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Quantum dimer model containing Rokhsar-Kivelson point expressed by spin-1
2

Heisenberg antiferromagnets
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We obtain a quantum dimer model (QDM) containing a Rokhsar-Kivelson (RK) point expressed by spin-
1
2 Heisenberg antiferromagnets on a diamond-like decorated square lattice. This lattice has macroscopically
degenerated nonmagnetic ground states, which are equivalent to the Hilbert space of a square-lattice QDM. Then,
a square-lattice QDM containing the RK point as a second-order effective Hamiltonian is obtained by introducing
further neighbor couplings as perturbation. Our model can provide a new method for the experimental realization
of a resonating valence bond state in the QDM.
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I. INTRODUCTION

The quantum spin liquid (QSL) state is an exotic state
that has been extensively studied. Owing to a strong quantum
effect and frustration, a QSL does not order at absolute zero
temperature and does not invoke any spontaneous symmetry
breaking [1–3]. The QSL state originates from the resonating
valence bond (RVB) state of two-dimensional spin- 1

2 Heisen-
berg antiferromagnets, as proposed by Anderson in 1973 [4].

Over the past decade, the Kitaev model has been pivotal
in the study of QSL states [5]. This model is an exactly
solvable spin- 1

2 model on a honeycomb lattice and forms
a topological QSL in the ground state, which is described
by the Majorana fermion split from the electron spin [6].
However, its experimental realization has been considered
difficult [7–11], because the Kitaev model contains extremely
anisotropic ferromagnetic interactions. Very recently, a QSL
has finally been realized, which has a significant effect on
both theoretical and experimental physics. Kasahara et al.
reported long-range magnetic order suppression and a field-

induced QSL by the application of a magnetic field to α-RuCl3
compounds with a dominant Kitaev interaction, i.e., a bond-
dependent Ising-type interaction [12].

On the other hand, a quantum simulator can also be
expected, employing an optical lattice [13–16] to realize a
model in which the QSL state can be obtained exactly, i.e.,
in which the wave functions of the QSL state can be given
exactly. Actually, a one-dimensional Heisenberg model has
been realized in a quantum simulator using an optical lattice
[16]. Therefore, it is expected that a simple model containing
only isotropic Heisenberg interactions can be realized easily
by using such a quantum simulator, as opposed to a model
containing a strong anisotropic interaction such as the Kitaev
model. Then, the question of whether such a Heisenberg
model exists, that is, one that can provide the QSL state
exactly, can be answered.

In 1988, Rokhsar and Kivelson proposed a quantum dimer
model (QDM) [17] as a phenomenological Hamiltonian of the
RVB theory. The QDM is given by

HQDM = − t + + v + , (1)

where t and v represent the pair-hopping amplitude and
dimer-dimer interaction, respectively. At v = t > 0, known
as the Rokhsar-Kivelson (RK) point, the ground state is ex-
actly an equal-amplitude superposition of the dimer-covering
configurations, which can be ascribed to an RVB state [17].
The numerous studies on the QDM over the years [2,18–29]
suggest the possibility of finding a Heisenberg model from
which a QDM can be derived. However, it still has not been
clarified whether a QDM can be established from realistic
quantum spin systems that only have isotropic Heisenberg
interactions.

In this paper, we report the possibility of obtaining a
QDM containing an RK point from isotropic spin- 1

2 Heisen-
berg antiferromagnets on a diamond-like decorated square
lattice (DDSL) perturbed by further neighbor couplings. In the
DDSL the bonds of a square lattice are replaced by diamond
units [30], as shown in Fig. 1(a).

If the interaction strength of the four sides of a diamond
unit is denoted as J and the diagonal bond is denoted as
J ′ = λJ , then their ratio λ determines the ground-state prop-
erties [31]. As shown in Fig. 1(b), we denote the four spin- 1

2
operators in a diamond unit as si, s j, ska, and skb. Thus, the
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FIG. 1. Structure of (a) the DDSL and (b) the diamond unit. The
thin and thick solid lines represent the antiferromagnetic interactions
J and J ′ = λJ , respectively. We denote si and s j as the edge spins
and the pair (ska, skb) as a bond spin pair. The edge spins and bond
spin pairs are indicated by the closed and open circles, respectively.
The magnitude of all spin operators is 1

2 .

