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The emergence of complex modulated structures in the magnetization pattern of thin films is a well-established
experimental phenomenology caused by the frustrating effects of competing interactions. Using a coarse-grained
version of the Ising ferromagnet with dipolar interactions, we develop a method that uses the information
from the microscopic Hamiltonian to predict the specific topological phases present in the temperature-external
magnetic field phase diagram. This is done by the combination of mean-field variational calculations and the
renormalization group equations from the classical theory of two-dimensional melting. In this framework, we
are able to distinguish when the orientational and translational symmetries are broken, discriminating between
the ordered and disordered states of the system for all temperatures and fields. We observe that the reentrance
developed by the H -T phase diagrams in the regime of weak dipolar interactions is directly related with the
appearance of anomalous topological transitions. These results motivate the realization of new experiments on
magnetic thin films in order to explore the topological properties of the magnetic textures, allowing to identify
new exotic phases in these materials.
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I. INTRODUCTION

The complex patterned phases appearing in two-
dimensional systems with competing interaction have been
extensively studied in the literature [1–7]. The interest in
such systems goes beyond the technological relevance.
Since in two dimensions the fluctuations can be particularly
strong even at very low temperature, systems are usually
unable to stabilize crystalline patterns and consequently
only weaker forms of order are observed [8–11]. Examples
of these phases are the nematic phase in two-dimensional
systems of stripes, and the 2D solid and hexatic phases in
two-dimensional systems of particles [11–13]. Theoretically
speaking, the melting of these phases, meaning the restoration
of one or more symmetries of the system, is expected to
occur through some topological mechanism with increasing
temperature [14].

A model system presenting this phenomenology is the so-
called isotropic dipolar ferromagnet with strong perpendicular
anisotropy [15–18]. In this model the competition between the
ferromagnetic interaction and the dipolar antiferromagnetic
interaction produces nontrivial magnetic textures of the out-
of-plane magnetization. This model has been successfully
used to study various thermodynamic and magnetic properties
of ultrathin ferromagnetic films with perpendicular anisotropy
of Fe/Cu(001) [19–21], including the recently observed in-
verse melting transitions in the presence of applied magnetic
field [22–24]. A commonly observed structure in these mag-
netic systems is the stripe configuration, in which the sign
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of the local magnetization oscillates when moving along a
certain direction in the system. This stripe phase possesses
only local positional order, though a weak orientational order
is stable with power-law decaying correlations. The latter
is usually called the nematic phase. Upon increasing tem-
perature this nematic phase melts into a liquid of stripes
with only local positional and orientational order. This is
precisely the stripe melting scenario [11,13] predicted by
the Kosterlitz-Thouless-Halpering-Nelson-Young (KTHNY)
classical theory of two-dimensional melting [9,10,12,14,25–
27]. This theory describes a class of phase transitions pro-
duced by the proliferation of topological defects, such as
vortices, disclinations and dislocations. The low temperature
phases of these systems, characterized by a nonzero density of
such defects, are commonly called topological phases.

Although several works [11,13,28–32] have considered
the properties of these transitions, fewer attempts have been
made to characterize the properties of the nematic transition
when an external magnetic field is applied. The external
field naturally favors magnetic domains oriented along its
direction, producing an enlargement of the modulation length
and an asymmetry of the positive and negative domains in
the stripe pattern. These effects are very hard to relate with
the topological properties of the stripe phase on physical
grounds, which explain the lack of literature on the detailed
characterization of the topological phases within the stripe
region.

A similar situation is present regarding the topological
properties of the bubble phase observed for larger fields.
Although experimentally [19–21] and computationally acces-
sible [5,22,33], a topological characterization of the bubble
lattice varying temperature and magnetic field is still lacking.

