
PHYSICAL REVIEW B 101, 174506 (2020)

Nodal Andreev spectra in multi-Majorana three-terminal Josephson junctions
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We investigate the Andreev-bound-state (ABS) spectra of three-terminal Josephson junctions which consist of
1D topological superconductors (TSCs) harboring multiple zero-energy edge Majorana bound states (MBSs)
protected by chiral symmetry. Our theoretical analysis relies on the exact numerical diagonalization of
the Bogoliubov-de Gennes (BdG) Hamiltonian describing the three interfaced TSCs, complemented by an
effective low-energy description solely based on the coupling of the interfacial MBSs arising before the leads
get contacted. Considering the 2D synthetic space spanned by the two independent superconducting phase
differences, we demonstrate that the ABS spectra may contain either point or line nodes and identify Z2

topological invariants to classify them. We show that the resulting type of nodes depends on the number of
preexisting interfacial MBSs, with nodal lines necessarily appearing when two TSCs harbor an unequal number
of MBSs. Specifically, the precise number of interfacial MBSs determines the periodicity of the spectrum under
2π slidings of the phase differences and, as a result, also controls the shape of the nodal lines in synthetic space.
When chiral symmetry is preserved, the lines are open and coincide with high-symmetry lines of synthetic space,
while when it is violated, the lines can also transform into loops and chains. The nodal spectra are robust by
virtue of the inherent particle-hole symmetry of the BdG Hamiltonian, and give rise to distinctive experimental
signatures that we identify.

DOI: 10.1103/PhysRevB.101.174506

I. INTRODUCTION

Spin-triplet superconductors (SCs) are marked by Cooper
pairs possessing an odd-parity orbital configuration and an
exchange-symmetric spin-1 angular momentum [1–8]. The
former aspect is the source of anomalous proximity effects
[9,10], while the latter is particularly attractive for imple-
menting cutting-edge functionalities, including the coher-
ent control and manipulation of the Cooper pairs. Due to
the intrinsic coupling between spin and orbital degrees of
freedom, spin-triplet SCs exhibit nonstandard response to
Zeeman/ferromagnetic fields [11–17], spin-sensitive Joseph-
son transport [18–26], and pave the way to energy effi-
cient superconducting spintronics [27]. Even more, p-wave
SCs constitute the prototypical topological superconductors
(TSCs) harboring protected zero-energy modes, the so-called
Majorana bound states (MBSs), whose manipulation open
perspectives for topological quantum computing [4,28–30].

Although spin-triplet pairing is less common than the
conventional spin-singlet one, experimental observations in
the last decades have gathered many evidences for spin-
triplet superconductivity in a large variety of materials, such
as heavy-fermion compounds [31–33], noncentrosymmetric

materials [34,35], organic conductors [36–38], layered oxides
[39], doped topological insulators [40], and more recently
in the Cr-based pnictide K2Cr3As3 [41,42]. In addition to
intrinsic materials, artificial spin-triplet SCs can be engineered
in a large variety of quantum-material and -device platforms
based on conventional spin-singlet pairing. For instance, an
established route for achieving spin singlet-triplet pair con-
version is found in heterostructures consisting of spin-singlet
SCs interfaced with magnetically active materials [27,43–45].
Furthermore, p-wave spin-triplet pairing emerges effectively
in topological insulators proximity-coupled to conventional
SCs [46,47], semiconductor-superconductor hybrids [48–60],
and magnetic atomic chains on SCs [61–75].

In this framework, Josephson junctions are central for the
engineering of Andreev bound states (ABSs) and the design of
topological quantum-computing architectures based on MBSs
[4,29,30,76,77]. For instance, in junctions consisting of two
TSCs with a phase difference �φ, coupling the interface
MBSs can yield 4π -periodic ABS energy dispersions with a
crossing at �φ = π which is protected by the conservation of
fermion parity (FP) [78,79]. Such a behavior becomes signifi-
cantly modified when considering a topological junction with
multiple MBSs at each end protected by a chiral symmetry
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[80–87]. There, one can achieve a nonstandard control for the
ABS spectra [88], e.g., through electrical gating, and obtain
effective electronic structures with nodes or Weyl points in
synthetic space that allow to realize fermion-parity pumping
in a suitably designed cycle [60].

Alternatively, engineering topologically nontrivial ABS
dispersions with nodal and Weyl points is also possible in
three and four-terminal Josephson junctions consisting of
conventional s-wave SCs connected through a normal-metal
region [89–91]. In this case, the presence of the Weyl points
and their associated topological monopole charge leads to
a quantized transconductance [91–93], a remarkable finding
that persists even in the presence of spin-orbit coupling [90]
or an external magnetic field [94,95]. Along these lines,
the substitution of the conventional SC leads by topological
ones provides a new twist in the ABS engineering. This was
recently proposed in Ref. [96,97] for multiterminal Josephson
junctions consisting of 1D TSCs with a single MBS per edge.
Such junctions have been shown to exhibit finite-energy Weyl
crossings between the two lowest ABSs. One may thus ask
whether the employment of TSCs can lead to novel effects
compared to the case of junctions building upon s-wave SCs,
especially because the conventional classification of topolog-
ical semimetallic phases does not directly apply to multiter-
minal superconducting setups. Indeed, while in a crystal the
existence of Weyl nodes requires the breaking of time or/and
inversion symmetry, in four-terminal junctions Weyl points of
ABSs can also occur in a time-reversal symmetric scenario.

In this work, we investigate the emergence and design of
topologically nontrivial ABS bands in multi-terminal Joseph-
son contacts consisting of 1D TSCs which accommodate
multiple MBSs per edge. Such multi-MBS topological sce-
narios become accessible in both intrinsic [12,13,15–17,88] or
effective [52–60,72–75,98] p-wave spin-triplet SCs, with the
chiral symmetry being associated with a Kramers degeneracy
or a sublattice symmetry. Considering the 2D synthetic space
of the two independent phase differences appearing between
the superconducting leads of a three-terminal junction, we
demonstrate that the ABS dispersions feature point nodes or
nodal lines which depend on the number of MBSs occurring
at the junction interface. This nodal structure is a distinct
fingerprint of the topological character of the ABSs, when
these are constructed by means of coupled edge MBSs. To
transparently expose the properties of the emergent ABS
spectra, we employ a real-space numerical analysis relying
on the evaluation of the Bogoliubov-de Gennes (BdG) energy
spectra of the spin-triplet SCs, combined with an effective
low-energy description that relies on the hybridization of
the MBSs localized at the intersection of the three-terminal
junction.

We find that the topological character of the ABS spectra
depends on the MBS configuration. Specifically, a nodal
line spectrum is always obtained in cases where two TSCs
possess an unequal number of MBSs. We further show that
the geometrical structure of the nodal lines in synthetic space
depends on the invariance of the BdG Hamiltonian under 2π

slidings of the phase differences between the superconducting
leads. This becomes particularly transparent in the low-energy
MBSs description that we employ. The MBS Hamiltonian
obtained in this low-energy description is bound to specific

constraints stemming from the 2π -sliding symmetries. When
chiral symmetry is present, these constraints allow us to
predict the location of the nodal points and lines in synthetic
space, as well as to define related Z2 indices which reflect
their topological robustness. Specifically, chiral symmetry
introduces high-symmetry points and lines in synthetic space,
where the nodal points and open lines are set to appear as a
result of the sliding symmetries. Even more, the conservation
of FP and the inherent particle-hole symmetry (PHS) of the
MBS Hamiltonian, guarantee that the nodal lines are robust
even when chiral symmetry becomes violated. The nodal lines
can be only removed either when a pair of identical open
lines meet and annihilate, or when a line-topology conversion
takes place, upon which, the open lines evolve into loops or
chains which can be continuously deformed into points and
subsequently disappear.

It is quite remarkable that a number of topologically non-
trivial band structures which were only recently discovered in
real materials, e.g., nodal loops and nodal lines semimetals
[99–105], can be engineered and studied in a synthetic space
using the multi-terminal Josephson junctions of TSCs. Even
more importantly, the nodal spectra tailored in such TSC
devices are protected against weak disorder by means of FP
conservation and PHS. This additionally implies that by adia-
batically and selectively sweeping suitable paths in synthetic
space, cf. Ref. [60], a number of disorder-robust Josephson
transport phenomena can be experimentally accessed, which
reflect the topological character of the ABS spectra and the
underlying presence of MBSs.

The paper is organized as follows. In Sec. II, we describe
the here-considered three-terminal junction consisting of p-
wave topological SC chains. In Sec. III, we discuss the chiral
symmetry of the Hamiltonian for each superconducting lead,
and derive an effective low-energy description based on the
interface MBSs. In Sec. IV, we demonstrate the main features
of the ABS spectra with respect to the number of MBSs at the
SC intersection, in terms of the arising differences between the
phases of the SCs. In Sec. V, we present the symmetry aspects
of the low-energy model and unveil the topological character
of the nodal points and lines in the ABSs spectra. Section VI
focuses on the hybridization of MBSs on a given TSC, the
concomitant robustness of the point and line nodes, as well as
the emergence of nodal loops and chains in synthetic space.
Further, we discuss two possible physical situations leading
to this hybridization, i.e., chiral-symmetry breaking and the
presence of trivial ABSs, and propose experimental stategies
to disentangle them. In Sec. VII, we discuss a number of
experimental Josepshon transport properties that allow iden-
tifying the nodal ABS spectra. Our conclusions are reported
in Sec. VIII.

II. MODEL AND METHODOLOGY

In this section, we introduce the setup and model for
the here-considered three-terminal junction consisting of p-
wave topological SC chains, and briefly describe the nu-
merical approach to be followed. At this point, we remind
the reader that, while in the following we consider a con-
crete model, the qualitative picture drawn from our results
has a general character. In this sense, our work is not only
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(a) (b)

FIG. 1. (a) Schematic picture of the three-terminal junction con-
sisting of three 1D topological superconductors (TSCs), each one
of which is described by a single finite-sized chain (blue circles).
The superconducting leads are connected in an indirect manner,
through a single site (labelled as i = D). (b) depicts the configuration
of chiralities dictating the eigenstates of the zero-energy Majorana
bound states (MBSs) appearing at the edges of the three TSCs for
φa = φb = φc = 0. All the MBSs constitute eigenstates of the chiral-
symmetry operator �̂(0) defined for zero phase differences between
the superconducting leads. Here, ± indicates the chirality of the edge
MBSs. We remark that the specific choice made for the chiralities of
the MBSs does not affect our results, but only sets the location of the
high-symmetry points and lines in synthetic space.

applicable to the intrinsic p-wave SCs discussed here, but it
also extends to engineered TSCs based on superconductor-
semiconductor hybrids [52–60,72–75] and topological mag-
netic chains [72–75], where the multiple MBSs at each TSC
edge arise from the presence of either a Kramers degeneracy
or a sublattice symmetry.