Hamiltonian can be written as

H =
∑
〈i, j〉

hi, j, (2)

hi, j =J (si + s j ) · (ska + skb) + J ′(ska · skb + 3
4

)
, (3)

where 〈i, j〉 represents a nearest-neighbor pair of the square
lattice. Here, si and s j are known as the edge spins [closed
circles in Fig. 1(b)] and the pair (ska, skb) is known as a bond
spin pair (open circles). It should be noted that in Eq. (3) the
energy of the bond spin pair is measured from that of the
singlet dimer.

For the ground states of the DDSL with 0.974 < λ < 2.0,
the present system exhibits a nontrivial macroscopic degen-
eracy [31,32]. As shown in Fig. 2(a), in these ground states
the diamonds with triplet dimers (shaded blue ovals) and with
singlet dimers (empty red ovals) are arranged such that the
number of diamonds with triplet dimers is the largest, and
two or more diamonds with triplet dimers are not located next
to each other, according to the variational method and the
Lieb-Mattis theorem [31]. Then, as shown in Fig. 2(b), we
demonstrate that the ground states in Fig. 2(a) are equivalent
to the square-lattice dimer-covering states. First, by consider-
ing the diamond with a singlet dimer in Fig. 2(a), we obtain

J (si + s j ) · (ska + skb)|σ, σ ′〉i, j |s〉k = 0, (4)

where σ, σ ′ =↑ or ↓ and |s〉k = (|↑ka,↓kb〉 − |↓ka,↑kb〉)/
√

2
represents the singlet dimer of a bond spin pair. Equation (4)
indicates that due to the singlet dimer on the bond spin pairs
the Hamiltonian in Eq. (3) effectively vanishes. Therefore, we
can regard the diamond with a singlet dimer as no dimer in
the QDM. On the other hand, the eigenvector of the diamond
with a triplet dimer can be written as

|φg〉i, j,k = 1√
3

(|T +〉i, j |t−〉k + |T −〉i, j |t+〉k − |T 0〉i, j |t0〉k ),

(5)

where {|T +〉i, j, |T 0〉i, j, |T −〉i, j} and {|t+〉k, |t0〉k, |t−〉k} repre-
sent the triplet dimers of edge spins and of a bond spin pair,

FIG. 2. (a) Ground states on the DDSL with 0.974 < λ < 2.0,
exhibiting a nontrivial macroscopic degeneracy. The shaded blue
and empty red ovals represent the triplet and singlet dimers on
the bond spin pair, respectively. (b) Square-lattice dimer-covering
states. There is no interaction between dimers and each dimer is
independent. It can be seen that the arrangements on panels (a) and
(b) are equivalent.

respectively, i.e.,

|T α〉i, j =

⎧⎪⎨
⎪⎩

|↑i,↑ j〉 (α = +),

(|↑i,↓ j〉 + |↓i,↑ j〉)/
√

2 (α = 0),

|↓i,↓ j〉 (α = −),

(6)

and

|tα〉k =

⎧⎪⎨
⎪⎩

|↑ka,↑kb〉 (α = +),

(|↑ka,↓kb〉 + |↓ka,↑kb〉)/
√

2 (α = 0),

|↓ka,↓kb〉 (α = −),

(7)

and the eigenvalue in Eq. (5) is J (λ − 2). Equation (5) can
also be written as

|φg〉i, j,k = 1√
3

(|s〉ka,i|s〉kb, j + |s〉ka, j |s〉kb,i ), (8)

where |s〉kα,l = (|↑kα,↓l〉 − |↓kα,↑l〉)/
√

2 (α = a, b and l =
i, j) and Eq. (8) is a plaquette RVB state. As

(si + s j + ska + skb)2|φg〉i, j,k = 0 (9)

is obtained, we find that Eqs. (5) and (8) describe non-
magnetic tetramer-singlet states. Therefore, the ground states
shown in Fig. 2(a), known as macroscopically degener-
ated tetramer-dimer (MDTD) states, are nonmagnetic, be-
cause they consist only of tetramer-singlet states and singlet
dimers.

