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We determine the quantum ground state of dipolar bosons in a quasi-one-dimensional optical lattice and
interacting via s-wave scattering. The Hamiltonian is an extended Bose-Hubbard model which includes hopping
terms due to the interactions. We identify the parameter regime for which the coefficients of the interaction-
induced hopping terms become negative. For these parameters we numerically determine the phase diagram for
a canonical ensemble and by means of density matrix renormalization group. We show that at sufficiently large
values of the dipolar strength there is a quantum interference between the tunneling due to single-particle effects
and the one due to the interactions. Because of this phenomenon, incompressible phases appear at relatively large
values of the single-particle tunneling rates. This quantum interference cuts the phase diagram into two different,
disconnected superfluid phases. In particular, at vanishing kinetic energy, the phase is always superfluid with a
staggered superfluid order parameter. These dynamics emerge from quantum interference phenomena between
quantum fluctuations and interactions and shed light into their role in determining the thermodynamic properties
of quantum matter.
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I. INTRODUCTION

Ultracold atoms in optical lattices are prominent platforms
that shed light on the interplay between interactions and quan-
tum fluctuations. That interplay determines key properties of
quantum matter [1]. In fact, in these systems it is possible
to experimentally tune the relative strength of quantum fluc-
tuations and of interactions. This capability enables one, for
instance, to sweep across the superfluid–Mott-insulator quan-
tum phase transition in a gas of bosons [2,3], just to mention
a remarkable example. In this scenario, the experimental ob-
servation of quantum phases of ultracold dipolar gases [4–6]
and their confinement in optical lattices [7–13] paves the way
toward the characterization of strongly correlated quantum
matter, which is typically theoretically described by the so-
called extended Hubbard model [13–20].

In the extended Bose-Hubbard model, the effect of power-
law interactions is usually represented by density-density
interaction terms [13–21]. These terms are responsible for
density modulations within the lattice [16–27] and for topo-
logical incompressible phases in one dimension [28–32].
Moreover, the onsite contribution of the dipolar potential
typically renormalizes the contact interactions and can make
the gas unstable [18,33–35]. Ab initio derivations of the Bose-
Hubbard model show that interactions are also responsible
for the appearance of correlated hopping terms [36], which
can be of the same order as the density-density interaction
terms [12,34,37–39].

There is a limited knowledge on the effect of the
interaction-induced hopping on the ground-state properties
of a dipolar gas in an optical lattice. Exact diagonalization
for a chain of few bosons showed the appearance of exotic

superfluid and charge-density wave phases [37]. Density ma-
trix renormalization group (DMRG) studies of the extended
grand-canonical Bose-Hubbard model found superfluid
phases with nonvanishing Fourier components which can
be either commensurate or incommensurate with the lattice
periodicity, depending on the lattice depth [38]. These studies
point out that the interplay between the various quantities is
by no means trivial and calls for a systematic study of the
phases as a function of the power-law interaction strength.

In this paper we study the extended Bose-Hubbard model
of a quasi-one-dimensional gas of ultracold dipolar bosons.
We identify the parameter regime where the interaction-
induced hopping terms become of the same order as the
kinetic energy and determine the resulting ground-state phase
diagram. The phase diagram is numerically determined for a
canonical ensemble at zero temperature and at density ρ = 2
per lattice site by means of a DMRG program [40,41], the
phases are characterized using the classification discussed
in [42]. We find several remarkable properties. Among them,
the most striking is that correlated hopping can destruc-
tively interfere with the hopping due to the kinetic energy.
This quantum interference is responsible for the appearance
of incompressible phases in relatively shallow lattices. The
interaction-induced hopping, moreover, gives rise to super-
fluidity in deep lattices, where otherwise one would expect
incompressible phases. These superfluid phases are character-
ized by a staggered superfluid order parameter.

The content of this paper is here summarized. In Sec. II
we introduce the Bose-Hubbard model for power-law inter-
acting atoms and discuss the behavior of the coefficients for
dipolar interactions. In Sec. III we analyze the phases at zero
temperature by means of a mean-field ansatz. The results of
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the numerical simulations are reported in Sec. IV and the
conclusions are drawn in Sec. V. The Appendices provide
details of the calculations of the coefficients, of the numerical
implementations, as well as supplementary results.

II. EXTENDED BOSE-HUBBARD MODEL

We consider ultracold bosons of mass m in an anisotropic
trap which is elongated along the x axis. The dipolar bosons
are polarized by an external field perpendicular to the trap
axis and interact via the dipolar and the van der Waals (s-
wave) interactions. The dynamics is governed by the second-
quantized Hamiltonian for the bosonic field �̂(r) [34]:

Ĥ =
∫

d3r �̂†(r)

[
− h̄2

2m
∇2 + Vtrap(r)

]
�̂(r)

+ 1

2

∫
d3r

∫
d3r′�̂†(r)�̂†(r′)Uint (r − r′)�̂(r′)�̂(r),

(1)

where the field operators �̂(r) and �̂†(r) obey the commu-
tation relation [�̂(r), �̂(r′)†] = δ3(r − r′). The function Vtrap

denotes the trap potential, which is the sum of a tight harmonic
potential in the y-z plane, and an optical lattice of periodicity
a along the x axis,

Vtrap = mω2

2
(y2 + z2) + V0 sin2(πx/a). (2)

Here, ω is a harmonic trap frequency and V0 denotes the
amplitude of the optical lattice. The interaction potential is
the sum of the contact and of the power-law interactions

Uint (r) = Ug(r) + Uα (r). (3)

Specifically, Ug(r) = gδ(3)(r) is the contact potential with g =
4π h̄2as/m and as the s-wave scattering length. The power-
law interactions Uα (r) scale with the interparticle distance r as
Uα (r) ∝ 1/rα . In this work we consider dipoles polarized by
an external field along the z axis. In this case, Uα (r) ≡ Ud (r),
where

Ud (r) = Cdd

4π

1 − 3 cos2(θ )

r3
, (4)

where θ is the angle between the dipole and r. The dipole-
dipole interaction is anisotropic in space since the force
depends on the dipoles’ orientation. The coefficient Cdd scales
the strength of the dipole-dipole interactions: for magnetic
dipoles with moment μm, the coefficient is Cdd = μ0μ

2
m; for

electric dipoles with moment μe it reads as Cdd = μ2
eε0, where

μ0 and ε0 are the magnetic and the electric permeability,
respectively. In the rest of this paper, in place of Cdd we
will use the rescaled, dimensionless quantity d , that is defined
as [38,43]

d = mCdd

2π3h̄2a
. (5)

A. Extended Bose-Hubbard Hamiltonian

We assume that the bosons are in the ground state of the
harmonic trap and tightly bound at the minima of the optical
lattice. In this low-energy limit, the field operator �̂(r) is

decomposed into the sum of bosonic operators â j , which
annihilate a particle at the jth lattice site [44]:

�̂(r) =
L∑

j=1

φ0(y, z)ω j (x) â j, (6)

where j = 1, . . . , L and L is the number of lattice sites.
The scalar function φ0(y, z) denotes the ground state of the
transverse harmonic trap, w j (x) is the real-valued Wannier
function for the lowest lattice band, and operators â j , â†

j fulfill

the commutation relation [â j, â†
l ] = δ j,l . After using Eq. (6)

in Hamiltonian (1) and integrating out the spatial degrees of
freedom one obtains the extended Bose-Hubbard model of
Refs. [34,37]. A summary of the derivation is reported in
Appendix A.