A. Model

We consider a three-terminal (Y-shaped) junction consist-
ing of three 1D TSCs labeled by α = (a, b, c), as shown in
Fig. 1. Each TSC has a length of N sites. The three TSCs are
electronically connected through their individual coupling to
a normal conducting region that consists of a noninteracting
quantum dot with a single spin-degenerate level with a chem-
ical potential μD. The quantum dot is considered to be tunnel-
coupled to the superconducting leads with a charge-transfer
strength tD. Each one of the TSCs hosts an even integer
number of MBSs, where half of them are localized at the edge
near the junction interface and the remaining appear on the
remaining edge, which is far away from the intersection of the
superconducting leads. We assume that the length of each SC
is sufficiently large, so that the MBSs away from the junction
interface become irrelevant and thus can be neglected.

Each 1D TSC lead is described by a standard spinful p-
wave BCS-type mean-field Hamiltonian Ĥα in the additional
presence of an external Zeeman field, cf Ref. [88]:

Ĥα = −t
N−1∑
iα=1

∑
s={↑,↓}

(
c†iα+1,sciα,s + c†iα,sciα+1,s

)

+
N∑

iα=1

∑
s,s′={↑,↓}

c†iα,s(−μαδs,s′ − hα · σ̂s,s′ )ciα,s′

+
N−1∑
iα=1

∑
s={↑,↓}

[
�s(iα )eiφα c†iα+1,sc

†
iα,s + H.c.

]
. (1)

For a schematic representation of the Hamiltonian see
Fig. 1(a). In the above, ciα,s is the annihilation operator of an
electron at the ith site of the αth TSC with spin s = {↑,↓},
and t is the hopping integral between the nearest neighbor
lattice sites. In the αth TSC, μα is the chemical potential,
hα = hα (sin θα, 0, cos θα ) represents a Zeeman field lying in
xz plane, and σ̂1,2,3 define the standard Pauli matrices in spin
space. We assume that the Zeeman field is spatially uniform
in each TSC. We introduce the site- and spin-dependent pair
potentials �↑,↓(iα ) by employing the standard decoupling of
the attractive quartic interaction [15]. In the case of �↑ �= �↓,
the superconducting state becomes nonunitary [1]. Through-
out the present analysis, we assume that the amplitude of the
pair potential is either uniform or obtained by a self-consistent
iterative procedure [15]. Note, however, that the qualitative
picture drawn from our results is independent of which choice
is made.

The Ĥa,b,c are supplemented by the Hamiltonian for the
quantum dot, so that the complete model reads

Ĥ =
∑

α=a,b,c

Ĥα + Ĥlink , (2)

where we introduced

Ĥlink = −tD
∑

s={↑,↓}

(
c†ia=N,s cD,s + c†ib=1,s cD,s

+ c†ic=1,s cD,s + H.c.
) −

∑
s={↑,↓}

μD c†D,s cD,s. (3)

In Eq. (3), cD,s denotes the annihilation operator of the dot
electron with spin-projection s = ↑,↓, while μD sets the
energy scale for the spin-degenerate dot level.

In the following sections, we employ the diagonalization
of the BdG Hamiltonian obtained from Ĥ , to investigate the
number of the ingap nonzero- as well as zero-energy states
(ZESs) appearing at the three-terminal junction interface.
Specifically, we are interested in the evolution of the ingap-
bound-state spectra upon varying the superconducting phase
differences

φαβ = φα − φβ with α, β = a, b, c (4)

defined by the phases φa,b,c characterizing each TSC.

B. Numerical methods

For the numerical simulations, we assume that all the
SCs have an equal length, given by N = 200 sites, while we
set μα = μD = 0.5t . For the chosen windows of parameter
values, small variations in the size of the superconducting
leads leave our numerical results practically unaltered. For
our purposes, it is sufficient to consider the amplitude of the
pair potentials to be the same in each TSC. In particular,
we consider �↑ = �↓ = 0.4t to obtain a superconducting
state with two MBSs per edge, while the choice �↑ = 0.4t
and �↓ = 0.0 leads to a TSC with one MBS per edge. The
phase with two MBSs can be also obtained by considering the
nonunitary configuration [15]. Moreover, in order to achieve
superconducting states with one and two MBSs, we choose
hα = 2.0t and hα = 1.0t , respectively. The direction of the
Zeeman field is fixed at θa = 0.1π , θb = 0.2π , and θc =
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0.3π . We point out that, due to the topological character of
the system, the conclusions of the analysis do not depend
on the choice of the electronic parameters or the amplitude
of the superconducting order parameters. It is the number of
MBSs per edge in each TSC that mainly controls the structure
of the observed ABS spectra.

III. CHIRAL SYMMETRY AND MAJORANA
BOUND STATES

Before analyzing the results of the numerical simulations
for the lattice model of Eq. (2), we discuss the chiral symmetry
of the Hamiltonian describing each superconducting lead,
and derive an effective low-energy Hamiltonian expressed
uniquely in terms of the MBSs appearing near the interface
of the three-terminal junction before the TSCs get contacted.
As we show in the next section, the spectra obtained using the
effective Hamiltonian reproduce satisfactorily the dependence
of the low-energy ABSs spectra on the superconducting phase
differences.

A. Chiral symmetry

We start by discussing the chiral symmetry present in the
Hamiltonian of a given TSC. Indeed, in the bulk case, each
Hamiltonian of Eq. (1) can be recast in the form:

Ĥ (k, φ) = eiφτ̂3/2Ĥ (k)e−iφτ̂3/2 (5)

with

Ĥ (k) = [ε(k) − hxσ̂1 − hzσ̂3]τ̂3 + [�+(k) + �−(k)σ̂3]τ̂1,

(6)

where we introduced the quantities

�↑,↓(k) = �↑,↓ sin(k), �±(k) = �↑(k) ± �↓(k)

2
,

ε(k) = −2t cos(k) − μ. (7)

In the above, τ̂1,2,3 denote Pauli matrices defined in the
particle-hole Nambu subspace.

The Hamiltonian preserves chiral symmetry, which is ef-
fected by the operator �̂(φ) in the local φ frame, and is defined
via the vanishing of the following anticommutation relation:

{Ĥ (k, φ), �̂(φ)} = 0̂ , �̂(φ) ≡ eiφτ̂3 τ̂2 . (8)

Since �̂2 = 1̂, its eigenvalues �, take the values � =
±1. Due to chiral symmetry, the superconducting state can
be topologically characterized by introducing the following
winding number

w = i

4π

∫ π

−π

dk Tr[�̂(0) Ĥ−1(k) ∂k Ĥ (k)] ∈ Z . (9)

According to the bulk-boundary correspondence principle
[80–83], the above implies that a number of |w| MBSs will
appear on each edge of the TSC.

On general grounds, the eigenstates of any given Hamilto-
nian possessing chiral symmetry exhibit the following charac-
teristic features (cf. Refs. [106–108]): (i) the ZESs of the BdG
Hamiltonian Ĥ (k, φ) are simultaneously eigenstates of the
chiral-symmetry operator �̂ and (ii) the nonzero energy states
of Ĥ (k, φ) are described by linear combinations of two states

χ± associated with the chirality eigenvalues � = ±1, respec-
tively. Namely, any nonzero energy state can be expressed as
ϕE �=0 = c+χ+ + c−χ−, where the relation |c+| = |c−| always
holds. The way in which the MBSs become hybridized at
the intersecting point of the junction can be discussed and
addressed by means of the above two general properties.

At φ = 0, the two vectors

f+,↑ = 1√
2

(1, 0, i, 0)ᵀ, f+,↓ = 1√
2

(0, 1, 0, i)ᵀ, (10)

span the positive-eigenvalue subspace of �̂(0), whereas

f−,↑ = 1√
2

(i, 0, 1, 0)ᵀ, f−,↓ = 1√
2

(0, i, 0, 1)ᵀ, (11)

span the negative-eigenvalue sector of �̂(0). Here, ᵀ effects
matrix transposition. Since [�̂(φ), σ̂3] = 0̂, the ZESs are clas-
sified into two kinds, depending on their eigenvalues under
the action of σ̂3. In particular, the vectors f±,↑ and f±,↓
belong to the positive and negative eigenvalue sectors of σ̂3,
respectively.

Besides the spin structure, it is worth commenting on the
behavior of the MBS eigenstates under shifts of the supercon-
ducting phase. Specifically, a π shift in the superconducting
phase of a given TSC inverts the chirality configuration on the
two edges, since �̂(φ + π ) = −�̂(φ). For instance, one has

eiπτ̂3/2 f+,s = f−,s with s = {↑,↓} . (12)

On the other hand, a 2π shift in the superconducting phase
does not modify the chirality of the eigenstates. This is in fact
expected, since all physical observables should be invariant
under such a shift, as a consequence of the 2π periodicity
of the BdG Hamiltonian with respect to the superconducting
phase. However, the MBS eigenvectors do not need to be
invariant. In fact, a 2π shift introduces an overall factor of −1
in the MBS eigenvectors, as well as in the associated MBS
creation (annihilation) operators. Specifically, we have

ei2πτ̂3/2 f±,s = − f±,s with s = {↑,↓} . (13)

We note that the above behavior of the MBS eigenvectors
under a 2π -shift symmetry transformation, imposes specific
symmetry constraints on the low-energy Hamiltonian con-
structed from the intersectional MBSs. In Sec. V, we rely on
these properties to define topological invariants for the nodal
spectra.

At this stage, we proceed by obtaining the expression for
the MBS state vectors in the various cases of interest. We
first consider the topologically nontrivial phase with |w| =
2, which can be realized, for example, by choosing �↑ =
�↓. At hx = 0, the BdG Hamiltonian in Eq. (6) is block-
diagonalizable into two spin sectors. The winding number is
|w| = 1 in each spin sector [106] and, thus, leads to |w| = 2
when accounting for both. The winding-number value |w| =
2 can be preserved even when hx couples the two spin sectors
by virtue of the chiral-symmetry effected by �̂(φ). At φ = 0
and �↑ = �↓, the state vectors of the two localized MBSs on
one edge read

ψ+,1 = cos(θ/2) f+,↑ + sin(θ/2) f+,↓, (14)

ψ+,2 = sin(θ/2) f+,↑ − cos(θ/2) f+,↓, (15)
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with cos θ = hz/|h| and sin θ = hx/|h|. Here we suppress
the part encoding the spatial dependence of the MBS state
vectors. For more details regarding the structure of the MBS
state vectors see Appendix A. The MBSs localize spatially
from the edge, within a distance given by the coherence
length. Both states in Eqs. (14) and (15) belong to the � = +1
sector. The state vectors for the two localized MBSs on the
remaining edge become

ψ−,1 = cos(θ/2) f−,↑ + sin(θ/2) f−,↓, (16)

ψ−,2 = sin(θ/2) f−,↑ − cos(θ/2) f−,↓, (17)

and belong to the � = −1 sector. These results are a direct
consequence of the property (i) mentioned earlier.