Here, it should be noted that the properties of the singlet
dimer and the dimer of the QDM are very different. The first
difference is that the singlet dimer |s〉i, j has an orientation
(choice of a sign), i.e., |s〉i, j = −|s〉 j,i = (|↑i,↓ j〉 − |↓i,↑ j〉)/√

2. Contrary to this, the dimer in the QDM has no orientation
and it can be assumed that |s̃〉i, j = |s̃〉 j,i [see Figs. 3(a) and
3(b)]. The second difference is that each of the singlet dimer
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i j i j
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|s i,j = −|s j,i
1√
2
(| ↑i, ↓j | ↓i, ↑j )

|s̃ i,j = |s̃ j,i

FIG. 3. Properties of the singlet dimer and dimer in the QDM.

covering states is nonorthogonal as shown in Fig. 3(c). The
orthonormal basis |m〉 [Fig. 3(d)] is obtained by using the
mathematical formula |�m〉 = ∑

n(S−1/2)mn|�n〉, where |�n〉
are the dimer coverings and Smn = 〈�m|�n〉. However, the
calculation of (S−1/2)mn is very difficult [33,34].

The tetramer-singlet state in this study has no orienta-
tion, i.e., |φg〉i, j,k = |φg〉 j,i,k holds [Fig. 4(a)], and each of
the tetramer-singlet covering states is orthogonal [Fig. 4(b)].
Furthermore, each tetramer-singlet state is independent. These
properties enable us to obtain an isotropic Heisenberg Hamil-
tonian, in which the ground-state manifold coincides with the
classical close-packed dimer-covering states on any lattices,
if the Hamiltonian in Eq. (3) is applied on every link of the
lattice. Therefore, as shown in Fig. 2(b), the MDTD states on
the DDSL are exactly the same as the square-lattice dimer-
covering states.

However, as the magnitude of the bond spin pair is a
conserved quantity, i.e., [(ska + skb)2, hi, j] = 0, there is no
hopping of the tetramer-singlet state; thus, there is no transi-
tion between each state in the MDTD states. Therefore, in this
study, we show that the hopping of the tetramer-singlet states
can be achieved by introducing further neighbor couplings,
�, as a perturbation (Fig. 5), and the obtained square-lattice
QDM as a second-order effective Hamiltonian contains the
RK point. It should be noted that we previously obtained a
square-lattice QDM by an alternative method of introducing
further neighbor couplings [35,36]. However, we obtained

ska

skb

sma

smb

sla slb sna snb

Δ

FIG. 5. Structure of the DDSL with the introduction of further
neighbor couplings �.

v � 0 in the entire region of λ, which indicated that the
obtained QDM did not contain the RK point. Furthermore, we
also obtained a QDM by introducing another kind of further
neighbor coupling in addition to � as shown in Fig. 5 of
the present paper (see �I in Fig. 3 in Ref. [37]). However,
we found that the introduction of �I did not provide the
RK point because �I resulted in a significantly larger pair-
hopping amplitude than the dimer-dimer repulsive interaction,
i.e., t (� v) [37].