We denote by ĤBH the corresponding Bose-Hubbard
model, and decompose it into the sum of the Hamiltonian
Ĥ0, describing the onsite interactions and tunneling term,
and of the Hamiltonian Ĥα , which includes the other terms.
Hamiltonian Ĥ (0)

BH takes the form of the “traditional” Bose-
Hubbard model [2]:

Ĥ (0)
BH = −t

L−1∑
j=1

(â†
j â j+1 + H.c.) + U

2

L∑
j=1

n̂ j (n̂ j − 1), (7)

where n̂ j = â†
j â j counts the number of particles at site j. The

coefficients t and U denote the tunneling amplitude and the
onsite interaction, respectively. Coefficient t solely depends
on expectation values of the single-particle Hamiltonian, and
in particular on the kinetic energy. The onsite interaction coef-
ficient U , instead, is determined by the corresponding integral
of the potential of Eq. (3) (see Appendix A). Thus, in general
it also includes the contribution of the power-law interactions.
Depending on the trap geometry, this contribution can lead
to vanishing or negative values of the onsite interactions,
which may cause a collapse of the system [18,33–35,37]. In
this work we will restrict ourselves to geometries for which
the coefficient U is positive, thus, the onsite interactions are
repulsive and the gas is stable.

The Bose-Hubbard Hamiltonian Ĥ (0)
BH is obtained (i) by

truncating the hopping processes to the nearest neighbors and
(ii) by solely taking the local contribution of the interactions.
Deep in the tight-binding regime the first approximation is
justified. On the contrary, for large values of the onsite po-
tentials and/or in the presence of power-law interactions one
shall consistently include the coupling between �th nearest
neighbor. These terms are contained in the Hamiltonian Ĥα ,
which we write as the sum of the terms coupling �th nearest
neighbor

Ĥα =
L∑

�=1

Ĥ (�)
α ,

and whose detailed form is given below for � = 1, 2.
In this work we truncate the sum over � and analyze the

phase diagrams of the Hamiltonian for two cases. First, we
consider the ground state of the Bose-Hubbard Hamiltonian,
where we truncate the power-law interactions to the nearest
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neighbors:

Ĥ (1)
BH = Ĥ (0)

BH + Ĥ (1)
α . (8)

We then compare the corresponding phase diagrams with the
ones obtained by keeping also the coupling to the next-nearest
neighbors:

Ĥ (2)
BH = Ĥ (1)

BH + ĤNNN + Ĥ (2)
α . (9)

Here, ĤNNN describes the next-nearest-neighbor hopping
terms due to the kinetic energy and to the trapping potential,
which we include for consistency (see Appendix A).

In the rest of this section we discuss the detailed form of
Ĥ (1)

α and of Ĥ (2)
α . The Hamiltonian Ĥ (1)

α reads as [37,42,45]

Ĥ (1)
α = V

L−1∑
j=1

n̂ j n̂ j+1 − T
L−1∑
j=1

[â†
j (n̂ j + n̂ j+1)â j+1 + H.c.]

+ P

2

L−1∑
j=1

(â†
j+1â†

j+1â j â j + H.c.). (10)

The term scaled by the positive amplitude V describes a re-
pulsive density-density interaction. This term tends to inhibit
the occupation of neighboring sites and promotes density
modulations. In the following, we denote it by blockade
coefficient. The other two terms describe tunneling effects
induced by the interactions. In detail, coefficient T scales a
hopping term which nonlinearly depends on the occupation
number of neighboring sites. We will denote this term by
“density-assisted tunneling.” The term scaled by P describes
pair hopping between nearest neighbors and we will refer to it
as “pair-hopping term.”

The form of the higher-order coupling terms is similar to
the one of Ĥ (1)

α . We report here the coupling to next-nearest
neighbors:

Ĥ (2)
α =VNNN

L−2∑
j=1

n̂ j n̂ j+2 +
L−2∑
j=1

(
T̂ (2)

j + P̂(2)
j

)
. (11)

Here, VNNN scales term describing the repulsive next-nearest-
neighbor density-density interaction and is positive. The cor-
responding interaction-induced tunneling and pair-hopping
terms are now collected in operators T̂ (2)

j and P̂(2)
j , respec-

tively, and take the form

T̂ (2)
j = −TNNNâ†

j (n̂ j + n̂ j+2)â j+2 − T 1
NNNâ†

j+1n̂ j â j+2

− T 2
NNNâ†

j n̂ j+2â j+1 − T 3
NNNâ†

j n̂ j+1â j+2 + H.c., (12)

P̂(2)
j = P1

NNN

2
â†

j+1â†
j+2â j â j + P2

NNN

2
â†

j+2â†
j â j+1â j+1

+ P3
NNN

2
â†

j+2â†
j+2â j+1â j + H.c. (13)

The specific form of the coefficients VNNN, T �
NNN, P�

NNN is
given in Appendix A.

We remark that correlated hopping terms have been also
discussed for atoms solely interacting via s-wave scattering
but in the limit of large ratios U/t [46,47]. In this case,
for repulsive interactions the coefficients are all positive and
the density-dependent tunneling leads to a reduction of the

FIG. 1. Contour plot in the V/U -t/U plane of the (a) density-
assisted tunneling coefficient T and (b) the pair tunneling coefficient
P for the nearest-neighbor coupling and in units of the tunneling
rate t . The black dashed lines show the values of V and U at some
constant dipolar interaction strengths d . The other parameters are
discussed in the text.

incompressible region [47]. In the next section we identify
a parameter regime where there is a sign change of the
interaction-induced hopping coefficients as a function of d .

B. Interaction-induced tunneling

By changing the quantum species, and thus changing d ,
one modifies the relative weight between s-wave and dipolar
interactions. The first one typically dominates at short-range
distances, while the dipolar interactions are expected to de-
termine the nonlocal terms. We now consider a trap geometry,
where s-wave scattering is negative and the onsite contribution
of the dipolar interactions stabilizes the gas, making the onsite
interactions repulsive, U > 0. In this regime, we identify the
parameter regime where the correlated tunneling coefficients
become negative.