We now move on with identifying the MBS state vectors
in the topological phase with |w| = 1 which, as already
mentioned in our introduction, can be realized in various
ways. Here, we select a nonunitary pairing, where the spin-
↓ normal-phase dispersion ε(k) + hz lies energetically much
higher than the Fermi level, and only the spin ↑ band lies at the
Fermi level. Hence, one can safely choose �↓ = 0 according
to the self-consistent equation for the pair potentials. The
MBSs at the two edges are represented by ψ+,1 of Eq. (14)
and ψ−,1 of Eq. (16) at φ = 0. See Appendix A for further
details.

Figure 1(b) illustrates the chirality configuration of the
MBSs at φa = φb = φc = 0, where ± indicates the chirality
eigenvalue. In our numerical simulations, we focus on the
ABS spectra and the modification of the number of MBS at the
interface of the junction as a function of the superconducting
phase differences.

B. Effective low-energy Hamiltonian based on the MBSs
localized near the Y-junction interface

Let us now consider the low-energy description of the
ABSs appearing in the three-terminal device, by focusing on
the hybridization of the MBSs in the vicinity of the Y-junction
interface. We employ γα,ν to represent the operator of the
νth MBS appearing near the interface, with α = a, b, c and
ν = 1, 2. In the presence of a nonvanishing phase φα for
the αth TSC, the effective MBS coupling Hamiltonian, say
between the edges of the ath and bth TSC, is given by

Ĥab = 1

2

∑
ν,ν ′=1,2

γa,νψ
†
+,ν (−t̃ τ̂3)e−iφabτ̂3/2ψ−,ν ′γb,ν ′

= i

2

∑
ν,ν ′=1,2

t ab
νν ′ cos

(
φab

2

)
γa,ν γb,ν ′ . (18)

In the above, t ab
νν ′ denotes the coupling between the νth

edge MBS of the ath TSC and the ν ′th edge MBS of the
bth TSC. The vectors ψ±,1,2 are given by Eqs. (14)–(17).
The expressions for t ab

νν ′ are given in Appendix B. We note
that the strength of the indirect tunnel coupling appearing
between a pair of TSCs due to the intervention of the dot
link, is here denoted t̃ . We point out that the inter-TSC tunnel
coupling preserves the chiral symmetry of each TSC, since the
following holds {t̃ τ̂3, �̂(φ)} = 0̂.

The effective MBS coupling Hamiltonian between the edge
of the ath and cth TSCs can be represented in a similar
fashion:

Ĥac = 1

2

∑
ν,ν ′=1,2

γa,νψ
†
+,ν (−t̃ τ̂3)e−iφac τ̂3/2ψ−,ν ′γc,ν ′

= i

2

∑
ν,ν ′=1,2

t ac
νν ′ cos

(
φac

2

)
γa,νγc,ν ′ . (19)

The hopping Hamiltonian between the bth and cth TSC has,
however, a different expression. This is because for φb,c = 0,
the hybridization happens between two MBS possessing the
same, and here negative, chiralities. This is also schematically
depicted in Fig. 1(b). We find

Ĥbc = 1

2

∑
ν,ν ′=1,2

γb,νψ
†
−,ν (−t̃ τ̂3)e−iφbc τ̂3/2ψ−,ν ′γc,ν ′

= i

2

∑
ν,ν ′=1,2

t bc
νν ′ sin

(
φbc

2

)
γb,νγc,ν ′ . (20)

For φbc = 0, the interface MBS of the bth and cth TSCs
belong to the same chirality sector of �̂(φb) = �̂(φc) and,
therefore, they do not couple to each other upon the applica-
tion of chiral-symmetry preserving perturbations. Under these
circumstances, all the hopping elements in Ĥbc vanish for
φbc = 0.

In order to proceed in our discussion, it is also useful to
remind the reader that the three phase differences among the
superconductors satisfy the constraint φab + φbc + φca = 0.
This holds as long as there exists no vorticity or magnetic flux
trapped in the triangular area formed by the three TSCs at the
intersection. Given this condition, in this work we consider
φbc = −(φab + φca) with 0 � φab < 2π and 0 � φca < 2π .
Using the above phase choice, Ĥbc can be rewritten as

Ĥbc = − i

2

∑
ν,ν ′=1,2

t bc
νν ′ sin

(
φab + φca

2

)
γb,νγc,ν ′ . (21)

Thus the total low-energy effective Hamiltonian for the
coupled MBSs at the interface of the Y junction, which
determines the ABS spectrum, is given by the sum Ĥab +
Ĥbc + Ĥca and can be compactly expressed as

ĤABS = 1

2

∑
α,α′=a,b,c

∑
ν,ν ′=1,2

γα,νHν,α;ν ′,α′γα′,ν ′ . (22)

The matrix coupling Hamiltonian in Eq. (22) is skew
symmetric, i.e., Hν,α;ν ′,α′ = −Hν ′,α′;ν,α , i.e., Ĥᵀ = −Ĥ. Since
the latter matrix is Hermitian, we also find the relation:

Ĥ = −Ĥ∗ . (23)

The above equation reflects the presence of a built-in PHS
stemming from the anticommutation relations satisfied by the
MBS operators. As a result, the eigenvalues of Ĥ come in
pairs ±E . For E �= 0 (E = 0), we find ABS (MBS) charged
(self-conjugate) quasiparticle excitations. As first discussed
by Kitaev in Ref. [5], the skew-symmetric nature of Ĥ further
allows to introduce the real skew symmetric matrix B̂ = iĤ,
whose Pfaffian satisfies [Pf(B̂)]2 = det(B̂). The latter relation
implies that the ABS spectra satisfy

∏
s Es = Pf(B̂), with s
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(a) (b) (c) (d)

FIG. 2. Schematic configuration of Majorana bound states in the case of vanishing coupling between the superconducting leads and the dot,
i.e., tD = 0. The notation (wawbwc ) junction indicates a three-terminal junction of the corresponding a, b, and c topological superconductor.

an appropriate index that guarantees that only one of the two
PHS-related eigenvalues is taken into account. Since the zeros
of Pf(B̂) coincide with the zeros of the ABS spectra, this
Pfaffian can be employed to identify the conditions under
which MBSs are present.

Besides being skew-symmetric, Ĥ and B̂ satisfy additional
constraints stemming from the invariance of the many-body
Hamiltonian operator ĤABS under 2π shifts of the supercon-
ducting phases. In particular, Eq. (13) leads to the following
general relation:

Û †
α B̂(. . . , φα, . . .)Ûα = B̂(. . . , φα + 2π, . . .) , (24)

where we considered a 2π -shift of the superconduct-
ing phase φα , and introduced the diagonal matrix Ûα =
diag(. . . ,−1 . . . − 1, . . . 1, . . .), which introduces a factor of
−1 in the entries related to the MBSs of the αth TSC. This
constraint on B̂ is crucial for the topological protection of the
nodal ABS spectra.

IV. ABS SPECTRA FOR THE THREE-TERMINAL Y
JUNCTION

In this section, we determine and analyze the ABS spectra
as a function of the two independent phase differences be-
tween the superconducting leads, for different values of the
total number of MBSs which can be accommodated at the
interface of the three-terminal junction. We consider that the
number of MBSs on a given edge of each TSC is wα > 0
before the three SCs become tunnel-coupled via the quantum
dot. For convenience, we indicate the generic configuration
of the Y junction with the string (wawbwc). Since wa,b,c ∈
N+, we expect that, when wa + wb + wc is an odd (even)
number, an odd (even or zero) number of MBSs remains at the
interface after introducing the coupling among the three TSCs.
Specifically, we investigate the band topology of the ABS
spectra and discuss the robustness of the MBSs once a vari-
ation of the phases φab and φca is introduced for the various
(wawbwc) junction configurations. We specifically study all
the topologically nontrivial configurations with (111), (112),
(122), and (222) edge MBSs as shown in Fig. 2. The different
types of ABS spectra which become accessible for the three-
junction system are summarized in Table I.

We note that, given the choice made for φbc, the presence
of chiral symmetry imposes that all the MBS couplings vanish
at the here-termed point P of the synthetic (φab, φca) space
with coordinates (π, π ). In this case, P is an inversion-
symmetric point, where one further finds φb = φc − 2π =
φa − π . Therefore a total number of wa + wb + wc MBSs

should be present at the Y-junction interface in this case, since
in such a configuration, the MBSs at the edge of the ath TSC
change their chirality from + to − according to Eq. (12). This
modification implies that all the MBSs at the interface now
belong to the same chirality sector, and thus persist upon the
application of chiral-symmetry respecting perturbations.

A. (111) junction

We start by considering the Y junction for the configuration
wa,b,c = 1 which is depicted in Fig. 2(a). In the absence of a
coupling between the superconducting leads, three MBSs are
always present at the junction. The tunnel and, in turn, the
MBS couplings lift the degeneracy depending on the relative
phase of φab and φca. The energy eigenvalues are obtained
numerically by explicitly solving the BdG equations on the
real lattice and are presented as a function of φab and φca in
Fig. 3(a). One MBS persists independently of φab and φca.
Such a flat-band dispersion is omitted in Fig. 3(a) in order to
facilitate the graphical presentation. The ABS energy spectra
for the remaining states exhibit a dispersion when φab and
φca are varied, while a single band touching appears at zero
energy at the P point (π, π ). Figure 3(b) shows the energy-
contour plot of the results for positive energies, i.e., E > 0.
The numerically retrieved results can be well-explained in
terms of the low-energy effective Hamiltonian in Eq. (22).
Indeed, the Hamiltonian Ĥ111 possesses the following matrix
form:

Ĥ111 =
⎛
⎝ 0 −it ab

11Cab −it ca
11Cca

itab
11Cab 0 it bc

11Sbc

it ca
11Cca −it bc

11Sbc 0

⎞
⎠

with Cαα′ = cos

(
φαα′

2

)
and Sbc = sin

(
φab + φca

2

)
, (25)

TABLE I. Summary of our results for the ABS spectra obtained
for the various types of three-terminal junctions depending on the
number of edge MBSs that each one of the three TSCs harbors.
The multiple MBSs on a given TSC are protected by virtue of chiral
symmetry.