This paper is organized as follows. In Sec. II, we define the
perturbation Hamiltonian and obtain a square-lattice QDM as
a second-order effective Hamiltonian. In Sec. III, we describe
the details of the second-order perturbation processes. In
Sec. IV, we discuss the calculation results described in Sec. III
and demonstrate that our effective Hamiltonian as a square-
lattice QDM contains the RK point. In Sec. V, we summarize
the obtained results.

si sj

|φg〉i,j,k = |φg〉j,i,k

si sj si sj,
= = 0

ska

skb

ska

skb

ska

skb

FIG. 4. Properties of the tetramer-singlet states: (a) the tetramer-singlet, equivalent to the plaquette RVB state, has no orientation, and
(b) the different tetramer-singlet covering states are orthogonal.
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II. PERTURBATION HAMILTONIAN AND
SQUARE-LATTICE QDM AS A SECOND-ORDER

EFFECTIVE HAMILTONIAN

The perturbation Hamiltonian can be written as

H ′ =
∑
〈k,m〉

Vk,m +
∑
〈l,n〉

Vl,n, (10)

Vk,m = �k,mskb · sma, Vl,n = �l,nslb · sna, (11)

where �k,m = �l,n = � while 〈k, m〉 and 〈l, n〉 represent the
pair facing each other on one plaquette, as shown in Fig. 5.

Then, based on Eq. (10), we adopt perturbation energies
up to the second order. First, we find that the first-order
perturbation energy is zero, which is described in Sec. III.
Therefore, we only consider the second-order perturbation
and obtain a second-order effective Hamiltonian. It should be
noted that an arbitrary second-order process cannot be created
by perturbation bonds belonging to different plaquettes. As
the possible second-order processes are created using the
perturbation bonds on a plaquette twice, the second-order
effective Hamiltonian can be written by

Heff = − t(=) − t(||) + (=)
2 + (||)

2

+ (up)
1 + (down)

1 + (right)
1 + (left)

1

+ 0 ,

(12)

where t (=) and t (||) represent the second-
order pair-hopping amplitudes of dimers and
ε

(=)
2 , ε

(||)
2 , ε

(up)
1 , ε

(down)
1 , ε

(right)
1 , ε

(left)
1 , and ε0 represent the

second-order perturbation energies, respectively. Henceforth,
the dimer refers to the tetramer-singlet state φg. The
summations are taken over the plaquettes of the lattice.
Furthermore, considering the translational and rotational
symmetries of the system, it can be written that

t =t (=) = t (||),

ε2 =ε
(=)
2 = ε

(||)
2 ,

ε1 =ε
(up)
1 = ε

(down)
1 = ε

(right)
1 = ε

(left)
1 . (13)

Therefore, Eq. (12) can be obtained by

Heff = −t T̂ + ε2D̂2 + ε1D̂1 + ε0D̂0, (14)

where

T̂ = + ,

D̂2 = + ,

D̂1 = + + + ,

D̂0 = .

(15)

As Heff conserves the number of dimers, we can write

D̂2 + D̂1 + D̂0 = N = [total number of plaquettes] (16)

and
1

2
(2D̂2 + D̂1) = N

2
= [total number of dimers], (17)

where the coefficient 1
2 on the left-hand side of Eq. (17) is

introduced to prevent the double counting of dimers. Using
Eqs. (16) and (17) and eliminating D̂1 and D̂0 from Heff ,
Eq. (14) can be rewritten as

Heff = −t T̂ + (ε2 − 2ε1 + ε0)D̂2 + ε1N. (18)

Here, the coefficient of D̂2 on the right-hand side of Eq. (18)
represents the dimer-dimer interaction

v = ε2 − 2ε1 + ε0 (19)

and the sum of the first and second terms on the right-hand
side of Eq. (18) is HQDM. It should be noted that Eq. (19)
becomes repulsive (attractive) when there is a large (small)
energy gain of a plaquette with one dimer, i.e., |ε1| � |ε0|, |ε2|
(|ε1| 	 |ε0|, |ε2|) because ε2, ε1, and ε0 are all negative.