Figures 1(a) and 1(b) display the contour plots of the
density-assisted tunneling coefficient T and of the pair
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tunneling coefficient P as a function of U and V , keeping
t fixed. For later convenience we label the axis by V/U
and t/U . In Fig. 1(a), moreover, we explicitly show lines at
constant dipolar interaction d . We observe that the value of
T becomes comparable with V at large dipolar interaction
strength and for small ratios t/U . Therefore, when t/U → 0,
one still has significant hopping due to the interactions. We
note, moreover, that the pair tunneling coefficients remain
very small across the phase diagram. We will keep these terms
in our simulations, and anticipate that they play a negligible
role in determining the phases of the ground state for deep
lattices.

Let us here specify the parameters we used for evaluating
these coefficients and which we will use in the rest of this
paper, unless otherwise stated. The depth of the optical lattice
in the axial direction is kept fixed to the value V0 = 8ER,
where ER is the recoil energy. The transverse trap frequency
is ω =

√
2Vharπ2/a2m, where we choose Vhar = 50ER. The

tunneling rate t between nearest neighbor and the tunneling
rate between next-nearest neighbor tNNN are constant, and for
the given lattice depth tNNN = 0.0123 t .

C. Interaction-induced atomic limit

We now analyze the behavior of the interaction-induced
tunneling coefficients as a function of t/U and at a given
ratio V/U . Figure 2(a) displays the density-assisted tunneling
coefficient T and the pair-hopping coefficient P in units of
t . The coefficients T and P are negative over the considered
parameter range. In particular, P is one order of magnitude
smaller than the density-dependent tunneling coefficient T ,
while T is of the same order of magnitude as the tunneling
rate. Therefore, single-particle tunneling and correlated tun-
neling have opposite sign and can mutually cancel. Correlated
(density-assisted) tunneling, in particular, is dominant for
t/U → 0, while single-particle hopping is dominant at large
ratios t/U . There is a parameter range at finite ratios t/U ,
thus, where this destructive interference leads to an effective
atomic limit. Figure 2(b) displays the values of the scattering
length and of the dipolar interaction strength corresponding to
the curves in Fig. 2(a). The ratio t/U for which one finds the
interaction-induced atomic limit is indicated by the vertical
black line in Fig. 2(b) for density ρ = 2 per lattice site. Here,
T = t/3.

In order to find a systematic way to identify the regime
of the interaction-induced atomic limit, we consider the one-
particle hopping terms of Hamiltonian H (1)

BH in Eq. (10) and
collect them in the operator T̂eff , which reads as [47]

T̂eff =
L−1∑
j=1

â†
j [−t − T (n̂ j + n̂ j+1)]â j+1 + H.c. (14)

The expectation value of this term on a homogeneous distri-
bution at average density 〈n̂i〉 = ρ scales as

〈T̂eff〉 	 L Re{〈â†
j â j+1〉}[−t − T (2ρ − 1)]. (15)

This expression shows that, for nonvanishing off-diagonal
correlations, then 〈T̂eff〉 can vanish when

−t − T (2ρ − 1) = 0.

FIG. 2. (a) Density-assisted tunneling coefficient T (blue) and
pair-hopping coefficient P (green) as a function of t/U for V/U =
0.5. (b) Displays the corresponding values of the dimensionless dipo-
lar interaction strength d (blue) and of the s-wave scattering length
as in units of a (green). The ratio V/U is increased by changing both
d and the scattering length as. Note that here we choose negative
scattering lengths, so that the s-wave potential partially cancels out
with the local repulsive component of the dipolar interactions. The
other parameters are given in the text. The vertical black line in
(a) indicates the value of t/U for which linear tunneling and density-
assisted tunneling between nearest-neighbor sites mutually cancel.

Solutions with t 
= 0 exist for densities ρ 
= 1
2 . In particular,

for 0 < ρ < 1
2 , destructive interference occurs for T > t > 0.

In this case, 〈T̂eff〉 = 0 for T/t = 1/(1 − 2ρ). In the other
regime, for ρ > 1

2 , the interaction-induced atomic limit re-
quires T < 0 and is found for

|T |
t

= 1

2ρ − 1
. (16)

Relation (16) can be fulfilled at relatively small dipolar
strength when the density is sufficiently high. In order to
explore the effects of this interference on the ground-state
properties, in our numerical studies we focus on the phases
of a dipolar gas with commensurate density ρ = 2.
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III. MEAN-FIELD ANALYSIS

In this section we use a mean-field ansatz and an approx-
imated model in order to infer some features of the phase
diagrams of Sec. IV.

A. Atomic limit

We analyze the ground state in the limit in which all
hopping terms are set to zero. For convenience we consider
the simplified Hamiltonian

Hat = U

2

∑
j

n̂ j (n̂ j − 1) + V
∑

j

∑
r>0

1

rα
n̂ j n̂ j+r, (17)

where α is the power-law exponent, α > 1, and V scales the
interaction in the limit in which the Wannier functions are
approximated by Dirac delta function.

For α → ∞ the interaction reduces to nearest neighbors
and the ground state results from the interplay between the
onsite interaction, which tends to minimize the onsite occupa-
tion, and the repulsive interaction between neighboring sites,
which favors the onset of density waves with double lattice
periodicity. We denote by MI[2] the Mott-insulator state with
two particles per site and by CDW[n1, n2] the charge-density
wave state where neighboring sites are occupied by a re-
peating sequence of n1 and n2 particles per site. For ρ = 2
these are CDW[3,1] and CDW[4,0]. The MI[2] is stable when
V � V (1)

c , where

V (1)
c = U

2

1

ζ (α)
(
1 − 1

2α−1

) , (18)

and ζ (α) is the Riemann’s zeta function. For α → ∞ we
recover the value V (1)

c = U/2. For α finite the boundary is
shifted to larger values of V : the power-law tails tend to
stabilize the MI[2] state.

For α > 1 the three phases MI[2], CDW[3,1], and
CDW[4,0] are degenerate at V = V (1)

c . In the interval V (1)
c <

V < V (2)
c the ground state is the CDW[4,0]. The upper bound

V (2)
c is given by the expression

V (2)
c = 2U

ζ (α)

2α/8

[1 − (2/3)α/6]
, (19)

which separates the phase CDW[4,0] from the CDW[6,0,0]
with triatomic Wigner-Seitz cell. For repulsive dipolar interac-
tions, when α = 3, then this bound takes the value V (2)

c 	 2U .
In general, V (2)

c monotonously increases with α and reaches
V (2)

c → ∞ for α → ∞. For finite α one finds for V > V (2)
c

further transition points to structures with increasing Wigner-
Seitz cells, until all particles are localized at one lattice site in
the limit V/U → ∞.

