
The γ and β1 (β2) pocket pairing is not affected substantially
due to the Z (k′

ν ) modulation. Hence, (kγ ) does not undergo
any drastic changes.

C. Discussion: Tendency towards s± pairing symmetry

A close competitor of the leading s± state is the d-wave
state, which has never been convincingly observed in any
experiment in the context of FeSCs. In the traditional spin-
fluctuation scenario, d and s wave solutions are nearly de-
generate in LiFeAs [23], a consequence of its poor (π, 0)
nesting properties [17,19,33]. In Fig. 5 we show the results for
calculations with Hubbard-Hund parameters (U = 0.79 eV,
J = 0.2 eV) [which is a higher U and a lower J value than
the previous calculation shown in Figs. 3(a) and 3(b)]. With
this particular set of U and J , the traditional spin-fluctuation
theory yields a d-wave state as the leading pairing state (left
panel in Fig. 5). We see a sign change in the gap structure
around each pocket (α2, β1, γ ) with a periodicity of π/2.
For this case, the second leading eigenchannel is the s-wave
channel and the ratio of their eigenvalues is λd/λs = 1.05. In
contrast, the inclusion of correlations effect via the linearized
Eliashberg equations (9) and (10) stabilizes the s-wave state
as the leading eigenfunction, and the d-wave state becomes
subleading. For this case we get λd/λs = 0.97. This points
towards quasiparticle renormalization effects playing an im-
portant role in stabilizing the s± pairing state in LiFeAs.

IV. CONCLUSIONS

We have performed 2D calculations of the superconduct-
ing pairing state for the LiFeAs compound, one of the few
materials where ARPES experiments have measured the gap
function on several different Fermi surface sheets, and found
significant gap anisotropy. As a test of the proposal that a
proper treatment of momentum dependent quasiparticle renor-
malization is the major missing ingredient in traditional spin
fluctuation calculations of gap structures in FeSC, we have
provided a simple approximate theoretical framework for the

calculation of the superconducting gap from spin fluctuation
theory, including momentum-dependent self-energy effects at
the single-particle level. We have shown that this approach
leads to robust s± pairing of the conventional type, and pro-
vides substantial improvement of the calculated gap structure
on all the Fermi pockets compared to experiments, especially
for the large gap on the inner hole pocket. We have calculated
the leading stationary solution of a spin-fluctuation pairing
strength functional which includes quasiparticle self-energy
effects, and discussed their role in stabilizing the s± eigen-
state. We conclude that the inclusion of self-energy effects
within the framework of existing weak-coupling theories is
an important ingredient to understand the observed super-
conducting pairing structures in LiFeAs, and other FeSCs,
which are dictated by the same underlying physical processes.
Vertex corrections as calculated in Ref. [24] do not appear
to be necessary to capture the basic renormalization of the
electronic structure and pairing vertex.
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APPENDIX: A SPIN-FLUCTUATION PAIRING STRENGTH
FUNCTIONAL INCLUDING

QUASIPARTICLE RENORMALIZATION

In the multiband Nambu basis given by

�αk =
(

cα,k↑
c†
α,−k↓

)
, �

†
αk = (c†α,k↑ , cα,−k↓)

the band index α ranges from 1 to 5 in FeSCs equal to
the number of Fe 3d orbitals. We express the noninteracting
Hamiltonian as H0 = ∑

αkεα (k)�†
αkτ3�αk where εα (k) is the

dispersion in the α band in the normal state of the system. The
Pauli matrices are denoted conventionally by τi, i = 0, 1, 2, 3.
The Hamiltonian H0, the full renormalized Green’s function
G(k, ωm), the noninteracting Green’s function G0(k, ωm),
and the self-energy �(k, ωm) are all 10 × 10 matrices in
this multiband basis for every set of (k, ωm). The noninter-
acting band Green’s function Gα0(k, ωm) = [iωm − εα (k)]−1

gives the full matrix as G0(k, ωm) = [iωmτ0 − εα (k)τ3]−1.
The particle-hole and the particle-particle Green’s function

174509-6
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are defined, respectively, as

Gα (k, ωm) = −
∫ β

0
dτeiωmτ 〈Tτ cα,kσ (τ )c†

α,kσ
(0)〉,

Fα (k, ωm) =
∫ β

0
dτeiωmτ 〈Tτ cα,k↑(τ )cα,−k↓(0)〉,

(A1)

and the corresponding full Green’s function:

G(k, ωm) =
(

Gα (k, ωm) Fα (k, ωm)

F ∗
α (k, ωm) −Gα (−k,−ωm)

)
.