III. SECOND-ORDER PERTURBATION PROCESSES

The possible second-order perturbation processes that gen-
erate the dimer-dimer interaction v are shown in Fig. 6.
As shown in Fig. 6(a), the initial state has two dimers on
the plaquette. There are two kinds of processes, which are
produced by V1,5 and V3,7. When operator V1,5 is applied, the
singlet states at sites 1 and 5 turn into triplet states in the
intermediate state. On the other hand, when operator V3,7 is
applied, four kinds of clusters are generated in the interme-
diate state. Defining the second-order perturbation energy as
ε2,s−s (ε2,t−t) when operator V1,5 (V3,7) is applied we can write

ε2 = ε2,s−s + ε2,t−t. (20)

It should be noted that when a perturbation bond operates on a
dimer-covering state, clusters with the edge spins that become
“defects” are generated in the intermediate state, where a de-
fect refers to an edge spin that belongs to two or more dimers
or to no dimer. No perturbation bond on another plaquette
can remove these defects, which holds for all second-order
perturbation processes described in the following. As shown
in Fig. 6(b), the initial state has one dimer on the plaquette.
When operator V3,7 (V5,11) is applied, one cluster (two kinds of
clusters) is (are) generated in the intermediate state. Defining
the second-order perturbation energy as ε1,s−s (ε1,t−s) when
operator V3,7 (V5,11) is applied, we can write

ε1 =ε1,s−s + ε1,t−s. (21)
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FIG. 6. Second-order perturbation processes and energies generating the dimer-dimer interaction v. The initial state has (a) two dimers,
(b) one dimer, and (c) no dimer on the plaquette. The blue (red) bonds indicate that the bond spin pair is in triplet (singlet) states. Blue (red)
bonds in the ovals represent the tetramer-singlet state φg (the state that is obtained by replacing |t〉 in φg by |s〉).

As shown in Fig. 6(c), the initial state has no dimer on the
plaquette. In this case, the clusters formed in the intermediate
state become equivalent. Therefore, we have the same con-
tributions from the process when V3,11 and V7,15 are applied.
Thus, defining the second-order perturbation energy as ε0,s−s,
when operator V3,11 or V7,15 is applied we can write

ε0 =2ε0,s−s. (22)

Here, we discuss the first-order perturbation energy. It can
be seen that the upper process shown in Fig. 6(a) and the
upper and lower processes shown in Figs. 6(b) and 6(c) do not
give a first-order term of the effective Hamiltonian because
these intermediate states do not contain diagonal terms. On the
other hand, the intermediate state of the lower process shown
in Fig. 6(a) appears to contain diagonal terms corresponding
to the second state from the left. However, similarly to this
case, it can be shown easily that the first-order term is zero, as
follows. When we consider the tetramer-singlet state |φg〉i, j,k ,
the expectation of the spin operator sξ

k,ν
(ξ = x, y, z; ν = a, b)

of the state |φg〉i, j,k can be obtained as 〈φg
i, j,k|sξ

k,ν
|φg

i, j,k〉 =
0. Therefore, we obtain 〈φg

i, j,k ; φg
i′, j′,k′ |Vk,k′ |φg

i, j,k ; φg
i′, j′,k′ 〉 = 0

and find that the first-order term of the effective Hamiltonian
is not provided.

Substituting Eqs. (20)–(22) into Eq. (19), we finally obtain
the dimer-dimer interaction, v.

Next, we consider possible second-order processes for the
pair hopping of dimers. As shown in Fig. 7, there are two
kinds of processes. In the case of the upper process shown
in Fig. 7, a state where all bond spin pairs at sites 1, 3, 5,
and 7 are triplet states is generated in the intermediate state.
Furthermore, when V3,7 operates on the intermediate state,
and the triplet states at sites 3 and 7 become singlet states,
the pair hopping of dimers occurs. On the other hand, in
the case of the lower process shown in Fig. 7, one of the
intermediate states is the state where all bond spin pairs at
sites 1, 3, 5, and 7 are singlet states. Furthermore, when V1,5

operates on the intermediate state and singlet states at sites
1 and 5, respectively, transforming them into triplet states,
the pair hopping of dimers occurs. Defining the second-order
pair-hopping amplitudes of the upper and lower processes
shown in Fig. 7 as ts−s and tt−t , respectively, we can write

t =ts−s + tt−t. (23)

The details of the calculation of the second-order perturba-
tion energies [Eqs. (20)–(22)] and pair-hopping amplitude
[Eq. (23)] are provided in the Appendix.