B. Staggered superfluidity

For nearest-neighbor interactions and ρ > 1
2 , correlated

tunneling dominates the hopping events for T < 0 and t <

|T |(2ρ − 1). In this regime, in the absence of interactions the
state with minimum energy has momentum q = π (here in
units of 1/a). Following these considerations, we now assume
a site-dependent superfluid order parameter, which we define

as [48]

〈â j〉 = φeiθ j , (20)

and use it to calculate the mean-field energy of the nearest-
neighbor hopping term:

Hhop = 2[−t + |T |(2ρ − 1)]
L−1∑
j=1

φ2 cos(θ j − θ j+1)

+ P

2

L−1∑
j=1

φ4 cos[2(θ j − θ j+1)], (21)

where P < 0 for the parameters of this paper. Discrete trans-
lational invariance gives θ j = − jθ , such that θ j − θ j+1 = θ

is a constant phase increment from site to site [48]. This
ansatz shows that the energy is minimal for θ = π in the
regime where density-assisted tunneling dominates. The SF
order parameter has thus a Fourier component at q = π . The
alternating sign of the local superfluid parameter leads to the
denomination “staggered superfluidity” (SSF) [42].

We now consider the power-law behavior of the interac-
tions, and thus the coupling to the other neighbors. For this
purpose we write the single-particle hopping terms due to the
single-particle tunneling and to the density-assisted tunneling
in the compact form

Ĥ ′
hop =

∑
j

∑
r>0

(−tr − T ′
r [n̂1, . . . , n̂L])â†

j â j+r + H.c., (22)

where T ′
r [n1, . . . , nL] is a generic function of the density

distribution and scales with 1/rα , and tr is the hopping term
due to the single-particle energy, such that t1 = t and t2 =
tNNN. For the uniform density distribution ρ we make the
simplifying assumptions 〈T ′

r 〉 ∼ −T ′[ρ]/rα . Using Eq. (20)
we obtain the expression

H ′
hop ∼2φ2

L−1∑
j=1

∑
r>0

(
−tr + T ′[ρ]

rα

)
cos(θ j − θ j+r ). (23)

This is the relation that the site-dependent phase θ j shall
fulfill in order to achieve the interaction-induced atomic limit.
For a shallow lattice and in the regime where interactions
are dominant superfluid phases can have Fourier components
that are incommensurate with the lattice periodicity [38]. For
sufficiently deep lattices, which is the case we consider in this
paper, the sum can be truncated at the next-nearest neighbors.
Then, an approximated root of the equation H ′

hop = 0 is found
by imposing −t + T ′[ρ] = 0, where now

T ′[ρ] = |T |(2ρ − 1) − ∣∣T 2
NNN

∣∣ρ. (24)

One consequence is that the coupling beyond nearest neigh-
bors shifts the interaction-induced atomic limit to smaller
values of the ratio t/U . The interval where −t + T ′[ρ] >

0 is now expected to be smaller than for nearest-neighbor
coupling. Here, the superfluid phase is to good approximation
the staggered superfluid with θ j = − jπ .

IV. GROUND-STATE PHASE DIAGRAMS

In this section we numerically determine the properties of
the ground state of the extended Bose-Hubbard Hamiltonian
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as a function of the strength of the dipolar interactions. We
choose the commensurate density ρ = 2 and calculate the
ground state when the coupling is first truncated to the nearest
neighbor and then when also the next-nearest neighbors are
included.

Our results are obtained by means of a DMRG numerical
program [40], which is based on the ITensor C++ library for
implementing tensor network calculations [41]. The simula-
tions are run for N particles in a lattice with L = N/2 sites
with open boundary conditions, for different lattice sites and
for different initial states. The interested readers are referred
to Appendix B for details on the implementation.

Unless mentioned otherwise, the system parameters are
given in Sec. II B. In this parameter regime mean-field esti-
mates predict that the atomic limit is shifted to finite values
of t/U due to destructive interference between single-particle
hopping and correlated tunneling.

We first review the observables, by means of which we
characterize the phases. In Sec. IV B we report the phase
diagram of the extended Bose-Hubbard Hamiltonian with
nearest-neighbor coupling [Eq. (8)]. In Sec. IV C we then
discuss the ground-state phase diagram of the Hamiltonian
with next-nearest-neighbor couplings [Eq. (9)].

A. Observables

In this work we consider a system of atoms with finite
particle numbers at vanishing temperature. We determine
the phases by means of the following observables, whose
expectation values are taken over the ground state.

We identify whether a phase is compressible by means of
the local variance 
n j [34]:


n j = 〈
n̂2

j

〉 − 〈n̂ j〉2. (25)

This quantity is connected to the local compressibility [49]. A
phase is classified as incompressible when 
n j vanishes at all
sites j. Let us note that while measurement of 
nj requires
single-site resolution, other possible methods allow to access
compressibility in harmonic traps [50,51].

The superfluid phase is signaled by the nonvanishing value
of single-particle correlations 〈â†

i â j〉 across the lattice. In par-
ticular, we analyze the Fourier transform of the off-diagonal
single-particle correlations, which is defined as [52]

M1(q) = 1

L2

L−1∑
i, j=1

eiq(i− j)Re〈â†
i â j〉. (26)

The phase is a superfluid when M1(q) 
= 0 and the maximum
Fourier component is q = qmax with qmax = 0. When the
maximum of M1(q) is at qmax = π the phase is a staggered
superfluid (SSF) [42].

Diagonal long-range order is revealed by a peak of the
static structure form factor S(q) at the corresponding Fourier
component, where

S(q) = 1

L2

L−1∑
i, j=1

〈n̂in̂ j〉e−iq( j−i). (27)

A single peak of S(q) at q = 2π/ j signals a periodic structure
with periodicity ja. We denote this phase by charge-density

wave CDW j if it is incompressible. If instead the phase is
superfluid, it is denoted by lattice supersolid phase j. We
distinguish between two kinds of lattice supersolid phases,
depending on the Fourier spectrum of the single-particle off-
diagonal correlations. The phase is a lattice supersolid SS j

when qmax = 0. If the peak is instead at qmax = π , then the
phase is a staggered supersolid SSS j [42].

Additionally, pair tunneling terms are expected to favor
the onset of what has been denoted by pair superfluidity
(PSF) [37,38,42,48,53,54]. For the parameter regime of our
study we do not find PSF, but for completeness we report
the observables we use in order to come to our conclusions.
PSF is signaled by a nonvanishing expectation value of the
pair-correlation function. In this work we analyze the Fourier
transform of the pair correlations 〈â†

i â†
i â j â j〉, which we define

as [52]

M2(q) = 1

L2

L−1∑
i, j=1

eiq(i− j)Re〈â†
i â†

i â j â j〉. (28)

In the pair superfluid (PSF) and in the pair supersolid (PSS)
phases the Fourier components of M2(q) [Eq. (28)] are
larger than the corresponding Fourier components of M1(q)
[Eq. (26)] [52].

The MI phase is characterized by vanishing off-diagonal
correlations, vanishing compressibility, and S(q) = 0. We
verify the existence of the Haldane insulator by calculating
the expectation value of the modified string-order parame-
ter [31,55]

Os(r) = 〈δn̂ie
(iθ

∑i+r
k=i δn̂k )δn̂i+r〉 (29)

with δn̂i = n̂i − ρ. For density ρ = 2 we take θ = π/2 [55].
Finally, we analyze the entanglement entropy for a partition
of the chain into two equally long subsystems A and B:

SvN = −Tr{ρ̂B ln ρ̂B},
where ρ̂B = TrA{|φ0〉〈φ0|} and |φ0〉 is the ground state. We
refer the readers to Appendix B for further details on the nu-
merical implementations (including how we treat the bound-
ary effects). Table I summarizes the expectation values that
characterize the phases here discussed.