The full self-energy is

�(k, ωm) =
(

�α (k, ωm) �α (k, ωm)

�∗
α (k, ωm) −�α (−k,−ωm)

)
, (A2)

where the particle-hole and particle-particle components are
given by

�α (k, ωm) = 1

βNk′

∑
n,β,k′

VαβN (k − k′, ωm − ωn)Gβ (k′, ωn),

�α (k, ωm) = 1

βNk′

∑
n,β,k′

VαβA(k − k′, ωm − ωn)Fβ (k′, ωn).

(A3)

The particle-hole interaction between band α and β is denoted
by VαβN (k − k′, ωm − ωn), whereas the particle-particle inter-
action is denoted by VαβA(k − k′, ωm − ωn). From Dyson’s
equation we have

G−1(k, ωm) = G−1
0 (k, ωm) − �(k, ωm). (A4)

Using the Pauli matrices, � can be written as

�(k, ωm) = iωm[1 − Zα (k)]τ0 + Xα (k, ωm)τ3

+�α (k, ωm)τ1 + �α (k, ωm)τ2, (A5)

with yet unknown and independent functions
Zα (k), Xα (k, ωm),�α (k, ωm),�α (k, ωm). From Dyson’s
Eq. (A4) and the Pauli matrix identity (a0τ0 + �a.�τ )(a0τ0 −
�a.�τ ) = (a2

0 − �a2)τ0, one finds

G(k, ωm) = {iωmZα (k)τ0 + [εα (k) + Xα (k, ωm)]τ3

+�α (k, ωm)τ1 + �α (k, ωm)τ2}/Dα (k, ωm),

(A6)

with Dα (k, ωm) = detG−1(k, ωm) = [iωmZα (k)]2 − [εα (k) +
Xα (k, ωm)]2 − �α (k, ωm)2 − �α (k, ωm)2. Using Eqs. (A3)
and (A5) we obtain the following self-consistent equations for
the four unknown functions:

iωm[1 − Zα (k)] = 1

βNk′

∑
n,β,k′

VαβN (k − k′, ωm − ωn)

× iωnZβ (k′)
Dβ (k′, ωn)

,

Xα (k, ωm) = 1

βNk′

∑
n,β,k′

VαβN (k − k′, ωm − ωn)

× εβ (k′) + Xβ (k′, ωn)

Dβ (k′, ωn)
,

�α (k, ωm) = 1

βNk′

∑
n,β,k′

VαβA(k − k′, ωm − ωn)

× �β (k′, ωn)

Dβ (k′, ωn)
,

�α (k, ωm) = 1

βNk′

∑
n,β,k′

VαβA(k − k′, ωm − ωn)

× �β (k′, ωn)

Dβ (k′, ωn)
. (A7)

With the modified dispersion given by the poles of the Green’s
function, we define

Eα (k, ωn) =
√

[εα (k) + Xα (k, ωn)]2

Zα (k)2
+ �α (k, ωn)2 + �α (k, ωn)2

Zα (k)2
. (A8)

The normal state corresponds to a solution � = � = 0. Z
is the quasiparticle renormalization factor, and X describes
shifts in the electron energies. The superconducting state is
characterized by a nonzero � or �. From Eq. (A8) the gap
function given by

α (k, ωn) = �α (k, ωn) − i�α (k, ωn)

Zα (k)
(A9)

describes the energy gap in the quasiparticle spectrum.
�(k, ωn) and �(k, ωn) obey the same equations and are
expected to have the same functional form up to a common
phase factor. This phase factor becomes important in the
description of Josephson junctions, but is irrelevant for the
thermodynamic properties of a homogeneous superconductor.

In the following we choose the simple gauge �(k, ωn) = 0,
rendering α (k, ωn) = �α (k,ωn )

Zα (k) . We also rewrite Dα (k, ωn) =
[iωnZα (k)]2 − [Eα (k, ωn)Zα (k)]2. For simplifying the self-
consistent equations further, we will ignore Xα (k, ωn) consid-
ering energy shifts to the dispersion being much smaller and
negligible compared to the value of εα (k) itself. This leaves
us with the following two equations to solve:

iωm[1 − Zα (k)] = 1

βNk′

∑
n,β,k′

VαβN (k − k′, ωm − ωn)

× iωn

Zβ (k′)[(iωn)2 − Eβ (k′, ωn)2]
,

(A10a)
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FIG. 6. The frequency dependence of the effective interaction
V (k − k′, ωm − ωn).