(wawbwc ) ABS Spectra Number of Majorana flat bands

(111) Point nodes 1
(112) Point and line nodes 0
(122) Point and line nodes 1
(222) Point and line nodes 0
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FIG. 3. (a) ABS energy spectra for the (111) junction as a function of the superconducting phase differences φab and φca. In (b), we
show the energy-contour map of the states with positive energy, i.e., E > 0. At the junction interface, one zero-energy state always persists
independently of the applied phase differences, thus giving rise to a Majorana flat band in the two-dimensional synthetic phase-difference
space (φab, φca ). For graphical clarity we omit this flat band in the ABS spectra reported in (a). Notably, a point node with three MBSs occurs
at (φab, φca) = (π, π ).

where we remind that the MBS couplings tαα′
ν,ν ′ were introduced

in Eqs. (18)–(20) and their detailed expressions are found in
Appendix B. We note that these depend also on the relative
angle of the Zeeman fields as discussed in Appendix B,
because the orientation of the Zeeman field controls the spin
configuration of the MBS.

It is straightforward to analytically obtain the energy eigen-
values of the MBS Hamiltonian, which read

E = 0,±√
R1 with

R1 = (
t ab
11

)2
C2

ab + (
t bc
11

)2
S2

bc + (
t ca
11

)2
C2

ca . (26)

The eigenvalue E = 0 indicates that one MBS is always
present. Furthermore, R1 is always nonzero except at the high-
symmetry point (π, π ) where both Cab and Cca are vanishing.
As mentioned above, there, the three MBSs belong to the same
chirality sector. In fact, the emergence of the point node at P
can be also understood by means of a π Berry phase (i.e., a
Z2 topological invariant) as we discuss in Sec. V. Hence, we
find that the number of MBSs in the (111) junction is either
one or three.

B. (112) junction

The outcomes of our real-space BdG analysis conducted
for the three-terminal (112) junction depicted in Fig. 2(b),
are presented in Figs. 4(a) and 4(b). Four MBSs appear at
the intersection for zero dot-TSC tunnel couplings. When
the tunnel couplings are switched on, we do not find any
ZES flat bands, which implies that all the energy eigenvalues
depend on φab and φca and, thus, the MBSs hybridize into two
standard fermionic degrees of freedom giving rise to four ABS
levels. Two of these ABS dispersions yield a Dirac conelike
structure centered at (π, π ), while the two remaining ABS
energy solutions exhibit a more complex type of dispersion in
the phase-difference space. These properties become evident
from Fig. 4(b). We identify the appearance of line band
touching with two MBSs at φca = π and φab + φca = 2π .

These features are understood by considering the following
low-energy Hamiltonian based on the coupled MBS appearing
near the intersection, i.e.,

Ĥ112 =

⎛
⎜⎜⎜⎝

0 −it ab
11Cab −it ca

11Cca it ca
12Cca

itab
11Cab 0 it bc

11Sbc −it bc
12Sbc

it ca
11Cca −it bc

11Sbc 0 0
−it ca

12Cca itbc
12Sbc 0 0

⎞
⎟⎟⎟⎠.

(27)

We point out that the two MBSs appearing on the edge
of the cth TSC do not couple directly because they belong
to the same chirality sector. This becomes explicitly manifest
by the vanishing matrix elements at positions (3,4) and (4,3)
in Eq. (27). This, of course, holds under the assumption that
the cth TSC possesses chiral symmetry also after contacting
the quantum dot. The eigenvalues are analytically obtained
and read

E = ±E± with E± =

√√√√R2 ±
√

R2
2 − 4V2

2
, (28)

R2 = (
t ab
11

)2
C2

ab + [(
t bc
11

)2 + (
t bc
12

)2]
S2

bc

+ [(
t ca
11

)2 + (
t ca
12

)2]
C2

ca, (29)

V2 = (
t bc
12t ca

11 − t bc
11t ca

12

)2
C2

caS2
bc . (30)

The energy bands ±E− touch at the symmetry point P, as well
as along the symmetry lines

φca = π and φab + φca = 2π , (31)

since, there, we have V2 = 0. Notably, the latter condition also
reflects the vanishing of the Pfaffian of B̂112 = iĤ112, which
reads Pf(B̂112) = CcaSbc(t bc

11t ca
12 − t bc

12t ca
11 ).

Along the nodal line φca = π , the two edge MBSs of
the cth TSC and the edge MBS of the ath TSC belong to
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FIG. 4. (a) ABS energy spectra for the (112) junction in terms of the superconducting phase differences φab and φca. In (b), we report the
energy-contour map of the states with positive energy, i.e., E > 0. Four MBSs (red point) occur at the high-symmetry point (φab, φca) = (π, π ).
Nodal lines (red dashed) with two MBSs are obtained along the symmetry directions φca = π and φab + φca = 2π .

the same chirality sector of �̂(φc). Therefore, according to
the earlier-mentioned property (ii), the edge MBS of the bth
TSC can couple to only a single linear combination made up
from the three MBSs arising from the ath and cth TSCs. As
a collateral consequence, two MBSs remain uncoupled and,
thus, lead to two zero eigenvalues. The presence of two MBSs
can be alternatively explained by analyzing the rank of the
low-energy Hamiltonian in Eq. (27). Specifically, the rank
decreases from 4 to 2 when φca = π and, consequently, there
are two ZESs.

The remaining nodal-line condition φab + φca = 2π is
equivalent to φc = 2π + φb. Now, it is the three MBSs orig-
inating from the bth and cth TSCs that belong to the same
chirality sector. When this takes place, the (2,3), (2,4), (3,2),
and (4,2) elements of the matrix in Eq. (27) are zero. The
condition φab + φca = 2π also leads to the reduction of rank
in Eq. (27) from 4 to 2. Thus two MBSs persist, since the
MBS of the ath TSC couples to only one linear combination
constructed from the three remaining MBSs. The presence
of the line nodes are explained in terms of a Z2 topological
number and extra symmetries in the parameter space whose
details are presented in Sec. V. Equations (28) and (30) also
indicate that two ABS remain at zero energy when the con-
dition t bc

12t ca
11 = t bc

11t ca
12 holds. We have numerically confirmed

that two MBSs stay uncoupled irrespectively of the values that
φab and φca take. However, such zeros are only accidental.
Nonetheless, together with the latter case, we conclude that

in the most general case, the number o MBSs in the (112)
junction can be either 0, 2, or 4.

C. (122) junction

Next, we discuss the (122) junction which is depicted in
Fig. 2(c). For such a configuration we obtain a maximum
of five MBSs at the junction interface. The resulting ABS
spectra, obtained by means of the diagonalization of the BdG
Hamiltonian on the lattice, are shown in Figs. 5(a) and 5(b).
One MBS is always present independently of the two imposed
phase differences. As we also did previously, we also here do
not plot in Fig. 5(a) the corresponding flat-band dispersion for
reasons of graphical clarity.

Besides the Majorana flat band, we also find ABS ZESs
occurring along the nodal lines defined by φab + φca = 2π

(which is equivalent to φc = 2π + φb). The two MBSs orig-
inating from the bth TSC, as well as the two MBSs stem-
ming from the cth TSC possess the same chirality eigenvalue
when φc = 2π + φb. Thus the edge MBS of the ath TSC
couples to a single linear combination formed by the MBSs
of the bth and cth TSCs. Conclusively, three MBSs remain
uncoupled and yield the respective ZESs along the nodal line
φab + φca = 2π .

Once again, the features of the ABS spectra can be well-
reproduced by inferring the spectrum of the effective low-
energy Hamiltonian coupling the MBSs at the intersection.
This Hamiltonian reads

Ĥ122 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −it ab
11Cab itab

12Cab −it ca
11Cca it ca

12Cca

itab
11Cab 0 0 it bc

11Sbc −it bc
12Sbc

−it ab
12Cab 0 0 −it bc

21Sbc it bc
22Sbc

it ca
11Cca −it bc

11Sbc it bc
21Sbc 0 0

−it ca
12Cca itbc

12Sbc −it bc
22Sbc 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)

The two MBSs residing on either the bth or the cth TSC
do not couple to each other since they are protected by chiral

symmetry. This property is reflected in the presence of two
2 × 2 zero-element matrix blocks in the corresponding b- and
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FIG. 5. (a) ABS energy spectra for the (122) junction as a function of the phase differences φab and φca appearing between the respective
superconducting leads. In (b), we report the energy-contour map of the states with positive energy, i.e., E > 0. Five MBSs (red point) occur at
the high-symmetry P point with synthetic-space coordinates (φab, φca ) = (π, π ). Nodal lines (red dashed) with two MBSs are obtained along
the symmetry directions. At the junction interface, one zero-energy state always persists independently of the applied phase differences, thus
giving rise to a flat band in the two-dimensional synthetic phase-difference space (φab, φca ). For graphical clarity, we omit this flat band in the
ABS spectra reported in (a).

c-MBS subspaces of the Hamiltonian matrix. The eigenvalues
of the latter take the form:

E = 0,±E± with E± =

√√√√R3 ±
√

R2
3 − 4V3

2
, (33)

where, similar to previous sections, we have introduced the
parameters

R3 = [(
t ab
11

)2 + (
t ab
12

)2]
C2

ab + [(
t ca
11

)2 + (
t ca
12

)2]
C2

ca

+ [(
t bc
11

)2 + (
t bc
12

)2 + (
t bc
21

)2 + (
t bc
22

)2]
S2

bc , (34)

V3 = S2
bc

[(
t bc
21t ab

11 − t bc
11t ab

12

)2
C2

ab + (
t bc
22t ab

11 − t bc
12t ab

12

)2
C2

ab

+ (
t bc
11t bc

22 − t bc
12t bc

21

)2
S2

bc + (
t bc
12t ca

11 − t bc
11t ca

12

)2
C2

ca

+ (
t bc
22t ca

11 − t bc
21t ca

12

)2
C2

ca

]
. (35)

In the present case, the nodal line appears when V3 and, in
turn, E− vanish. This takes place for Sbc = 0, and results in
three ZESs. On the other hand, the energy bands ±E+ touch

each other at the point P, which is in agreement with the nu-
merical results depicted in Fig. 5(a). We thus conclude that the
number of MBSs in a (122) junction is either one, three or five.