B. Nearest-neighbor interactions

The properties of the ground state of the Bose-Hubbard
Hamiltonian H (1)

BH [Eq. (8)] are studied for a finite chain at
density ρ = 2 and as a function of the dipolar interaction
strength d [Eq. (5)]. We report the phase diagrams as a
function of the blockade coefficient between nearest neighbor
V/U and of the tunneling rate t/U . Figures 3(a)–3(d) display
the contour plots of the relevant observables for (a) the SF
phase, (b) the SSF phase, (c) the incompressible phase, and
(d) the phases with diagonal long-range orders.

We first identify the MI-SF phase transition at V → 0:
the transition point (t/U )c is in qualitative agreement with
the literature [56], the discrepancy is attributed to the finite
size of the chain. At finite and nonvanishing ratios V/U ,
the incompressible phase moves to larger values of t/U . It
is localized about the white dashed line, which indicates
the atomic limit due to quantum interference (see Sec. III).
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TABLE I. Table of the phases, of their acronyms, and of the corresponding values of the observables. The subscript j of the density wave
and of the supersolid phases refer to the component q = 2π/ j of the structure form factor which is different from zero, correspondingly, the
density modulation has periodicity ja. qmax indicates the Fourier component at which the spectra of M1, M2, S(q) may have a maximum.

Phase Acronym 
ni, Eq. (25) M1(q), Eq. (26) M2(q), Eq. (28) S(q), Eq. (27) Os, Eq. (29)

Mott insulator MI 0 0 0 qmax = 0 0
Density wave CDW j 0 0 0 qmax = 2π/ j 
= 0
Haldane insulator HI 0 0 0 qmax = 0 
= 0
Superfluid SF 
= 0 qmax = 0 M2(q) < M1(q) qmax = 0 0
Staggered superfluid SSF 
= 0 qmax = π M2(q) < M1(q) qmax = 0 0
Supersolid SS j 
= 0 qmax = 0 M2(q) < M1(q) qmax = 2π/ j 0
Staggered supersolid SSS j 
= 0 qmax = π M2(q) < M1(q) qmax = 2π/ j 0
Pair superfluid PSF 
= 0 M1(q) < M2(q) qmax = 0 qmax = 0 0
Pair supersolid PSS j 
= 0 M1(q) < M2(q) qmax = 0 qmax = 2π/ j 0

By inspecting Figs. 3(a) and 3(b) it is evident that this
phase divides the diagram into two disconnected SF phases:
According to our classification, on the left the phase is a
staggered SF (SSF), on the right it is a SF. It is remarkable
that also at t/U → 0 the phase is superfluid. According to our
preliminary considerations, this superfluid phase is due to the
correlated hopping of the dipolar interactions.

Inspecting the single-particle off-diagonal correlations
[Fig. 3(a)] and the structure form factor [Fig. 3(d)], we further
observe a transition about the line V = U/2. The properties at
this transition depend on t/U . We recall that at this value and
in the atomic limit we expect a first-order transition from a

FIG. 3. Contour plot of the relevant observables in the V/U -t/U
plane for the ground state of the Bose-Hubbard model of Eq. (8).
(a), (b) Signal SSF and SF through the Fourier components q = 0
and π , respectively, of the single-particle off-diagonal correlations
M1(q). (c) Reports the maximum value of the compressibility across
the lattice, Eq. (25), and (d) the component at momentum π of the
structure form factor, signaling the onset of a density modulation.
The number of lattice sites is fixed to L = 60 and the number
of particles is given by N = 120. The white dashed lines in (a)–
(c) indicate the interaction-induced atomic limit. The vertical dotted
lines in (d) indicate the parameters of the sweeps in Fig. 7. See
Appendix B for further details.

MI to a CDW[4,0] [24]. This is consistent with our numerical
results along the values of the interaction-induced atomic
limit. When hopping is dominated by the kinetic energy (on
the right of the interaction-induced atomic limit), the phase
is expected to undergo a continuous transition from SF to SS
(not included in our phase diagram). When instead hopping
is due to interactions we observe a continuous transition from
SSF to staggered SS (SSS).

In the next sections, we discuss some of these behaviors in
detail.

1. Superfluidity

In one dimension there is no long-range off-diagonal order,
and superfluidity is signaled by the power-law decay of the
single-particle correlation function with the distance [57]. In
the SSF phase this behavior is modulated by an oscillation
with (dimensionless) wave number q = π , so that the correla-
tion function changes sign every time the distance is increased
by one lattice site. This oscillation is visible in Fig. 4(a),
which reports the off-diagonal correlation in the parameter
regime of the SSF phase. Figure 4(b) provides evidence of the
power-law decay of the envelope. We note that this behavior
was also reported in Refs. [37,38], and was there denoted
by “pair superfluidity.” We consider here more appropriate
to denote this phase by “staggered SF” since it is due to
the dominant contribution of the density-assisted tunneling
term in establishing off-diagonal correlations. Interestingly,
the oscillation is already captured by a mean-field model (cf.
Sec. III). In general, the analysis of the Fourier transform of
M1(q) across the diagram shows that in the superfluid phase
the Fourier components different from zero are solely at q = 0
and π . This is visible, for instance, in Figs. 5(a) and 6(a).

We now analyze the onset and the features of the SF phase
along two specific transition lines: along the axis V/U for
t/U = 0.02 and along the axis t/U for V = U/2.

We first consider V = U/2. Figure 5(a) displays the
Fourier spectrum of the single-particle correlation function
M1(q) as a function of t/U : the nonvanishing Fourier compo-
nents are at q = 0 (at large t/U ) and at q = π (at small t/U ).
These two Fourier components are reported in Fig. 5(b): they
are different from zero on the right and on the left, respec-
tively, of the interaction-induced atomic limit. When moving
toward the atomic limit they decrease until they vanish. The

174505-7
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FIG. 4. (a) Single-particle off-diagonal correlation 〈â†
� â�+r〉 for a

particle at the center of the chain and as a function of the distance
r (in units of the lattice constant a). Here, V/U = 0.529 and t/U =
0.042, corresponding to a point in the SSF phase. The chain has L =
120 sites and N = 240 particles, the site close to the center is � = 50.
(b) Same as (a) but in logarithmic scale. Here, the absolute value
of the correlation function is reported and the power-law decay is
evident.

entanglement entropy [Fig. 5(c)] vanishes for an interval of
values centered about the transition point.

