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Thermal transport in yttrium iron garnet at very high magnetic fields
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The ferrimagnetic insulator yttrium iron garnet (YIG) is one of the most important materials in the active fields
of insulator-based spintronics and spin caloritronics. Nevertheless, and despite the fact that this material has been
studied for over six decades, the thermal properties of magnons in YIG have not been sufficiently characterized,
mainly because at not very low temperatures they are overwhelmed by the contribution of phonons. Here, we
report measurements of the thermal conductivity in YIG under magnetic fields up to 31.4 T to increase the
magnon energy gap, to suppress the magnon contribution, and to isolate that of the phonons relative to their
behavior at zero field. We observe that at a temperature of 20 K, even with a field as large as 31.4 T, the magnon
contribution is not completely suppressed. The magnon thermal conductivity, measured by subtracting the value
of the total thermal conductivity at 31.4 T from the value at zero field, has a peak at 16 K, with an amplitude that
is over five times larger than the one obtained by measuring under a field of only 7 T, as previously reported.

DOI: 10.1103/PhysRevB.101.174442

I. INTRODUCTION

The ferrimagnetic insulator yttrium iron garnet (Y3Fe5O12,
or YIG) has been called the miracle material of microwave
magnetics [1]. Since its discovery by Bertaut and Forrat in
1956 [2], more than any other material it has contributed to the
understanding of spin waves and magnon dynamics due to its
exceptionally low elastic and magnetic dampings [1,3–5]. The
magnons are the quanta of magnetic oscillations in systems
having a periodic array of ordered magnetic moments. More
recently, yttrium iron garnet has become a key material for
the understanding of phenomena associated with the emerging
fields of insulator-based spintronics and spin caloritronics,
such as the spin pumping [6–8] and the spin-Seebeck effects
[8–15]. The recent upsurge in the interest in YIG has produced
an intensification in the study of its basic properties, leading,
for example, to the determination of its full magnon spec-
trum throughout the Brillouin zone via time-of-flight inelastic
neutron scattering measurements [16]. One of the current
challenges is to quantify the contribution of magnons to the
thermal properties of YIG over a wide range of temperatures.
This knowledge about their dynamics can be used to derive
strict limitations on device performance and to determine the
optimum operating conditions for magnonic nanostructures
being proposed for data processing as the magnon transistor
[17].

One aspect of the measurements of the thermal properties
of YIG is that at temperatures above 5 K they are dominated
by the behavior of the phonons, so that the contributions from
magnons become difficult to determine. Early experimental
attempts to characterize the magnon specific heat and thermal
conductivity in YIG at temperatures (T) below 5 K employed
the application of magnetic fields up to 4 T to open a gap
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in the magnon dispersion to freeze the magnon contributions
and isolate those of the phonons relative to their behavior at
zero field [18,19]. But even at low T s it was recognized early
on that the theory and the experimental data for the magnon
thermal conductivity were discrepant [19]. Recently, Boona
and Heremans [20] used a larger magnetic field (7 T) with
the goal of freezing the magnon contributions claiming to
have measured the absolute values of the magnon specific
heat and thermal conductivity in YIG at temperatures up to
10 K. The experimental data of Ref. [20] were later contested
by calculations that showed that they represented not absolute
values, but only relative changes in the magnon contributions
due to the application of the field [21].

In this paper, we report an investigation of the thermal
conductivity of single-crystal yttrium iron garnet at low tem-
peratures and very high magnetic fields. The main objective
here is to determine the temperature and field dependencies
of the magnon thermal conductivity. At a temperature T =
10 K, the measurements confirm the theoretical prediction
[21] that a field of at least 30 T is necessary to decrease the
magnon contribution to less than 10% of its zero-field value.
At T > 20 K, even a field as high as 31.4 T is not enough to
completely suppress the magnon contribution. The magnon
thermal conductivity, measured by subtracting the value of
the total thermal conductivity measured at the highest fields
available from its values at zero field, has a peak at T = 16 K,
with an amplitude that is over five times larger than the one
obtained by measuring under a field of only 7 T [20].