�α (k, ωm) = 1

βNk′

∑
n,β,k′

VαβA(k − k′, ωm − ωn)

× �β (k′, ωn)

Z2
β (k′)[(iωn)2 − Eβ (k′, ωn)2]

.

(A10b)

We will simplify the equations further, under assump-
tions at T = TC , to obtain solutions without implementing
numerically expensive self-consistency loops. The interaction
vertices VαβN/A(k − k′, ωm − ωn) is expressed in terms of
the spin fluctuation contribution χS

αβ (k − k′, ωm − ωn) and
the charge fluctuation contribution χC

αβ (k − k′, ωm − ωn). Let
us denote (ωm − ωn) by �mn. Figure 6 shows the Matsub-
ara frequency dependence of these two terms and of the
interaction vertices for a momentum transfer of (π, 0.15π )
(incommensurate antiferromagnetic wave vector) connecting
the electron and hole pocket at a typical interaction strength
for our multiorbital pnictide system. Here the spin fluctuation
contribution is dominant and falls off on a frequency scale
that is small compared with the bandwidth. Thus, the gap
equation is dominated by important k and k′ values restricted
by this frequency cutoff to remain near Fermi surface. Without
band crossing in the vicinity of the Fermi level, each FS
point corresponds to a unique band quantum number, i.e.,
k ∈ μ, and k′ ∈ ν. Henceforth, we transfer the band index as
a subscript of momentum index k.

For �mn = 0 in the Matsubara axis, the real quantity
VA/N (kμ − k′

ν,�mn = 0) translates to the real part of the
retarded quantity Re[VA/N (kμ − k′

ν,� = 0)]. We assume the
form of the interaction to have the following explicit depen-
dence on the Matsubara frequency:

VA/N (kμ − k′
ν,�mn) = VA/N (kμ − k′

ν,�mn = 0)

1 + W |�mn|

= Re[VA/N (kμ − k′
ν,� = 0)]

1 + W |ωm − ωn| , (A11)

where W ∝ ξ−1
C , ξC being the spin-fluctuation energy cutoff.

We show the band representation of the effective interaction
vertices from orbital space in Eq. (7) in the main text. In Fig. 6
we also show the numerically fitted curve (in black) to the
form of Eq. (A11). It shows good fit for low frequency region
|ωm − ωn| < ξC which makes the largest contribution to the
frequency sum in Eqs. (A10a) and (A10b). As for the external
frequency, we solve the Eliashberg equations for low en-
ergy physics at the Fermi level at ωm = ω0 = πkBTC (lowest
Fermionic Matsubara frequency). This makes |ωm − ωn| =
|ω0 − ωn| = |2nπkBTC |. For simplicity, we assume that the
gap function is frequency independent �μ(k, ωn) = �(kμ).

First, we apply the above assumptions in d dimensions to
Eq. (A10a):

ω0[1 − Z (kμ)]

= − 1

β(2π )d

∮
k′

ν∈FS

[V (kμ, k′
ν, 0)]N

|vF (k′
ν )| (dd−1k′

ν )‖

×
∞∑

n=−∞

ωn

1 + W |2nπkBTC |
∫ ∞

−∞
dε′

k′
ν

1

ω2
n + ε′

k′
ν

2 ,

(A12)

[V (kμ, k′
ν, 0)]N is expressed in Eq. (7). The momentum sum-

mation over full BZ has been reduced to a transverse and
longitudinal integration over the Fermi surface values of the
quantities involved in the equation. At TC , we have ε(k′

ν ) 

�(k′

ν ), hence E (k′
ν, ωn) ≈ ε(k′

ν )
Z (k′

ν ) = ε′
k′
ν
. Since the effective

interaction is peaked mostly for scattering vectors connecting
states (kμ, k′

ν ) on the FS, one can identify that the full BZ
summation can be replaced by integration over small shells
wrapped around the FS. Within the infinitesimal volume of
each cubes surrounding individual FS points, we assume that
there is only longitudinal variation of [V (kμ, k′

ν, 0)]N , Z (k′
ν ),

and �(k′
ν ) parallel to the FS, and no variation in the transverse

direction. Hence, they are constant within this infinitesimal
cube at any FS point k′

ν . ε′
k′
ν

is constant along the FS and
only varies in the transverse direction. The integration yields

2
|ωn| tan−1(∞) = π

|ωn| and together with the factor 1/β on the
right-hand side it cancels the factor ω0 = πkBTC = π/β on
the left-hand side, while ωn/|ωn| yields a sign(ωn) on the
right-hand side. Equation (A12) is rewritten as