The behavior of superfluidity for small ratios t/U is deter-
mined by the correlated hopping. Figure 6(a) displays M1(q)
as a function of V/U and small ratio t/U . In Fig. 6(b) we
report the Fourier components at q = 0 and π . The phase
is incompressible for a small interval about V = 0, after
which the Fourier component at q = π rapidly grows and
reaches a maximum about V = U/2. At the same value, the
entanglement entropy [Fig. 6(c)] displays a maximum. After
this maximum, the Fourier component at q = π drops to
smaller values, while the q = 0 component starts to grow from
zero to a small but finite value (the numerics converge very
slowly at these points and we cannot provide more detailed
sampling). The Fourier component at q = π is always larger
than M1(0), therefore, according to our definition the SF phase
is staggered. We have analyzed the scaling of the peak at
V = U/2 with the system size: by means of a fit we extract
that the peak height at the asymptotics is finite and tends to
the finite value M1(π ) → 0.47 (see Appendix C for further
details).

We note that across the phase diagram we do not observe
pair superfluidity: In fact, the expectation value of observable
M2 is always smaller than the one of M1 at the corresponding
q value (see Appendix C for details). Moreover, we do not find
spatial modulation in the pair correlations. We believe that this
is because the pair tunneling coefficient P is negative over the
considered parameter range.

2. Diagonal long-range order

Let us now discuss the onset of long-range order. This
is here signaled by the nonvanishing component at q = π

of the structure form factor. Figure 7 displays its behavior
as a function of V/U for three different values of t/U . The

FIG. 5. (a) Fourier transform of the single-particle off-diagonal
correlations M1(q) [Eq. (26)] as a function of q and of t/U for V/U =
0.5. (b) Shows the behavior of the Fourier components at q = 0 (red)
and q = π (blue) as a function of q. (c) Displays corresponding
values of the entanglement entropy. Different symbols correspond
to different system sizes L (L = 60, 90, 120, see legend), keeping
N = 2L. (a) Reported for L = 60.

parameters of these sweeps are indicated by the vertical lines
in Fig. 3(d). The data of sweep (i) correspond to the sweep
across the transition from SSF to SSS and show a continuous,
even though rapid, growth of the structure form factor. This
rapid growth occurs in the same parameter interval where the
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FIG. 6. Same as Fig. 5 but as a function V/U and taking t =
0.02U . The peak is located in the SSF region visible in Fig. 4(c) at
V/U = 0.5. The behavior of the entanglement entropy suggests a
continuous phase transition at this point.

superfluid Fourier component at q = 0 increases from zero to
a finite value.

Sweep (ii) is taken across the transition MI-CDW[4,0].
It shows a discontinuity at V/U = 0.5, indicating a first-
order phase transition. This agrees with the mean-field predic-

FIG. 7. The component at q = π of the structure form factor
[Eq. (27)], signaling the onset of density modulations. The data are
taken at the sweeps (i), (ii), (iii) of Fig. 3(d). Here, t/U = 0.02 at (i),
t/U = 0.157 at (ii), and t/U = 0.25 at (iii).

tion. Sweep (iii) moves across the SF to the incompressible
CDW[4,0] phase. The behavior suggests a discontinuous,
first-order transition. We also expect a continuous transition
SF to SS at V = U/2 but for slightly larger ratios t/U , that
are not included in this phase diagram.

We have also calculated the string-order parameter given
by Eq. (29) across the phase diagram. We could not identify
a Haldane insulator phase (see Appendix C). This result is
consistent with the literature. In fact, Monte Carlo simula-
tions could not find the Haldane insulator for ρ = 2 in the
extended Bose-Hubbard model without correlated hopping

FIG. 8. Contour plot of the von Neumann entropy for the ground
state of Eq. (8) as a function of the ratio V/U and of the ratio t/U .
The phases are labeled according to the classification of Table I. The
parameters are the same as in Fig. 3, the size of the subsystem is
LB = 30 sites.
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FIG. 9. Contour plot of relevant observables in the V/U -t/U
plane for the ground state of the Bose-Hubbard model of Eq. (9),
which includes next-nearest-neighbor interactions. (a), (b) Signal
SSF and SF through the Fourier components q = 0 and π , re-
spectively, of the single-particle off-diagonal correlations M1(q).
(c) Reports the maximum value of the compressibility across the
lattice [Eq. (25)], and (d) the component at momentum π (red)
and 2π/3 (yellow) of the structure form factor, signaling the onset
of a density modulation with the corresponding periodicity. The
number of lattice sites is fixed to L = 60 and the number of particles
is given by N = 120. The white dashed lines in (a)–(c) indicate
the interaction-induced atomic limit. The vertical dotted lines in
(d) indicate the parameters of the sweeps in Fig. 11. See Appendix B
for further details.

terms. Moreover, for density ρ = 1 correlated hopping tends
to shrink the Haldane phase [38].

Figure 8 displays the contour plot of the entanglement
entropy. The region with nonvanishing values are superfluid
phases. We observe in particular the maximum at the tran-
sition from SSF to SSS at t/U 	 0 and V 	 U/2. We label
the phases in the diagram according to our classification in
Table I.

C. Next-nearest-neighbor interactions

We now analyze the ground state of the Bose-Hubbard
Hamiltonian with next-nearest-neighbor interactions. The
Hamiltonian is given in Eq. (9). The properties of the relevant
observables are shown in Fig. 9. They share some similarities
with the nearest-neighbor model (compare with Fig. 3). For
instance, also in this case we observe an incompressible
phase at the interaction-induced atomic limit, which separates
staggered superfluidity from “normal” superfluidity. However,
now the SF phases occur in larger parameter regions and the
incompressible phase shrinks. Moreover, the transition to the
diagonal long-range order is located about V ∼ 0.5U , even
though it is shifted to a slightly larger value than for the
nearest-neighbor case. A striking difference is the appearance
of a third phase at V ∼ 2U , which is signaled by a peak of the
structure form factor at q = 2π/3.

FIG. 10. Fourier components of the single-particle off-diagonal
correlations M1(q) [Eq. (26)] at q = 0 (red) and q = π (blue) as
a function of (a) t/U for V/U = 0.5 and of (b) V/U for t/U =
0.02. Different symbols correspond to different system sizes L
(L = 60, 90, 120, see legend), keeping N = 2L. The discontinuity at
V/U 	 2 is associated with the appearance of density modulations
with quasimomentum q = 2π/3 (see also Fig. 11).

In the superfluid phase the spectrum of the single-particle
off-diagonal correlations have nonvanishing Fourier compo-
nent at q = 0 and at π . Figure 10(a) displays these Fourier
components as a function of t/U for V = U/2. The behav-
ior is similar to the nearest-neighbor case [Fig. 5(a)]. Now,
however, the incompressible phase occurs on a substantially
smaller interval of t/U values. We attribute this effect to
the next-nearest-neighbor terms of the interaction-induced
tunneling. In fact, from Eq. (24) we can see that these terms
tend to increase the effective hopping coefficient.