D. (222) junction

Finally, we discuss the behavior of MBSs in (222) junction
shown in Fig. 2(d). Numerical results obtained by the analysis
on the lattice indicate that the behavior of the ABSs depends
on the character of the chiral symmetry conserving terms at
the junction interface. Indeed, for the electronic processes
indicated in Eq. (3), two MBSs survive irrespectively of the
values chosen for the phase differences among the three TSCs.
On the other hand, as described in Figs. 6(a) and 6(b), the in-
clusion of next-nearest neighbor hoppings and a nonvanishing
spin polarization on the dot generally lead to an ABS spectrum
with dispersive modes and three nodal lines. These features
can be well explained by considering the effective low-energy
Hamiltonian for the (222) configuration:

Ĥ222 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −it ab
11Cab itab

12Cab −it ca
11Cca it ca

12Cca

0 0 it ab
21Cab −it ab

22Cab it ca
21Cca −it ca

22Cca

itab
11Cab −it ab

21Cab 0 0 it bc
11Sbc −it bc

12Sbc

−it ab
12Cab itab

22Cab 0 0 −it bc
21Sbc it bc

22Sbc

it ca
11Cca −it ca

21Cca −it bc
11Sbc it bc

21Sbc 0 0
−it ca

12Cca it ca
22Cca itbc

12Sbc −it bc
22Sbc 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

Let us first consider the case when two MBSs stay decoupled. Indeed, when the following relations hold:

tαβ

11 = tαβ

22 , tαβ

12 = tαβ

21 , (37)

the eigenvalues of Ĥ222 can be calculated analytically, and read

E = 0, 0,±√
E± , (38)

E± = (
t ab
11 ± t ab

12

)2
C2

ab + (
t bc
11 ± t bc

12

)2
S2

bc + (
t ca
11 ± t ca

12

)2
C2

ca . (39)
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FIG. 6. (a) ABS energy spectra for the (222) junction as a function of the phase differences φab and φca. In (b) ,we report the energy-contour
map of the states with positive energy, i.e., E > 0. Six MBSs (red point) occur at the high-symmetry position (φab, φca ) = (π, π ). Nodal lines
(red dashed) with two MBSs are obtained along the symmetry directions. The spectrum with three nodal lines is obtained by including extra
chiral symmetry preserving terms at the junction interface: the next-nearest hoppings nearby the dot as shown in (c) and a Zeeman field on the
dot site. Otherwise, zero-energy states typically persist independently of the applied phase differences, thus giving rise to two Majorana flat
band. The spectra in (a) and (b) are obtained for the following representative parameters: ta = 0.7 t , tb = 0.5 t , and tc = 0.4 t , and the Zeeman
field hD

x = 0.1 t and hD
z = 0.2 t .

The two zero eigenvalues suggest the existence of flat bands
independently of the precise values of the other parameters.

Although it is not easy to obtain the generic expression
for the ABS spectra analytically, the degeneracy of the ZESs
can be checked in a different way. One can, for instance,
investigate the behavior of Pf(B̂222), which reads

Pf(B̂222) = CabCcaSbcT222 , (40)

T222 = t ab
11

(
t bc
22t ca

21 − t ca
22 t bc

21

) + t ca
12

(
t ab
21 t bc

21 − t ab
22 t bc

11

)
+ t ab

12

(
t ca
22 t bc

11 − t ca
21 t bc

12

) + t ca
11

(
t ab
22 t bc

12 − t ab
21 t bc

22

)
. (41)

It is immediate to check that T222 = 0 as long as Eq. (37)
is satisfied. When T222 �= 0 can be realized, however, the
structure of the above expression suggests the appearance of
only point and line nodes in the ABS spectra. This is what
we found by modifying the Hamiltonian with the inclusion
of the next-neighbor hopping near the intersection point and
a Zeeman field (hD) in the xz plane on the dot as shown in
Fig. 6(c). The ABS spectra as a function of the applied phase
differences are displayed in Figs. 6(a) and 6(b). There exist
three line nodes along high-symmetry directions that cross
at the point P = (π, π ). We argue that these extra terms at
the interface can mimic a low energy configuration such as
T222 �= 0. In such a case, the number of MBSs can be zero,
two, or six in the space of the phase differences between the
superconducting leads.

It is interesting to point out that for the 222 configuration
the engineering of the interface coupling between the TSCs
can turn flat MBSs into dispersive ones in the presence of a
nonvanishing phase difference.

V. TOPOLOGICAL INVARIANTS

In the following two paragraphs, we expose a number of
aspects regarding the origin of the two types of nodal ABS
spectra encountered here, and the symmetries that make their
presence possible. Even more, we construct suitable invariants
that reflect their topological protection.

A. Protection of point nodes

The emergence of point nodes in the (111) and (112)
junctions can be understood in a unified manner by relying
on the structure of a Hamiltonian describing the coupling of
four MBSs. For fully gapped or nodal-point-containing ABS
spectra stemming from four coupled MBSs γ1,2,3,4, arranged
in a multicomponent Majorana spinor as �ᵀ = (γ1 γ2 γ3 γ4),
one can decompose B̂ into two so(3) algebras, i.e., iB̂ =∑

n=1,2 gn · Jn. See also Refs. [60,96]. By employing the
Pauli matrices λ and κ, the so(3) generators read J1 =
(λ1κ2, λ2, λ3κ2)/2 and J2 = (λ2κ1, κ2, λ2κ3)/2. Therefore
we find

g1 = −(B14 − B23, B13 + B24, B12 − B34) , (42)

g2 = −(B14 + B23, B12 + B34, B13 − B24) . (43)

In the case of the (112) junction, it is straightforward to
obtain the respective two g vectors:

g1 = (
t ca
12Cca − t bc

11Sbc, −t bc
12Sbc − t ca

11Cca, −t ab
11Cab

)
, (44)

g2 = (
t ca
12Cca + t bc

11Sbc, −t ab
11Cab, t bc

12Sbc − t ca
11Cca

)
. (45)

It is convenient to perform the shift (φab, φca) 
→
(φab, φca) − (π, π ), which by virtue of the 4π periodic-
ity of the MBS couplings, it effects the transformation
(Cab,Cca, Sbc) 
→ (Sab, Sca,−Sbc) and thus places the high-
symmetry point P at the origin of the coordinate system.
Therefore the respective vectors read

g′
1 = (

t ca
12 Sca + t bc

11Sbc, t bc
12Sbc − t ca

11 Sca, −t ab
11 Sab

)
, (46)

g′
2 = (

t ca
12 Sca − t bc

11Sbc, −t ab
11 Sab, −t bc

12Sbc − t ca
11 Sca

)
. (47)

In the shifted coordinate system, these vector satisfy
g′

1,2(−φab,−φca) = −g′
1,2(φab, φca). The structure of the

above g′ vectors is similar to the one obtained for the generally
warped helical surface of topological insulators which contain
a single Dirac point and are characterized by a π Berry phase
[109,110]. Therefore a similar Z2 invariant characterizes the
point node in the present case.
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While in topological insulators the vanishing of the g vec-
tors at the high-symmetry point is imposed by time-reversal
symmetry, in the present situation the two Dirac points are a
consequence of chiral symmetry. Thus we expect the violation
of chiral symmetry to lead to the opening of a spectral gap at
P, since in this event, P no longer constitutes a high-symmetry
point of the synthetic phase-difference space.

The above approach can be extended to the (111) junction.
For this purpose, one formally adds an auxiliary MBS in order
to take advantage of the above results which relied on four
coupled MBSs. For instance, this auxiliary MBS may be one
of the MBSs which are located far away from the junction, and
are uncoupled from the interfacial MBSs. According to the
above procedure, the relevant g vectors for the (111) junction
are obtained from Eqs. (46) and (47) by setting t ca

12 = t bc
12 = 0

and read

g′
1 = ( + t bc

11Sbc, −t ca
11 Sca, −t ab

11 Sab
)
, (48)

g′
2 = ( − t bc

11Sbc, −t ab
11 Sab, −t ca

11 Sca
)
. (49)

From these two equations we infer that |g′
1| = |g′

2|, which
leads to the twofold-degenerate ZES corresponding to the
nonlocal fermionic degree of freedom consisting of one MBS
away from the junction and the single uncoupled MBS always
present at the junction.

We conclude this paragraph by demonstrating how to apply
the above to the case of the (222) junction, where two Dirac
points appear. Since the two bands leading to the line nodes
are irrelevant for the present discussion, we consider their
flat-band limit. This is achieved by setting the parameter
values tαβ

11 = tαβ

22 and tαβ

12 = tαβ

21 (∀α, β = a, b, c). In this case,
the Hamiltonian commutes with the matrix 13 ⊗ κ1. This
property allows us to block-diagonalize it into two irreducible
sectors corresponding to the eigenstates of 13 ⊗ κ1, that we
here label using the quantum number κ = ±1. Thus the two
Hamiltonian blocks read

Ĥκ
222 =

⎛
⎝0 −i

(
t ab
11 + κt ab

12

)
Cab −i

(
t ca
11 + κt ca

12

)
Cca

0 i
(
t bc
11 + κt bc

12

)
Sbc

h.c. 0

⎞
⎠ .

(50)

In analogy to the procedure followed for the (111) junction,
one here augments the number of MBS per block by one,
and defines the respective gκ vectors. As mentioned above,
the introduction of these vectors allows for the Z2 topological
classification of the protected point nodes at P.

B. Protection of line nodes

Here, we focus on the origin of the line nodes in the
(φab, φca) synthetic space and prove that they can also be
characterized by a topological index. To see this, we start
from the low-energy effective model Hamiltonian given in
Eq. (22), which is expressed in terms of the MBSs which
are localized near the intersection of the Y junction. As
mentioned earlier, the anticommutation relations satisfied by
the MBS operators impose that the matrix part of the above
Hamiltonian is skew-symmetric, i.e., Ĥᵀ = −Ĥ, and one
can introduce the real skew-symmetric matrix B̂ = iĤ, for

which, the relation det[B̂(φab, φca)] = Pf[B̂(φab, φca)]2 holds.
Therefore, within this low-energy model, the nodes can be de-
termined by searching the solutions of det[B̂(φab, φca)] = 0 or
equivalently the ones of Pf[B̂(φab, φca)] = 0. We distinguish
two cases depending on whether the rank of B̂ is even or odd,
since in the latter case the Pfaffian of B̂ is trivially zero.