Z (kμ) = 1 + 1

(2π )d

∮
k′

ν∈FS
[V (kμ, k′

ν, 0)]N
(dd−1k′

ν )‖
|vF (k′

ν )|

×
∞∑

n=−∞

sgn(ωn)

1 + W |2nπkBTC | . (A13)

The Matsubara sum just survives for n = 0 and is canceled
out for all positive (+n) and negative (−n) pairs due to the
oddness of sgn(ωn). Thus, with sgn(ω0) = +1 we arrive at
the following equation that needs to be numerically solved for
Z (kμ):

Z (kμ) = 1 + 1

(2π )d

∮
k′

ν∈FS

[
V (kμ, k′

ν, 0)
]

N

(dd−1k′
ν )‖

|vF (k′
ν )| .

(A14)
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Returning to Eq. (A10b), we proceed similarly as above:

�(kμ) = − π

β(2π )d

∮
k′

ν∈FS

[V (kμ, k′
ν, 0)]A�(k′

ν )

Z (k′
ν )

(dd−1k′
ν )‖

|vF (k′
ν )|

∞∑
n=−∞

1

1 + W |2nπkBTC |
1

|ωn| . (A15)

We can perform the Matsubara sum. Rewriting in terms of the dimensionless parameter A = 1/(2πW kBTC ):

π

β

∞∑
n=−∞

1

1 + |n|/A

1

|ωn| =
∞∑

n=−∞

A

A + |n|
1

|2n + 1| =
∞∑

n=0

A

A + 1 + n

1

2n + 1
+

∞∑
n=0

A

A + n

1

2n + 1
, (A16)

where we shifted n to (n − 1) in the first infinite summation term. For low critical temperatures, A 
 1, and we can absorb
A + 1 ≈ A which gives

π

β

∞∑
n=−∞

1

1 + |n|/A

1

|ωn| = 2
∞∑

n=0

A

A + n

1

2n + 1
. (A17)

We refer to identities of the Digamma function �(z), one of which is

�(z) = −γ +
∞∑

n=0

z − 1

(2n + 1)(z + n)
, (A18)

γ is the Euler-Macheroni constant. For z 
 1, we have z − 1 ≈ z and �(z) ≈ log(z). Thus, rewriting Eq. (A17):

π

β

∞∑
n=−∞

1

1 + |n|/A

1

|ωn| ≈ 2[γ + log(A)] = 2log(eγ A). (A19)

This makes the linearized gap equation from Eq. (A15) take the following form:

�(kμ) = −2log(eγ A)

(2π )d

∮
k′

ν∈FS

[V (kμ, k′
ν, 0)]A

Z (k′
ν )

(dd−1k′
ν )‖

|vF (k′
ν )| �(k′

ν ). (A20)

The gap equation above turns out to be an eigenvalue equation which can now be solved numerically, yielding eigenvalue λ and

vector g(k). Multiplying with
∮

kμ∈FS
�(kμ )(dd−1kμ )‖
(2π )d |vF (kμ )| on both sides of the above equation, we get∮

kμ∈FS

(dd−1kμ)‖
(2π )d |vF (kμ)|�

2(kμ) = −2log(eγ A)

(2π )2d

∮
k′

ν∈FS

∮
kμ∈FS

(dd−1kμ)‖
|vF (kμ)| �(kμ)

[V (kμ, k′
ν, 0)]A

Z (k′
ν )

(dd−1k′
ν )‖

|vF (k′
ν )| �(k′

ν ). (A21)

Defining λ as

λ = −
1

(2π )2d

∮
k′

ν∈FS

∮
kμ∈FS

(dd−1kμ )‖
|vF (kμ )| �(kμ) [V (kμ,k′

ν ,0)]A
Z (k′

ν )
(dd−1k′

ν )‖
|vF (k′

ν )| �(k′
ν )∮

kμ∈FS
(dd−1kμ )‖

(2π )d |vF (kμ )|�
2(kμ)

, (A22)

and dropping the constant log term from our numerical solution, we get the following eigenvalue equation from Eq. (A20) that
needs to be numerically evaluated:

λg(kμ) = − 1

(2π )d

∑
k′

ν∈FS

1

Z (k′
ν )

[V (kμ, k′
ν, 0)]A

(dd−1k′
ν )‖

|vF (k′
ν )| g(k′

ν ). (A23)

The final modified gap structure due to Z (kμ) is given by (kμ) = g(kμ )
Z (kμ ) .
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