The behavior of the Fourier components for t 
 U is
shown in Fig. 10(b) as a function of V/U . For V/U � 2
it is similar to the nearest-neighbor model. Also, in this
case it exhibits the features of a continuous transition. The
maximum of the π component, however, is shifted to larger
values (compare to Fig. 6), which is consistent with our
preliminary considerations. Moreover, for V/U to the right of
the maximum, the slope with which both Fourier components
at q = 0 and π increase is larger than for the nearest-neighbor
interaction. At V ∼ 2U both components undergo an abrupt
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FIG. 11. The component at q = π (red) and q = 2π/3 (blue) of
the structure form factor (27), signaling the onset of density modula-
tions. The data are taken at the sweeps (i), (ii), (iii) of Fig. 3(d). Here,
t/U = 0.02 at (i), t/U = 0.157 at (ii), and t/U = 0.25 at (iii).

transition to a very small, nonvanishing value. At this point,
the structure acquires a periodic density modulation at wave
number q = 2π/3, as visible from Fig. 11. The transition is
thus discontinuous. The new phase seems to be a SSS3. How-
ever, in the corresponding region the entanglement entropy
(Fig. 12) takes very small values. Its nature shall be clarified
by a future analysis for larger system sizes.

V. CONCLUSIONS

In this work we have characterized the Bose-Hubbard
model of dipolar bosons in a one-dimensional lattice and in
a parameter regime, where tunneling induced by interactions

FIG. 12. Contour plot of the von Neumann entropy as a function
of the ratio V/U and of the ratio t/U for the ground state of Eq. (9).
The phases are labeled according to the classification of Table I. The
parameters are the same as in Fig. 3, the size of the subsystem is
LB = 30 sites.

FIG. 13. Contour plot of the pair condensate density M2(q = 0)
[Eq. (28)] as a function of the nearest-neighbor interaction strength V
and the tunneling rate t both in units of the onsite interaction strength
U for the (a) nearest-neighbor and (b) next-nearest-neighbor model.
The number of particles is fixed to N = 120 and the number of lattice
sites is given by L = 60.

can interfere with the hopping due to the kinetic energy. We
have found that significant effects of interaction-induced hop-
ping are particularly important for sufficiently large densities.
We then considered density ρ = 2 in deep optical lattices and
identified the parameter regime for which perfect destructive
interference can occur.

Quantum interference between correlated and single-
particle tunneling qualitatively modifies the phase diagram.
One important result is that it gives rise to an effective
“interaction-induced atomic limit.” This interaction-induced
atomic limit is responsible for the appearance of an in-
compressible phase for finite values of the kinetic energy,
where one otherwise expects superfluidity. Another important
consequence of correlated tunneling is that at vanishing ki-
netic energy the dipolar interaction establishes superfluidity
with a site-oscillating phase. This staggered superfluidity is
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separated from a staggered supersolidity by a continuous tran-
sition at V 	 U/2. At this transition point the entanglement
entropy exhibits a narrow peak.

We have compared the phase diagrams when the terms of
the power-law interactions of the Bose-Hubbard model are
truncated to (i) the first-nearest neighbors and then (ii) to
the next-nearest neighbors. Qualitative differences are visible
at sufficiently large interaction strengths, where the next-
nearest-neighbor terms start to compete with the other terms.
In particular, for next-nearest-neighbor interactions, at larger
dipolar strengths we have found discontinuous transitions to
structures with larger Wigner-Seitz cells.

The interference between single-particle and correlated
hopping is a consequence of the behavior of the Bose-
Hubbard coefficients as a function of the dipole moment.
This interference cuts the phase diagram into two topologi-
cally different superfluid phases. In an experiment with given
atomic species one would sweep along the line at fixed dipole
moment [see Fig. 13(a)]. Then, our results indicate that, by
tuning the ratio t/U one would observe either transitions from
incompressible to SSF phases or to “normal” SF. Therefore,
species with different dipole moments are characterized by
either SSF or “normal” SF phases. Moreover, our results
indicate that special values of the dipole moment d can exist,
for which the gas remains always in the interaction-induced
atomic limit, independently of t . We note that these behaviors
are also present at lower densities. Here, they become visible
at larger values of the dipolar interactions, for which one
shall consider the contribution of higher bands, as done for
instance in Refs. [58–60]. Future studies will analyze the
effect of correlated tunneling on the phases at incommensu-
rate densities [61] as well as at fractional densities, where
it might significantly affect the physics of Fibonacci anyon
excitations [62].
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APPENDIX A: COEFFICIENTS OF THE EXTENDED
BOSE-HUBBARD HAMILTONIAN

In this Appendix we introduce the integral expressions of
the coefficient of the Bose-Hubbard Hamiltonian in Sec. II.
We also show how we determine the Hamiltonian parameters
of Fig. 1.

The extended Bose-Hubbard model we consider is ob-
tained by inserting Eq. (6) into the Hamiltonian of Eq. (1):

Ĥ = −
∑
i, j

ti, j â
†
i â j +

∑
i, j,k,l

Vi, j,k,l â
†
i â†

j âk âl . (A1)

The tunneling coefficients are given by the integrals

ti, j =
∫ L/a

−L/2a
dx wi(x)

(
h̄2

2m

∂2

∂x2
− V0 sin(πx/a)

)
w j (x),

(A2)

where w j (x) is the real-valued Wannier function. We define
t = ti,i+1 and tNNN = ti,i+2 and discard higher-order terms.
The interaction coefficients are defined by the expressions

Vi, j,k,l = 1

2

∫∫
dr1dr2wi(x1)w j (x2)

×Uint(r1 − r2)wk (x2)wl (x1)�0(y1, z1; y2, z2),

(A3)

where Uint (r) = Ug(r) + Uα (r) and �0 ≡
|φ0(y1, z1)|2|φ0(y2, z2)|2 (see Sec. II). The coefficients
we use in Sec. II are connected to the integral expression in
Eq. (A3) as follows: the onsite interaction present in Eq. (7)
is given by U = 2Vi,i,i,i. The coefficients of the extended
nearest-neighbor Bose-Hubbard Hamiltonian (8) have the
form

V = 2(Vi,i+1,i+1,i + Vi,i+1,i,i+1), (A4)

T = −(Vi,i,i+1,i + Vi,i,i,i+1), (A5)

P = 2Vi,i,i+1,i+1. (A6)

These coefficients include the overlap integrals of Wannier
functions of nearest-neighboring sites. The expression of the
next-nearest-neighbor interaction coefficients in Eq. (9) are

VNNN = 2(Vi,i+2,i,i+2 + Vi,i+2,i+2,i ), (A7)

T 1
NNN = −2(Vi+2,i,i+1,i + Vi+2,i,i,i+1), (A8)

T 2
NNN = −2(Vi+2,i,i+2,i+1 + Vi+2,i+1,i,i+2), (A9)

T 3
NNN = −2(Vi+2,i+1,i+1,i + Vi+2,i+1,i,i+1), (A10)

TNNN = −(Vi,i,i+2,i + Vi,i,i,i+2), (A11)