IV. RESULTS AND DISCUSSION

The numerical calculation results for the dependence of
v and t on λ are shown in Fig. 8. The horizontal axes are
in the range of 0.974 < λ < 2.0, where the MDTD states
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V1,5

V3,7

V1,5

V3,7

t = ts−s + tt−t

ts−s

tt−t

FIG. 7. Second-order perturbation processes for the pair-hopping of dimers. There are two kinds of processes.

are stabilized and the square-lattice dimer-covering states are
constructed. First, it should be noted that at λ = 1.187 and
1.478, we obtain the RK point (v = t > 0), i.e., a stabi-
lized RVB state. Furthermore, Fig. 8 shows that the attrac-
tive (repulsive) interaction, v < 0 (v > 0), is obtained in the
ranges of 0.974 < λ < 1.062 and 1.679 < λ < 2.0 (1.062 <

λ < 1.679). To investigate these behaviors in detail, Fig. 9
shows the numerical calculation results for the dependence of
ε0,s−s, ε1,s−s, ε1,t−s, ε2,s−s, and ε2,t−t on λ and the dependence
of ts−s and tt−t on λ is shown in Fig. 10. Figure 9 shows that the
energy gain of a plaquette with no dimer, ε0,s−s, is increasing
as λ approaches 0.974. Therefore, as shown in Fig. 8, the
attractive interaction becomes larger as λ approaches 0.974.
On the other hand, the energy gain of a plaquette with two
dimers, ε2,t−t , diverges to −∞ at λ = 2.0, which results in
the divergence of v → −∞ at λ = 2.0, as shown in Fig. 8.
The pair-hopping amplitude, t , diverges to +∞ at λ = 2.0
because tt−t diverges to +∞ at λ = 2.0, as shown in Fig. 10.
The reason for the divergence at λ = 2.0, which is a phase
transition point in the original Hamiltonian in Eq. (2), is that
the energy denominators become zero (see Appendix). In the
intermediate region of λ, the energy gain of a plaquette with

λ

v
t

v
,

t

FIG. 8. Calculation results for the dependence of v and t on λ,
where the unit of v and t is �2/J .

one dimer is slightly larger than those of the others, resulting
in a small repulsive interaction.

The numerical calculation results for the dependence of v/t
on λ and the phase diagram of λ are shown in Figs. 11(a) and
11(b), respectively. At λ = 1.187 and 1.478, v/t = 1, which is
the RK point that is obtained as detailed above. In the region of
1.187 < λ < 1.478, v/t > 1 is obtained, which suggests the
stabilization of the staggered phase of the square-lattice QDM
due to the generation of a large repulsive interaction between
the dimers. On the other hand, in the ranges of 0.974 <

λ < 1.062 and 1.679 < λ < 2.0, v/t < 0 is obtained, which
suggests the stabilization of the columnar phase of the square-
lattice QDM due to the generation of an attractive interaction
between dimers [2,38].

V. SUMMARY

We obtained a square-lattice QDM containing the RK
point, as a second-order effective Hamiltonian, from spin-
1
2 Heisenberg antiferromagnets on a DDSL by introducing
further neighbor couplings in Eq. (10). We found that by
controlling the magnitude of the parameter λ on the DDSL,

λ

2,s−s

2,t−t

0,s−s

1,s−s

1,t−s

0
,s
−

s
,

1
,α

−
s
,

2
,α

−
α

(α
=

s,
t)

FIG. 9. Calculation results for dependence of
ε0,s−s, ε1,s−s, ε1,t−s, ε2,s−s, and ε2,t−t on λ, where the unit of
these energies is �2/J .
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λ

ts−s

tt−t

t s
−

s
,

t t
−

t

FIG. 10. Calculation results for dependence of ts−s and tt−t on λ,
where the unit of ts−s and tt−t is �2/J .