II. EXPERIMENTAL RESULTS AND DISCUSSION

The measurements were performed in one sample of
single-crystal [110] YIG with dimensions 3.0 × 0.85 ×
0.48 mm3, obtained commercially from Airtron-Litton Ind.
The thermal conductivity of the sample was measured using
the same sample holder in two distinct experimental setups:
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FIG. 1. (a) Schematic illustration of the apparatus and sample holder used for measuring the thermal conductivity κth of YIG at high
magnetic fields, showing (I) sorb used both for injecting the exchange-gas and for producing high vacuum in the sample space; (II) 1 K pot
used to condense 3He inside the cold finger; (III) sample space; (IV) cold finger; and (V) center of the magnet with the sample holder. The
zoom-in shows the sample holder with the YIG sample, the silver wires attached to the heater, and the Cernox thermometers, identified by the
letters T for thermometers, L for thermal link, H for heater, and S for sample. (b) Temperature (T) dependence of κth measured in the PPMS
under zero field (blue pentagons) and under a magnetic field of 9 T (red circles). The corresponding reduction in κth with the field is represented
by the green triangles.

(a) in a Quantum Design Physical Property Measurement
System (PPMS), with magnetic fields up to 9 T; and (b) in
a Bitter resistive magnet providing fields up to 31.4 T at the
National High Magnetic Field Laboratory in Tallahassee, FL.
Figure 1(a) shows a schematic illustration of the 3He insert
in a Janis cryostat used for the measurements in the resistive
magnet, as well as of the sample holder. The thermal conduc-
tivity was measured by injecting a heat power (P) in the hot
end of the sample by means of a heater and measuring the
corresponding temperature difference �T across the sample,
using κth = (l/tw)P/�T , where l , t , and w are, respectively,
the length, thickness, and width of the sample. The contact
of the heater to the sample was actually made with a silver
wire attached to the sample with a high conductive silver
epoxy (Epotek H20E), while the temperatures at the ends were
measured using two Cernox thermometers, model CX-BC
1030, also in contact with the sample through silver wires.
The magnetoresistances of the Cernox and of the heater were
properly taken into consideration. All measurements reported
here were performed under high vacuum in the sample space,
because it was noticed that the exchange gas in the sample
space drastically reduces the thermal gradient.

Figure 1(b) shows the temperature dependence of the ther-
mal conductivity κth of the YIG sample in the range 2.4–
300 K, measured in the PPMS, both in zero field and under a
magnetic field μ0H = 9 T. The measured conductivity is the
sum of the contributions from phonons, κph, and magnons, κm.
The reduction in κth with the application of the field results
from the decrease in κm due to the increase in the magnon
energy and the consequent decrease in the magnon thermal
population. The temperature dependence of κth in zero field
and in an applied fields shown in Fig. 1(b) is qualitatively
similar to the one reported in Ref. [20], but with a smaller
magnitude. We attribute the smaller value of κth measured here
to the fact that our experiments were done under high vaccum,
while in Ref. [20] an exchange gas was used. Under exchange
gas, we observe small differences between our data and those

displayed in Ref. [20], which we attribute to variations in
sample quality.

Figure 2 shows the field dependence of κth at a con-
stant temperature measured in the PPMS and in the resistive
magnet. The measurements were performed under steady-
state conditions at each temperature, by sweeping the field
from −9 to +9 T in the PPMS, and from 0 to 31.4 T in the
resistive magnet. Clearly, both data sets obtained in each setup
agree quite well within the common field range used for the
measurements.

The above measurements of the thermal conductivity in
YIG can be understood in terms of the statistical theory for
a noninteracting magnon gas [8,22]. First, we note that the
thermal properties of magnons depend crucially on the wave-
vector-dependent magnon frequency, velocity, and lifetime.
The first two are given directly by the magnon dispersion
relations, which have been recently recalculated for YIG
and measured with modern inelastic neutron scattering tech-
niques [18,23]. The data, which are in good agreement with
the calculations, show an acoustic branch whose frequency
increases from nearly zero (at zero field) at the Brillouin
zone center to a value at the zone boundary (ZB) that varies
from 6 to 9.5 THz depending on the wave-vector direction.
These values correspond to energies of approximately 287 and
454 K, respectively. Since the lowest optical branch lies above
the ZB value, the calculation of the thermal properties in
the presence of an applied field μ0H at temperatures up to
100 K can be safely done considering only the acoustic branch
[23,24]. Also, at low wave numbers the magnon dispersion
relation can be approximated by the quadratic form [16]