When the rank of the effective Hamiltonian is even, the
Pfaffian becomes zero only for particular values of the phase
differences. Specifically, when a line node emerges in the
(φab, φca) plane, the sign of Pf[B̂(φab, φca)] changes across
the line node. Therefore we introduce the following Z2 topo-
logical index [111–113] for the line node:

N = sgn{Pf[B̂(φab, φca)]Pf[B̂(φ′
ab, φ

′
ca)]} , (51)

where N = ±1 denotes the absence (existence) of a line node
in a path connecting (φab, φca) to (φ′

ab, φ
′
ca).

In contrast, when the rank of the matrix Hamiltonian Ĥ
is odd, the Pfaffian of the related matrix B̂ matrix is zero and,
thus, we cannot directly employ it for inferring the topological
properties of the spectrum. Nevertheless, the skew-symmetric
character of Ĥ(φab, φca) implies that it is dictated by an odd
number of ZESs. Therefore, by effecting a unitary transfor-
mation on Ĥ(φab, φca), we can project out the trivial ZES
subspace and define a skew-symmetric matrix of an even rank,
for which, a Z2 topological invariant as in Eq. (51) is well
defined.

The geometrical structure, location and open character
of the nodal lines are imposed by the presence of chiral
symmetry and the invariance of B̂ under 2π phase shifts.
The latter are reflected in Eq. (24). Given the choice φbc =
−(φab + φca), the invariance of the system under 2π shifts
in φa,b,c leads to the following symmetry relations when 2π

shifts for the phase differences φab,ca are considered:

Û †
1 B̂(φab, φca)Û1 = B̂(φab + 2π, φca), (52)

Û †
2 B̂(φab, φca)Û2 = B̂(φab, φca + 2π ), (53)

Û †
12B̂(φab, φca)Û12 = B̂(φab + 2π, φca + 2π ), (54)

where after Eq. (24), we have Û1 = ÛaÛc, Û2 = Ûc and
Û12 = Ûa.

Using the above, we now explicitly discuss how Eq. (51),
in conjuction with chiral symmetry and the relations of
Eqs. (52)–(54), predicts the presence of line nodes in the
synthetic (φab, φca) space for the case of a (112) junc-
tion. For such a junction, Û1 = diag(−1, 1,−1,−1), Û2 =
diag(1, 1,−1,−1), and Û12 = diag(−1, 1, 1, 1). By means of
the relation Pf(ÛᵀB̂Û ) = det(Û )Pf(B̂), we have

Pf[B̂112(φab + 2π, φca)] = −Pf[B̂112(φab, φca)], (55)

Pf[B̂112(φab, φca + 2π )] = +Pf[B̂112(φab, φca)], (56)

Pf[B̂112(φab + 2π, φca + 2π )] = −Pf[B̂112(φab, φca)] (57)

where we used det(Û2) = − det(Û1) = 1. Equations (55) and
(57) already imply that line nodes are accessible in the
ABS spectrum, since Pf(B̂112) changes sign. Moreover, the
2π (4π ) periodicity in the phase φca (φab), implies that
φca = π (φab = π ) is (not) necessarily a high-symmetry
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line. Nonetheless, the 4π periodicity in φab results in the
equivalence φab = −π ≡ 3π . Moreover, chiral symmetry im-
poses that P(π, π ) is a high-symmetry point, i.e., an in-
version center satisfying (π, π ) ≡ (−π,−π ). This further
renders the line φab + φca = 2π a high-symmetry line. In
fact, the nodal lines coincide with the horizontal axis φca =
π , and the diagonal φab + φca = 2π . Specifically, the hori-
zontal nodal line is directly obtainable by exploiting that P
is an inversion-symmetric point and φca = π ≡ −π , since
Eq. (55) yields: −Pf[B̂112(φab, π )] = Pf[B̂112(φab + π +
π, π )] ≡ Pf[B̂112(φab,−π )] ≡ Pf[B̂112(φab, π )]. Similar ar-
guments establish the diagonal nodal line of Fig. 4, since
once again the presence of the inversion center P implies
that Pf[B̂112(φab, 2π − φab)] = 0, through the combination of
Eqs. (55) and (56).

As we showed above, in the (112) junction, the nodal
lines result from the invariance of the Hamiltonian under
2π shifts and the concomitant 4π -periodic dependence of
Pf[B̂112(φab, φca)] on one of the phase differences. How-
ever, this is not the case for the (222) junction, where
Pf[B̂222(φab, φca)] is 2π -periodic on both arguments due to
the even number of MBSs that each TSC supports before
contact. This is reflected in the following form that Eqs. (52)–
(54) take for the (222) junction:

Pf[B̂222(φab + 2π, φca)] = Pf[B̂222(φab, φca)], (58)

Pf[B̂222(φab, φca + 2π )] = Pf[B̂222(φab, φca)], (59)

Pf[B̂222(φab + 2π, φca + 2π )] = Pf[B̂222(φab, φca)]. (60)

For this junction configuration, chiral symmetry es-
tablishes φca = π , φab = π and φab + φca = 2π as high-
symmetry lines of the synthetic space. In fact, as it is
immediately discernible from Eq. (41), nodal lines ap-
pear at these three high-symmetry lines. The emergence
of the nodal lines can be understood by additional sym-
metry properties that Pf[B̂222(φab, φca)] possesses along the
high-symmetry lines. Specifically, along φab = π and φab =
2π − φca (φca = π ), one finds B̂222(φca + 2π ) = −B̂222(φca)
(B̂222(φab + 2π ) = −B̂222(φab)). Since for a skew-symmetric
2N × 2N matrix the respective Pfaffian is an N th or-
der polynomial of the matrix entries, we respectively
find Pf[B̂222(φca + 2π )] = −Pf[B̂222(φca)] (Pf[B̂222(φab +
2π )] = −Pf[B̂222(φab)]). These relations render the Z2 topo-
logical indices defined in Eq. (51) nontrivial which, in turn,
stabilize the nodal lines.

VI. EFFECTS OF MBS HYBRIDIZATION ON A GIVEN
TOPOLOGICAL SUPERCONDUCTOR

In the previous sections, we considered that chiral symme-
try is preserved before and after the three TSC leads become
coupled through the linking quantum dot, thus, generally al-
lowing for protected multiple MBSs per edge. Here, we relax
this assumption and investigate the effects of the violation
of chiral symmetry in every TSC, already before they get
contacted. Since for the present discussion we are not particu-
larly interested in the precise source of the chiral-symmetry
violation, we examine its consequences from a qualitative
point of view, and consider nonzero couplings between the

MBSs appearing on the same edge of a given TSC. We remark
at this point that we consider that the Josephson junction
link does not introduce any further chiral-symmetry breaking
terms. When such a scenario takes place, the spectrum can
be rendered fully gapped for all values of the two independent
phase differences. Note, however, that the Majorana flat bands
are inert to the chiral-symmetry breaking terms, since they
originate from the presence of an odd number of MBSs near
the interface, with one of them always remaining uncoupled.

Introducing these chiral-symmetry violating couplings be-
tween two MBS of a given TSC, immediately yields an im-
portant conclusion regarding the stability of the nodal spectra.
That is, in the presence of chiral-symmetry breaking terms,
nodal points are generally unstable while nodal lines are
robust and protected by the PHS and FP conservation of the
MBS Hamiltonian. Specifically, the point node at P in the
(111)- and (112)-junction cases is removed for an arbitrarily
weak strength of a chiral-symmetry breaking perturbation. In
contrast, the two Dirac point nodes appearing in the (122)
and (222) junctions can be both removed only when chiral-
symmetry violating couplings are introduced to all pairs of
MBSs arising from the same TSC.

As mentioned above, nodal lines are instead robust, and can
be removed only after a certain threshold for the strength of
the chiral-symmetry violating terms has been reached. Until
that point, the addition of chiral-symmetry violating pertur-
bations mainly affects the geometrical structure of the nodal
lines. Specifically, these no longer need to be open or appear
along high-symmetry lines. There exist two possible scenarios
that allow for the removal of the nodal lines. The first takes
place when pairs of open curved nodal lines of identical shape
can meet and annihilate. However, this requires certain fine
tuning. The second and most prominent mechanism occurs
by means of a Lifshitz transition [114]. In this case, the
nodal topology changes and the line evolves from open to a
closed loop, which can now continuously shrink to a point
upon varying the parameters and get lifted from zero energy.
Notably, the topological index of Eq. (51) remains employable
even when chiral symmetry is broken and the nodal lines are
not open. However, predicting the location and shape of the
nodal lines is no longer straightforward.

A numerical evaluation of the ABS energy spectrum when
chiral symmetry is violated, unveils a rich landscape of nodal
lines, including nodal loops and nodal chains, which were
recently experimentally discovered in the band structure of
a number of nodal semimetallic materials [99–105]. The
energy spectra for a number of representative chiral-symmetry
violating configurations are depicted in Figs. 7 and 8. In
the former (latter) the chiral-symmetry breaking terms have
strengths which are quite smaller (larger) than the tunneling
energy scales. The consideration of these two limits is useful
for reproducing two different physical situations. The weak
chiral-symmetry breaking limit corresponds to the case where
pairs of MBSs on a given TSC hybridize into trivial nonzero
energy ABSs. Nevertheless, as long as the symmetry breaking
terms are weak, one expects the underlying topological nature
of the MBSs to be still reflected in the structure of the
ABS spectrum, e.g., in a similar fashion to the 4π -periodic
Josephson effect [5] obtained from two coupled MBSs. In the
antipodal limit, a chiral-symmetry breaking term that strongly
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FIG. 7. Density plots of the lowest energy Andreev bound state in the (φab, φac) phase-difference plane for the (222) junction in the
presence of hybridization terms t j (with j = a, b, c labeling each superconducting lead). We show few representative cases for t j smaller than
the tunneling energy scale t to highlight the evolution of the nodal lines. This energy scale hierarchy is expected when the chiral symmetry
protecting the multiple MBSs on a given TSC is weakly violated. The black lines mark the place of the nodal lines where the ensuing
Pfaffian vanishes, i.e. Pf(B̂222) = 0. In (a), we report a representative physical configuration with one nonvanishing t j amplitude (i.e., tc = 0.5t ,
ta = tb = 0) demonstrating the persistence of a single high-symmetry nodal line and the simultaneous emergence of a nodal-chain structure.
The presence of two nonzero hybridization amplitudes (i.e. ta = 0.6t , tb = 0, tc = 0.5t) does not remove the nodal chain which, however, now
develops away from high-symmetry lines, as shown in (b). For two nonvanishing hybridization terms, a suitable choice of the parameters can
also give an isolated point node at the high-symmetry position (π, π ) together with closed loops. When all the MBS hybridization channels
are present, one can have open lines [see (c) for ta = 0.6t , tb = tc = 0.5t] and closed loops [see (d) for ta = tb = 0.9t , tc = 0.5t]. The other
parameters in the Hamiltonian Ĥ222 have the following amplitudes: t ab

11 = t ab
22 = 5t , t ab

12 = t , and t ca
11 = t ca

22 = t bc
11 = t bc

22 = 2t , t ab
21 = t ca

12 = t ca
21 =

t bc
12 = t bc

21 = 4t .

hybridizes two MBSs on a given TSC, can be equivalently
viewed as the hybridization between two MBSs which com-
prise a trivial ABS that lacks of a topological origin and/or
protection [115–120]. In this case, the hybridization term is
not associated with the violation of chiral symmetry.