it is possible to freely generate the states appearing in the
square-lattice QDM. We believe that the most important
result of the present study is the construction of a QDM
containing the RK point from a model containing only
quadratic and isotropic Heisenberg-type couplings. This is
contrary to previous studies, where it has not been possible
to construct a QDM from quantum spin systems without con-
sidering the model containing complicated multiple spin inter-
actions such as those in Ref. [39]. Therefore, we expect that
our construction of QDMs from Heisenberg models provides a
clear path toward experimental realization, such as a quantum
simulator using an optical lattice [13–16]. Furthermore, for a
triangular-lattice QDM, it has been reported that the RVB state
emerges in a finite area of 0.8 < v/t � 1 [24,25]. Our method
for constructing the QDM can be adopted for arbitrary lattices;
i.e., dimer-covering states of a corresponding lattice can be
obtained if we replace each bond of an arbitrary lattice by
the Hamiltonian in Eq. (3) for λc < λ < 2.0 [40]. Therefore,
if we consider a diamond-decorated triangular lattice [41]
instead of a DDSL, the obtained effective Hamiltonian may
provide the RVB state over a finite area of λ. We expect that
the result in the present study is the first step toward such a
concept.

FIG. 11. (a) Calculation results for dependence of v/t on λ and
(b) phase diagram of λ.
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APPENDIX: CALCULATIONS OF THE SECOND-ORDER PERTURBATION MATRIX ELEMENTS

In this section, the details of the calculations of the second-order perturbation matrix elements are presented. We consider the
upper process ε2,s−s shown in Fig. 6(a). When V1,5 operates on the initial state |s1; φg

2,4,3; s5; φg
0,6,7〉, we have

V1,5

∣∣s1; φg
2,4,3; s5; φg

0,6,7

〉 = −�

4
(|t0〉1|t0〉5 − |t+〉1|t−〉5 − |t−〉1|t+〉5)

∣∣φg
2,4,3; φg

0,6,7

〉
. (A1)

If the bond spin pairs at sites 1 and 5 are in triplet states, then a connected cluster (0,1,2,3,4,5,6,7) appears in the intermediate
state. For the unperturbed Hamiltonian, h0,2 + h2,4 + h4,6 + h6,0, of this cluster, the eigenvalues and eigenstates can be written
as En

0−7 + 4Jλ and |�n〉0−7, respectively. Therefore, the matrix elements can be written as

〈
�n

0−7

∣∣V1,5

∣∣s1; φg
2,4,3; s5; φg

0,6,7

〉 = −�

4

(〈
�n

0−7

∣∣t0
1 ; t0

5 ; φg
2,4,3; φg

0,6,7

〉 − 〈
�n

0−7

∣∣t+
1 ; t−

5 ; φg
2,4,3; φg

0,6,7

〉 − 〈
�n

0−7

∣∣t−
1 ; t+

5 ; φg
2,4,3; φg

0,6,7

〉)
.

(A2)
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The energy denominator of the intermediate state is given by(
En

0−7 + 4Jλ
) − 2J (λ − 2) = En

0−7 + J (2λ + 4). (A3)

Thus, from Eqs. (A2) and (A3), we obtain

ε2,s−s = −�2

16

∑
n

(〈
�n

0−7|t0
1 ; t0

5 ; φg
2,4,3; φg

0,6,7

〉 − 〈
�n

0−7|t+
1 ; t−

5 ; φg
2,4,3; φg

0,6,7

〉 − 〈
�n

0−7|t−
1 ; t+

5 ; φg
2,4,3; φg

0,6,7

〉)2/{
En

0−7 + J (2λ + 4)
}
.