ωk = γμ0H + γ D k2, (1)

where k is the wave number, D is the exchange parameter,
γ = gμB/h̄ is the gyromagnetic ratio, g is the spectroscopic
splitting factor, μB is the Bohr magneton, and the reduced
Planck constant h̄. Clearly, the application of a magnetic field
creates in the magnon dispersion a frequency gap at k = 0
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FIG. 2. Thermal conductivity κth of YIG as a function of the magnetic field measured at several temperatures both in a PPMS and in a
resistive magnet.

of γμ0H , where γ = 28 GHz/T for YIG, corresponding to
an energy of 1.34 K/T. The increased frequency reduces the
number of thermal magnons at a temperature T, given by
the Bose-Einstein distribution, n̄q = 1/[exp(h̄ωq/kBT ) − 1].
Thus, by applying a sufficiently large field at some T, the
magnon contribution to the thermal properties can be largely
reduced so that they become determined by phonons only. In
this way, the changes in the thermal properties relative to the
zero-field values would represent the magnetic contribution.
While this is true, the values of the quenching fields used in
Refs. [20,21] are underestimated. As shown in Ref. [22], with
a field of 7 T the reduction in the magnon specific heat and
thermal conductivity is less than 40% relative to the values at
zero field.

For the calculation of the magnon thermal conductiv-
ity, one considers that the flow of magnons due to a tem-
perature gradient ∇T carries a heat-current density �JQ =
V −1 ∑

k δnk h̄ωk�vk , where δnk = nk − n̄k is the magnon num-
ber in excess of equilibrium, and �vk is the k-magnon group
velocity. Using the Boltzmann approach, one can write a first-
order expression for the excess magnon number in the steady
state and in the relaxation approximation, δnk = −τk�vk · ∇n̄k ,
where τk is the k-magnon relaxation time. Assuming spher-
ical magnon energy surfaces and considering for low T the
quadratic dispersion in Eq. (1), one obtains a heat-current
density in the form �JQ = − κm∇T , where κm is the magnon
thermal conductivity given by [8,25]

Km = kB(kBT )5/2

3π2(γ D)1/2 h̄5/2

∫ xm

x0

exx2(x − x0)3/2

ηk (ex − 1)2 dx, (2)

where ηk = 1/τk is the magnon relaxation rate and x =
h̄ωk/kBT is a dimensionless magnon energy. If one considers
that the relaxation rate ηk is independent of the wave number
and temperature, at zero field the lower limit of the integral
is x0 = 0, and at low temperatures the upper limit can be
set to xm → ∞. In this case, the integral in Eq. (2) can be
solved analytically to give 
(7/2)ς (5/2), where the factors
are, in order, the gamma and Riemann zeta functions. Thus,
the temperature dependence of the magnon thermal conduc-
tivity is κm ∝ T 5/2, first predicted by Yelon and Berger [25].
For nonzero field, the T 5/2 dependence still holds, but the
amplitude decreases with field since x0 ∝ H and x increases
with field.

Actually, at temperatures T > 5 K, the magnons with
larger wave numbers become important for the thermal con-
ductivity so that the dependencies of the magnon relaxation
rate on k, T, and H must be considered in the calculation
[24]. A difficulty here is that the spin-wave damping has been
measured experimentally only for very small wave numbers
using microwave techniques [8], while the magnons that
contribute most to the thermal conductivity are in the middle
of the Brillouin zone. Thus, one has to resort to calculated
relaxation rates, which are at best good estimates in the
absence of data, and also adjust some parameters to the data.
We have calculated the integral in Eq. (2) using the following
expression for the magnon relaxation rate [24]

ηk = η0

[
1.0 + cH37.5 × 102q

(
T

300

)

+ cH4103 (7.6q2 − 4.9q3)

(
T

300

)2
]
, (3)
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FIG. 3. Thermal conductivity in YIG as a function of the magnetic field at several temperatures and as calculated from Eqs. (1)–(3).