Experimentally, the presence of such a trivial ABS may
be mistaken for two topologically protected MBSs originat-
ing from a single chiral-symmetry preserving TSC. This is
because, these trivial ABSs may even lie at zero energy,
thus reproducing the same spectra that two chiral-symmetry
protected MBSs would do. However, such a situation can
only happen in a very restricted region of the parameter
space. More importantly, as mentioned above, the hybridiza-
tion of two MBSs forming a trivial ABS is unrelated to

chiral-symmetry violation and, thus, it is nonzero also when
this symmetry is preserved. Remarkably, one can rely on this
property to develop experimental strategies that can allow
disentangling the two scenarios.

This appears possible by experimentally controlling a
chiral-symmetry preserving knob, e.g., the strength and/or
orientation of the magnetic field appearing in Eq. (6). In
particular, if the observed nodal ABS spectra originate from
topologically protected MBSs, which may still additionally
experience weak local chiral-symmetry violating perturba-
tions, the spectrum and other related signatures should remain
unchanged as long as the modification of the strength of the
knob in question does not effect a topological phase transition.
In stark contrast, modifying the strength of a chiral-symmetry

FIG. 8. Density plots of the lowest energy Andreev bound state in the (φab, φac) phase-difference plane for the (222) junction in the presence
of hybridization terms t j (with j = a, b, c labeling each superconducting lead). The black lines mark the place of the nodal lines where the
ensuing Pfaffian vanishes, i.e., Pf(B̂222) = 0. Here, we report on the case of strong MBS hybridization corresponding to t j being much larger
than the tunneling energy scale t . Such a situation may describe the presence of a trivial ABS on the edge of a given superconducting lead
instead of two coupled topologically protected MBSs. In (a), we show the case of only one nonzero hybridization term (e.g., ta = tb = 0
and tc = 10t). We find a nodal-chain structure which is stable even for very large values of t j . Notably, it is concentrated near φab = π , thus
possessing a synthetic-space profile which is indicative of the presence of a trivial ABS. In (b), we have robust nodal chains concentrated near
φab = π , even when assuming that one hybridization term is zero (e.g., ta = 10t , tb = 0, tc = 15t). In contrast, when all the hybridization terms
are nonvanishing with the t j amplitudes exceeding a critical value, the nodal chains first evolve into the open lines shown in panel (c) and,
then, they turn into the loops depicted in (d). Finally, they disappear when the loops shrink into points upon increasing the strength of the
hybridization terms. In (c), the parameters are ta = 6t , tb = 2t , and tc = 25t , while in (d), ta = 9t , tb = 2t , and tc = 25t .
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preserving field will immediately affect the Andreev spectrum
when a trivial ABS is present. Even more, if this knob can
be manipulated so that the hybridization term between the
MBSs comprising the trivial ABS dominates over the tunnel
coupling energy scales, one finds an ABS spectrum which
is clearly distinct to the one obtained from topologically
protected MBSs.

Representative ABS energy spectra in the strong MBS
hybridization limit are depicted in Fig. 8. For a (112) junc-
tion, one finds that the nodal line is now concentrated
about the φab = π axis, instead of coinciding with the high-
symmetry lines φab + φca = 2π and φca = π which are ob-
tained when chiral-symmetry and topologically protected
MBSs are present. For a (122) junction, one is required to ex-
perimentally differentiate among the topologically nontrivial
case and situations with one or two trivial ABSs appearing
at the bth and/or cth TSC. If a trivial ABS is located at
the cth (bth) TSC, the nodal line spectra is centered about
the line φab = π (φca = π ). On the other hand, when two
ABSs are present and the hybridization energy scales are
sufficiently strong, the resulting spectra are fully gapped. This
is after excluding the single Majorana flat band which is
always present for such an interface. Therefore, similar to
the (112) junction, the presence of trivial ABSs yields nodal
spectra which are concentrated at lines which are otherwise
not accessible in the respective topological configuration.

A similar clear-cut behavior takes place for the (222) junc-
tion where one, two or three trivial ABSs become possible.
For three trivial ABSs, one finds fully gapped spectra which
should be easily detectable in experiments. For one (two)
ABSs, one obtains a nodal line (point at P) when chiral
symmetry is preserved. In more detail, when the trivial ABS
is associated with the two MBSs of the {a, b, c}th TSC, a
nodal line spectrum will be found centered about the line
{φab + φca = 2π , φca = π , φab = π}, respectively.

VII. JOSEPHSON TRANSPORT AND NODAL
LINE SPECTRA

The analysis of the previous sections has demonstrated that
nodal line spectra are generally robust and, therefore, they are
the most prominent features to be observed in experiments.
In the present section, we provide few key elements of the
Josephson-transport in three-terminal devices with nodal line
spectra. The recommended experimental strategy for probing
the nodal line spectra is to measure the Josephson current
which is generated when sweeping the phase along lines in
the 2D synthetic space. For this purpose, it is required to
adiabatically vary the two superconducting phase differences
φab and φca, a task which can be experimentally achieved
by threading magnetic fluxes through suitable loops of the
device.

A crucial factor that determines the resulting Josephson
current profile, is whether the fermion parity (FP) of the
three-terminal junction is conserved during such a transport
experiment. When FP is conserved the even and odd FP
sectors correspond to different energies, and thus give rise to
different Josephson responses. As a consequence, the Joseph-
son current is continuous and, depending on the configura-
tion, it may be 4π - or 2π -periodic [5,78,79]. In contrast,

when FP is not preserved, the resulting Josephson current
originates from all the occupied ABSs and is 2π periodic. In
the following, we focus on the most general case of broken
FP, and demonstrate that the presence of nodal lines is still
experimentally identifiable through discontinuities marking
the Josepshon current.

To compute the Josephson effect for the Hamiltonian on
the lattice, one can employ the formulation in Refs. [121,122],
where the Josephson current flowing through the αth TSC is
expressed by

Jα = iet

h̄
T

∑
ωn

Tr[Ĝα ( j0, j0 + 1; ωn) − Ĝα ( j0 + 1, j0; ωn)],

(61)

where Ĝα is the Matsubara Green’s function describing the
αth TSC and ωn denote the respective Matsubara frequencies.
The current Jα flows from the αth TSC to the link dot. For
the generic three-terminal junction, the calculation of the
Josephson current is performed by inserting three normal
lattice sites, with each acting as a bridge between the given
TSC and the dot. Here, j0 indicates those normal lattice sites.

Before presenting the results, it is quite instructive to start
with the (111) case, which can guide the analysis for the other
cases. For this configuration, the Josephson current can be
calculated analytically within the scattering formalism. The
results at zero temperature are given by

Ja = e�

h̄

|tn|(sin φab + sin φac)√
cos2

(
φab

2

) + cos2
(

φca

2

) + sin2
(

φbc

2

) , (62)

Jb = e�

h̄

|tn|(sin φba − sin φbc)√
cos2

(
φab

2

) + cos2
(

φca

2

) + sin2
(

φbc

2

) , (63)

Jc = e�

h̄

|tn|(sin φca − sin φcb)√
cos2

(
φab

2

) + cos2
(

φca

2

) + sin2
(

φbc

2

) , (64)

where |tn|2 is the transmission probability from one TSC to
another in the normal state, which is set equal to 4/9 for the
remainder. The current conservation law implies Ja + Jb +
Jc = 0. It is possible to verify that the same expressions by
exploiting the effective low-energy model Hamiltonian and
defining the current flowing through each TSC as the result of
the derivative of the system energy with respect to the phase
imposed on the given TSC. Indeed, the supercurrent flowing
through each TSC can be obtained by means of the equation

Jα = e

h̄

∂

∂φα

(−√
R1), (65)

where −√
R1 corresponds to the energy dispersion of the

occupied states below zero energy as given in Eq. (26) with
tα,α′
11 = |tn| for all α and α′. The relation φab + φbc + φca = 0

should be taken into account after differentiating the energy
with respect to the phases. In general, one can demonstrate
that the relations:

Jα = e

h̄

∑
λ

∂

∂φα

Eλ, (66)

hold true for all three-terminal junctions at zero temperature,
where Eλ < 0 define the energies of the occupied states
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FIG. 9. The Josephson current in the three TSCs. The currents at φab = π/2 in ath, bth, and cth TSC are plotted as a function of φca in
(a1), (b1), and (c1), respectively. The currents at φca = π/2 in ath, bth, and cth TSC are plotted as a function of φab in (a2), (b2), and (c2),
respectively.

indicated by λ. Equation (66) provides a general relationship
between the current and the electronic state energy in multi-
terminal Josephson junctions. We verify that the outcome of
the analysis in Eq. (61) is consistent with that obtained by the
analysis of the energy spectra.

At this point, to highlight the relationship between the
Josephson current and the nodal structure in the 2D synthetic
space, we present in Fig. 9 a number of representative results
for the (112) junction. We start by considering the Josephson
current as a function of φca for fixed φab = π/2. The results in
(a), (b), and (c) correspond with the currents flowing in each
arm of the junction, i.e., Ja, Jb, and Jc, respectively. As shown
in Fig. 4 at φab = π/2, the nodal lines occur at φca = π and
3π/2. We find that Ja exhibit a discontinuity only at φca = π .
The same holds for Jb with a jump only at φca = 3π/2.
Instead, Jc has a jump both at φca = π and φca = 3π/2. Such
discontinuity stems from the energy dispersion near the nodal
lines. In the vicinity of φca = π , the ABS energy dispersion
of Eq. (28) is expanded as:

−E− ≈ −ε0 |φca − π | , (67)

with ε0 > 0. The current can be then calculated as

Jα ≈ e

h̄

[
∂

∂φα

(−E+) − ε0 sgn(φca − π )

]
. (68)

The second term is discontinuous at the nodal line. As shown
in Fig. 9, the contribution to the current from the −E+ band
renders the current-phase relationship discontinuous.