P1
NNN = 2(Vj+2, j+1, j, j + Vj+1, j+2, j, j ), (A12)

P2
NNN = 2(Vj+2, j, j+1, j+1 + Vj, j+2, j+1, j+1), (A13)

P3
NNN = 2(Vj+2, j+2, j+1, j + Vj+2, j+2, j, j+1). (A14)

We determine the Hamiltonian parameters as follows. We first
decompose the coefficient Vi, j,k,l as

Vi, j,k,l = V α
i, j,k,l + V g

i, j,k,l ,
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where the contribution of the contact interaction to the overall
coefficient is given by

V g
i, j,k,l = g

2

∫
dx wi(x)wl (x)w j (x)wk (x). (A15)

The coefficients due to the power-law interactions are then
calculated by means of the convolution method [63]

V α
i, j,k,l = 1

2

∫
dx dy wi(x)wl (x)�(y)

×F−1
k

[
Ṽ α

2D(k)Fk[w j (x
′)wk (x′)�(y′)]

]
, (A16)

where Fk is the Fourier transform from position to momentum
space. Here, �(y) = 1√

πσ
e−y2/σ 2

is the probability density of
the ground state of the harmonic trap along the y direction,
the width is σ = √

h̄/mω and it is the same for the y and the z
directions. In Eq. (A16) the expression Ṽ α

2D(k) is the effective
interaction in momentum space and reads as [34]

Ṽ2D(ky, kx ) = Cdd

2σ

[
2

3

√
2

π
− qσ erfc

(
σq√

2

)]
, (A17)

where q2 = k2
x + k2

y . The expression in Eq. (A17) is the effec-
tive 2D interaction in momentum space, where we integrate
out the z coordinate. For further details, see Ref. [34]. We
calculate numerically the integral in Eqs. (A15) and (A16) as
a function of d and as. In our calculations, the lattice and trap
parameters are kept constant and take the values V0 = 8ER and
σ/a = 1/π

4
√

50.

APPENDIX B: DETAILS ON THE NUMERICAL
IMPLEMENTATION

Our results are obtained with a DMRG numerical program,
where we make use of the ITensor C++ library for imple-
menting tensor network calculations [41]. In our simulations,
we use a maximum bond dimension of β = 600. The cutoff
ε is set to ε = 10−12, which determines the number of singu-
lar values discarded after each singular value decomposition
(SVD) step. The energy error goal is set to εgoal = 10−16 and
the maximum number of particles per site is fixed to nmax =
10. We also add a boundary term Ĥad = �2ρ�(V n1 + VNNNn2)
in order to lift the degeneracy in the CDW j phases and
the Haldane phase. To improve the convergence, we run the
simulation for four different initial states: the CDW j states
|�〉init = ⊗k| j · ρ〉k ⊗l |0〉l with k ∈ {A = j · m|m ∈ N} and
l ∈ N\A, the MI state |�〉init = ⊗L

k=1|ρ〉k , and a random
initial state. The random state is a superposition of Fock
states |�〉init = 1√

niter

∑niter
k (⊗i|ni〉)k , where ni ∈ N is chosen

randomly out of the interval [0, nmax] with the constraint∑L
i=1 ni = ρ. We choose the number of superimposed Fock

states to be niter = 100. At the end of the simulation we
identify the ground state with the state at lowest energy. In
order to eliminate the boundary effects, we determine the
expectation values over the ground state by reducing the chain
length by nsit on each edge in order to eliminate boundary
effects. We choose nsit = 10.

In order to calculate the von Neumann entropy introduced
in Sec. IV, we split the system into subsystems A and B. We
then perform at the bond of these two subsystems A and B a

FIG. 14. (a) The von Neumann entropy (B1) and (b) the Fourier
transform of the single-particle correlations M1(q) [Eq. (26)] at
q = π at a tunneling rate of t/U = 0.04 and a nearest-neighbor
interaction strength of V/U = 0.5 as a function of one over the
number of lattice sites L. The blue curve in (b) shows the exponential
function F (L) = 0.45 exp[−0.01(L + 18.64)] + 0.47.

singular value decomposition (SVD) of the final ground-state
coefficients. We determine the von Neumann entropy using
the singular values sα given by the eigenvalues of the diagonal
S matrix of the SVD [40,41]

SvN = −
∑

α

s2
α ln

(
s2
α

)
. (B1)

Here, we choose the length of the subsystem A to be half of
the length of the system.

APPENDIX C: SUPPLEMENTARY DETAILS ON THE
GROUND-STATE PHASE DIAGRAM FOR

NEAREST-NEIGHBOR COUPLINGS

Here, we provide additional details on the results of
Sec. IV. We checked the presence of a pair superfluid phase
over the whole parameter range by looking at the Fourier
transform of the pair correlations M2(q) given by Eq. (28). We
found nonvanishing Fourier components of M2(q) only at q =
0, π . Moreover, when M2(q) has nonvanishing components,
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FIG. 15. Contour plot of the string order parameter [Eq. (29)] for
the ground state of Eq. (8), as a function of the ratio V/U and t/U .
The parameters are the same as in Fig. 3.

then we always find that M2(q = 0) > M2(q = π ). Figure 13
displays the contour plot of the Fourier transform at q = 0 in
the V/U -t/U parameter plane for (a) the nearest-neighbor and
(b) the next-nearest-neighbor cases. We note that the contour
plot of the Fourier transform at q = π is finite if M2(q = 0)
and S(q = π ) are both finite.

The behavior of observable M2(q = 0) across the phase
diagram follows the behavior of the Fourier transform of the
single-particle correlations (see Figs. 3 and 9). Nevertheless,
where they are finite, the Fourier components M2(q) are
always smaller than the corresponding Fourier components of
the single-particle correlations. We conclude that there is no
PSF in the parameter regime we considered.

In Sec. IV we observe the presence of a staggered super-
fluid phase around V/U ∼ 0.5 and for small t/U . Here, we
check the presence of this phase in the thermodynamic limit.
Therefore, Fig. 14(a) shows the von Neumann entropy (B1)
and in Fig. 14(b) the Fourier transform of the single-particle
correlations M1(q) [see Eq. (26)] at q = π as a function of one
over the number of lattice sites 1/L for a fixed t/U = 0.04
and V/U = 0.5. By inspecting Fig. 14 we can identify a
convergence of the observables with increasing system size.
By fitting the curve in Fig. 14(b) with an exponential function
and taking the limit for L going to infinity, we get a limit
of M1(π )(L → ∞) = 0.47. We conclude that the staggered
superfluid phase around V/U ≈ 0.5 and for small t/U is
present in the thermodynamic limit.

Figure 15 displays the contour plot of the string order
parameter given by Eq. (29). For the calculation of the string
order parameter we choose r = L/2 and discard the outer L/4
sites on both sides of the chain [32].

By comparing the string order parameter and the structure
form factor in Fig. 3(d) we cannot identify any region where
the string order parameter is finite and the structure form
factor vanishes.
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