where η0 is the relaxation rate at k = 0 and T = 0 due
to impurities and other imperfections, while the second and
third terms arise, respectively, from three- and four-magnon
scattering processes. Equation (3) with cH3 = cH4 = 1.0 is
the relaxation rate of Ref. [23] for μ0H = 0. These factors
were introduced here to account for the reduction of the
damping with the application of a field. We have used cH4 =
0.2 + 0.38 e−0.3μ0H + 0.41 e−0.01μ0H (μ0H in T), which was
obtained by fitting two exponential functions to the four-
magnon relaxation rate calculated numerically for the range of
wave numbers 0.2 < k/kZB < 0.4, and for 10 < T < 20 K.
Figure 3 shows the calculated field dependence of the magnon
thermal conductivity for the same temperature values as in
Fig. 2, using this expression for cH4, cH3 = 0.5, D = 5.4 ×
10−17 Tm2, and γ = 28 GHz/T. The value of the magnon
relaxation rate at k = 0 used in the calculation, η0 = 1.4 ×
108 s−1, was adjusted so as to obtain good agreement with the
experimental data.

One can see from Fig. 3 that at T = 2.4 and 8 K, the
calculated magnon thermal conductivity decays exponentially
with increasing field, in quite good quantitative agreement
with the variation of κth with H as shown Fig. 2. At these low
temperatures the variation of the relaxation rate is small, so
that the behavior of the conductivity is dominated by the de-
crease of the magnon thermal population with increasing field.
Thus, for T < 10 K the magnon conductivity is suppressed
by a field up to 35 T, so that its value in zero field can be
reliably measured by subtracting the values of the total ther-
mal conductivity at zero field and at μ0H = 35 T. However,
at larger temperatures the magnon contribution to the thermal

conductivity is not completely suppressed even under fields
up to 35 T, as shown by the calculated behavior in Figs. 3(c)
and 3(d), as well as by the data in Figs. 2(c) and 2(d). The
main reason for this is that at higher temperatures the magnon
conductivity is larger due to the T 5/2 factor, but the magnon
relaxation decreases exponentially with increasing field, so
that the overall behavior exhibits a peak before decreasing at
higher fields.

The field dependence of the thermal conductivity measured
at various temperatures, as seen in Fig. 2, was used to plot
the variation with temperature of the difference between
the conductivities at zero field and at selected field values. The
results, shown in Fig. 4(a), reveal that only at T < 3 K is the
magnon contribution to the thermal conductivity completely
suppressed with a field of 7 T. For T = 8 K, complete
suppression requires a field of at least 30 T, while for T >

20 K even this field value is not sufficient to achieve complete
suppression. Notice also in Fig. 4(a) that the peak amplitude
measured with a field of 30 T is over five times larger
than the one measured with 7 T, indicating that the magnon
thermal conductivity reported in Ref. [20] is underestimated,
as pointed out in Ref. [21].

The inverted U-shaped behavior of the thermal conduc-
tivity difference in Fig. 4(a) is explained by the variation
with temperature of the magnon contribution. At low T s the
conductivity increases with T 5/2 due to the increase in the
magnon thermal population. At higher T s the magnon relax-
ation increases so that the conductivity decreases. This be-
havior is reproduced qualitatively by the temperature depen-
dence of the magnon thermal conductivity calculated through
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FIG. 4. (a) Difference between the thermal conductivities measured at zero field and under selected field values as a function of the
temperature. (b) Temperature dependence of the calculated magnon thermal conductivity in YIG as a function of the temperature and for
several field values.

Eqs. (1)–(3) under zero field and for several field values, as
shown in Fig. 4(b).

III. SUMMARY

In summary, we have measured the thermal conductivity
in single-crystalline yttrium iron garnet in the temperature
range from 2.4 to 45 K under magnetic fields up to 31 T.
Application of the field increases the magnon energies and
reduces their contribution to the thermal properties. Our data
show that at a temperature of 10 K, a field of at least 30 T
is necessary to decrease the magnon contribution to less than
10% of its zero-field value. At T > 20 K even a field as high
as 31 T is not enough to completely suppress the magnon
contribution. The experimental data are quite well explained
by a statistical theory for thermal transport in a noninteracting
magnon gas. The magnon thermal conductivity, measured by
subtracting the value of the total conductivity at the highest
field available from the value at zero field, has a peak at
T = 16 K, with an amplitude over five times larger than

the one obtained by measuring with a field of only 7 T
as previously reported. In addition, the direct correlation of
κth with phenomena induced by thermal currents makes the
overall experimental results reported in the current work of
great importance for researchers working with magnonics and
in spintronics.
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