(A4)

Similarly, ε2,t−t, ε1,s−s, ε1,t−s, ε0,s−s, ts−s, and tt−t can be obtained by

ε2,t−t =�2

J

{
1

96(λ − 2)
− 1

24
− 1

12(3 − λ)

}
, (A5)

ε1,s−s = − �2

16

∑
n

(〈
�n

0−10

∣∣t0
3 ; t0

7 ; φg
0,2,1; φg

4,6,5; φg
8,10,9

〉 − 〈
�n

0−10

∣∣t+
3 ; t−

7 ; φg
0,2,1; φg

4,6,5; φg
8,10,9

〉

− 〈
�n

0−10

∣∣t−
3 ; t+

7 ; φg
0,2,1; φg

4,6,5; φg
8,10,9

〉)2/{
En

0−10 + J (2λ + 6)
}
, (A6)

ε1,t−s = − �2

48

∑
n

(∣∣〈�n
0,1,2,8,9,10,11

∣∣t+
11; φg

0,2,1; φg
8,10,9

〉∣∣2 + ∣∣〈�n
0,1,2,8,9,10,11

∣∣t−
11; φg

0,2,1; φg
8,10,9

〉∣∣2

+ ∣∣〈�n
0,1,2,8,9,10,11

∣∣t0
11; φg

0,2,1; φg
8,10,9

〉∣∣2)/(
En

0,1,2,8,9,10,11 + 6J
)

− �2

24

∑
n

(∣∣〈�n
0,1,2,8,9,10,11

∣∣t0
11; φg

0,2,1; φg
8,10,9

〉∣∣2 + ∣∣〈�n
0,1,2,8,9,10,11

∣∣t−
11; φg

0,2,1; φg
8,10,9

〉∣∣2

+ ∣∣〈�n
0,1,2,8,9,10,11

∣∣t+
11; φg

0,2,1; φg
8,10,9

〉∣∣2)/{
En

0,1,2,8,9,10,11 + J (λ + 5)
}
, (A7)

ε0,s−s = − �2

16

∑
n,n′

(∣∣〈�n
0−6

∣∣t0
3 ; φg

0,2,1; φg
4,6,5

〉〈
�n′

8−14

∣∣t0
11; φg

8,10,9; φg
12,14,13

〉∣∣2

+ ∣∣〈�n
0−6

∣∣t+
3 ; φg

0,2,1; φg
4,6,5

〉〈
�n′

8−14

∣∣t−
11; φg

8,10,9; φg
12,14,13

〉∣∣2

+ ∣∣〈�n
0−6

∣∣t−
3 ; φg

0,2,1; φg
4,6,5

〉〈
�n′

8−14

∣∣t+
11; φg

8,10,9; φg
12,14,13

〉∣∣2)/{
En

0−6 + En′
8−14 + J (2λ + 8)

}
, (A8)

ts−s = − �2

16

∑
n

(〈
�n

0−7|t0
3 ; t0

7 ; φg
0,2,1; φg

4,6,5

〉 − 〈
�n

0−7|t+
3 ; t−

7 ; φg
0,2,1; φg

4,6,5

〉

− 〈
�n

0−7|t−
3 ; t+

7 ; φg
0,2,1; φg

4,6,5

〉)(〈
�n

0−7|t0
1 ; t0

5 ; φg
2,4,3; φg

0,6,7

〉
− 〈

�n
0−7|t+

1 ; t−
5 ; φg

2,4,3; φg
0,6,7

〉 − 〈
�n

0−7|t−
1 ; t+

5 ; φg
2,4,3; φg

0,6,7

〉)/{
En

0−7 + J (2λ + 4)
}
, (A9)

and

tt−t = − �2

192J (λ − 2)
. (A10)

It can be seen that the denominator of the first term of Eq. (A5) and that of Eq. (A10) generate the divergence of v → −∞
and t → +∞ [42], respectively, at λ = 2.0, as shown in Fig. 8.

The values of Eqs. (A4), (A6), (A7), (A8), and (A9) for each λ are obtained by using the exact diagonalization method for
the clusters consisting of 8, 11, 7, 14, and 8 sites, respectively.
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