Similar trends are obtained for a phase-difference sweep
in φab while setting φca = π/2. As expected, the current Jb

[Fig. 9(b2)] and Jc [Fig. 9(c2)] show the jump at φca = 3π/2
because of the presence of the nodal line depicted in Fig. 4(b).
The results clearly suggest that the current-phase relationship
at low temperature well reflects the nodal structures of the

ABS energy dispersions. Finally, we note that our conclusions
can be directly generalized to the remaining junction configu-
rations and for other paths in the synthetic phase space.

VIII. CONCLUSIONS

We study a three-terminal Josephson junction which con-
sists of one-dimensional topological superconductors (TSCs)
with multiple chiral-symmetry protected MBSs. For our ex-
ploration, we consider all the possible cases with 1 or 2 MBSs
per TSC. Our main focus is on the band topology of the
ABS spectra in the synthetic phase-difference space, and the
evolution of the number of MBSs occurring at the junction
intersection. Table I summarizes the general nodal properties
of the ABS spectra with respect to the MBSs, i.e., it provides
information about the type of nodal line and/or nodal point
configuration arising, and the number of uncoupled Majorana
flat bands present.

The analysis relies on both (i) a real-space numerical
approach incorporating the microscopic details of the p-wave
superconducting nanowires forming the Y junction, and (ii)
an effective low-energy model describing the hybridization
of the zero-energy MBSs located at the intersection of the
Y junction. In this manner, our results have a generic char-
acter and are applicable to TSCs other than p-wave super-
conductors, Specifically, including engineered TSCs based
on superconductor-semiconductor hybrids [52–60,72–75] and
topological magnetic chains [72–75], where the multiple
MBSs at each TSC edge arise from the presence of either a
Kramers degeneracy or a sublattice symmetry.

One of the main outcomes of our work is that the Andreev
spectrum defined in the synthetic space of the two independent
phase differences developing among the three TSCs, has a
structure that depends nontrivially on the number of MBSs
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characterizing each one of the TSCs comprising the three-
terminal junction. The same conclusion also applies to the
resulting Josephson currents. We find that when the junction
consists of TSCs with an unequal number of MBSs, then there
always exist different types of nodal lines in the Andreev
spectra. These lines result from the invariance of the low-
energy Hamiltonian upon 2π shifts in the phase differences, a
symmetry property which imposes sign changes of the related
Pfaffian in the synthetic space. These nodal lines are robust
against the application of a phase difference across two of
the three nanowires or in a locking phase mode where the
relative phases across each pair of superconducting leads is
varied at the same time. Remarkably, the structure of the line
nodes in the synthetic space differs depending on whether
one has the (112), (122), or (222) topological configuration
in the Y junction. This aspect determines the periodicity of
the current with respect to the phase differences when the
total fermion parity is preserved, or when the latter is not,
it controls the possible emergence of discontinuities in the
current when driving the phase differences along directions
in the 2D synthetic space.

In more detail, we find that the additional presence of
a single MBS when moving from the (111) to the (112)
configuration leads to a significant changeover in the energy-
phase relation of the Andreev spectra. Dirac points give their
place to nodal lines with direct effects and consequences on
the transport properties of the multiterminal heterostructure.
Similarly, by switching from the (112) to (122) topological
configuration, one can modify the structure of the nodal
lines in the synthetic space, thus affecting the phase-drive
dependence of the Josephson transport properties. Another
interesting feature of the examined topological Y junction is
provided by the fact that in the (112) and (122) configurations,
there are two MBSs occurring along the nodal lines that
coexist with other two MBSs at the point node at the high-
symmetry point P(π, π ) in the phase difference space. This
implies that, by a suitable phase control, one may realize a sort
of Majorana box with a tunable number of zero energy modes,
thus potentially opening perspectives towards the design of
topologically-protected qubit or qudit configurations.

We also discuss the robustness and stability of the nodal
spectra against perturbations which hybridize pairs of MBSs
defined for a given TSC. These can be either attributed to
the violation of the chiral symmetry which protects the two
MBSs of the TSC, or to the presence of trivial ABSs. In the
latter case, the hybridization is unrelated to the violation of
chiral symmetry and is present even when this is preserved.
Motivated by this aspect, we put forward strategies to experi-
mentally differentiate between the two scenarios. Specifically,
we show that tuning a chiral-symmetry preserving knob can
uncover the possible presence of trivial ABSs. Our analysis
additionally reveals that nodal line spectra are more stable
than nodal points against external perturbations that hybridize
local pairs of MBSs.

We conclude with discussing the expected behavior of the
Josephson response from nodal line spectra. The geometrical
shape of the nodal lines, inferred from the Josephson current
response for given phase trajectories in the synthetic space,
can be used to assess the topological configuration of the
Y junction, as well as the degree of the chiral-symmetry

violation or possible presence of trivial ABSs. Finally, based
on the presented results, one can also reverse-engineer distinct
Josephson transport properties by controllably violating the
chiral symmetry on one or more TSC leads.

Note added. Recently, Ref. [123] appeared. This work
has negligible overlap with ours and discusses the possibility
of a quantized transconductance in three-terminal junctions
consisting of TSCs harboring a single MBS per edge, which
corresponds to a (111) junction in our notation.
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APPENDIX A: MAJORANA BOUND STATE
WAVE FUNCTIONS

In this section, we provide details on the wave functions of
the MBSs. The four energy eigenvalues of Eq. (6) are given
by ±

√
[ε(k) ± |h|]2 + �2(k). Considering the left edge of a

given TSC, the bound states at energy E can be described by
a wave function of the form

FL(x) = +

⎛
⎜⎝

hx�

−h−�

hxω
∗

−h−ω∗

⎞
⎟⎠eik−xA1 +

⎛
⎜⎝

hx�

−h+�

hxω
∗

−h+ω∗

⎞
⎟⎠eik+xA2

+

⎛
⎜⎝

−hx�

−h−�

hxω

−h−ω

⎞
⎟⎠e−ik∗

−xB1 +

⎛
⎜⎝

−hx�

−h+�

hxω

−h+ω

⎞
⎟⎠e−ik∗

+xB2, (A1)

where h± = hz ± |h| and ω = E + i
√

�2 − E2. In the above
we set |�(k)| = �, since the exact k dependence of the
amplitude of the pair potential is not crucial for the present
discussion. However, the sign changes of the pair potential are
important and have been already accounted for in Eq. (A1).
The complex wave numbers k±(E ) are calculated from the
relation

[ε(k±) ± |h|]2 + �2 =E2, (A2)

where we choose both real and imaginary parts of k± =
κ± + iκ ′

± to be positive values. The coefficients A1 and A2

(B1 and B2) denote the amplitude of the wave function in the
electron (hole) branch. It is easy to confirm from the boundary
condition FL(0) = 0 that zero-energy MBSs are possible. The
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TABLE II. I�α,να ;�β ,νβ
in Eq. (B2).

ψ
(β )
+,1 ψ

(β )
+,2 ψ

(β )
−,1 ψ

(β )
−,2

ψ
(α)
+,1 SφCθ −SφSθ −CφCθ CφSθ

ψ
(α)
+,2 SφSθ SφCθ CφSθ −CφCθ

ψ
(α)
−,1 CφCθ −CφSθ SφCθ −SφSθ

ψ
(α)
−,2 −CφSθ CφCθ SφSθ SφCθ

resulting wave functions for two edge MBSs are given by

FL(x) = A1 ψ−,1 sin(κ−x)e−κ ′
−x + A2 ψ−,2 sin(κ+x)e−κ ′

+x,

(A3)

with Eqs. (11), (16), and (17) applying.
The wave function of the two bound states at the right edge

of the TSC at x = 0 can be represented in the same manner as

FR(x) = A1 ψ+,1 sin(κ−x)eκ ′
−x + A2 ψ+,2 sin(κ+x)eκ ′

+x,

(A4)

with Eqs. (10), (14), and (15) applying.
To describe the wave function of a TSC in the phase

of |w| = 1, we first analyze the Hamiltonian for the spin-↑
sector,

H↑ =
(

ε(k) − |h| �(k)
�(k) −ε(k) + |h|

)
, (A5)

where we assume that the Zeeman field is along the z axis.
The dispersion for a spin-↓ electron is pushed to high energies
and does not cross the Fermi level. The bound state at the left
(right) edge is described by f−,↑ ( f+,↑). The effects of hx are
considered through the rotation of the wave function in spin

space as

eiθ/2σ̂2 f±,↑ = cos(θ/2) f±,↑ + sin(θ/2) f±,↓. (A6)

The right-hand side corresponds to ψ±,1 in Eqs. (14) and (16).

APPENDIX B: HOPPING MATRIX ELEMENTS BETWEEN
MAJORANA BOUND STATES

The tunnel-coupling matrix elements that describe the hy-
bridization of the MBSs are calculated from the overlap of
the respective wave functions at the two edges of the pairwise
coupled TSCs. This coupling is mediated by the quantom dot
which links the three TSCs, as shown in Fig. 1(a). The hop-
ping matrix elements in the low-energy effective Hamiltonian
are calculated as follows:

Hαβ
να,νβ

= 1

2

[
eiφατ̂3/2 ψ

(α)
�α,να

]†
(−2t̃ τ̂3)eiφβ τ̂3/2 ψ

(β )
�β,νβ

, (B1)

= i

2
t̃I�α,να ;�β,νβ

(φα − φβ, θα − θβ ), (B2)

where α, β = (a, b, and c) label the TSCs. The amplitude
of the hopping mediated by the dot is t̃ , and depends on the
spatial profile of the MBS wave functions, as well as on the
distance between the two edges. In addition, I�α,να ;�β,νβ

de-
pends on the chirality configuration of the MBSs, the relative
phase difference, and the relative direction of the Zeeman
fields in the two coupled TSCs. In Table II, we summarize
the results for I�α,να ;�β,νβ

where

Cφ = cos

(
φα − φβ

2

)
, Sφ = sin

(
φα − φβ

2

)
, (B3)

Cθ = cos

(
θα − θβ

2

)
, Sθ = sin

(
θα − θβ

2

)
. (B4)

In the main text, the dependence of I�α,να ;�β,νβ
on φα − φβ

is factorized and the remaining part is denoted by tαβ
νανβ

. The
signs of the hopping elements do not affect eigenvalues of the
low-energy Hamiltonian.
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