2469-9950/2020/101(17)/174438(11) 174438-1 ©2020 American Physical Society

https://orcid.org/0000-0003-1294-8862
https://orcid.org/0000-0002-7392-6811
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.174438&domain=pdf&date_stamp=2020-05-26
https://doi.org/10.1103/PhysRevB.101.174438


ALEJANDRO MENDOZA-COTO et al. PHYSICAL REVIEW B 101, 174438 (2020)

While it can be argued that perfect bubble configurations
share the same symmetries of a triangular lattice of parti-
cles [12,25,26], it is not clear whether the elastic effective
Hamiltonian of the bubble patterns coincide with that of a
triangular crystal. Consequently, the topological phases and its
behavior within the bubble region of the H-T phase diagram,
although possibly related somehow to the problem of the two-
dimensional melting of triangular crystals, lack a theoretical
description.

Another intriguing issue is the effect on the topologi-
cal phases produced by the presence of reentrance in the
phase diagrams like the one observed experimentally in
ultrathin ferromagnetic films with perpendicular anisotropy
[19–21]. These magnetic systems can present strong reen-
trances in the H-T plane, depending on the relative strength
of the dipolar and the ferromagnetic interactions. For sys-
tems with weak enough repulsive interaction the H-T phase
diagram develops an inverse melting in a certain range
of the external field [22]. This anomaly in the phase di-
agram is accompanied by an anomalous behavior of the
Young modulus of the patterns [24,34], which suggests pos-
sible modifications in the topological order of the magnetic
texture.

In this work we begin defining the microscopic Hamilto-
nian for the Ising-dipolar model and, after a coarse-graining
procedure, we obtain a mean-field free energy functional
of the local magnetization. This allows us to find the local
form of the magnetic modulated pattern, which in turn is
used to calculate the bare elastic stiffnesses of the stripes
and bubbles configurations. At this point we take advan-
tage of the classical theory of two-dimensional melting and
use the elastic stiffnesses previously calculated as an input
for the well established renormalization group (RG) equations
of the theory. These equations basically allow for a calculus of
the renormalized stiffnesses due to the presence of topological
defects [11,12,25,26]. In this context, the phase with short-
range order of certain type is identified by the values of H
and T where the appropriate renormalized stiffness goes to
zero. For example, the stripes nematic phase can be identified
as the region where the renormalized orientational stiffness of
the stripes pattern is different from zero [11]. In this way, we
are able to identify within the stripes and bubbles regions in
the mean-field phase diagrams the regions corresponding to
the stripes nematic and stripes liquid phases, as well as the
2D solid, hexatic and liquid bubble phases. Such information
allows us to study both the effect of the external field in the
behavior of topological phases and the role of the reentrance
of the H-T phase diagrams in the appearance of anomalous
topological transitions.

This paper is organized as follows. In Secs. II and
III the microscopic model is described and the mean-field
free energy functional is built, to be used as the start-
ing point in obtaining the bare and renormalized elas-
tic stiffnesses of the different phases. In Sec. IV we dis-
cuss the numerical results on the topological phase dia-
grams varying the relative strength of the dipolar interaction.
Section V focuses on the characterization of some crit-
ical properties of the topological transitions between the
different phases. The general conclusions are discussed in
Sec. VI.

II. MODEL

We begin considering a 2D Ising spin model with nearest-
neighbor ferromagnetic coupling J and a long-range dipolar
interaction of relative strength δ−1. This model can be de-
scribed by the Hamiltonian [33,35]

H = −J

2

∑
〈i, j〉

sis j + J

2δ

∑
i �= j

sis j

|�xi − �x j |3 − h
∑

i

si, (1)

where h represents the external magnetic field applied per-
pendicular to the plane of the system. In the Fourier space the
previous expression can be rewritten as

H = 1

2

∫
BZ

d2�k
(2π )2

Â(k)ŝ(�k)ŝ(−�k) −
∫

BZ

d2k

(2π )2
h(k)ŝ(−k),

(2)
where the function Â(k) represents the so-called fluctuation
spectrum and the subindex “BZ” stands for the first Brillouin
zone of the original square lattice. The fluctuation spectrum in
the long wave limit k → 0, as obtained by Cannas et al. [35],
will be given approximately by the expression

Â(k) = − 2J

(
2 − k2

2

)
+ J

δ

(
2π2

3
+ 2ζ (3) − 2πk + k2

)

= − (6ζ (3) − π2 + 2δ(π2 + 3ζ (3) − 6) − 12δ2)
3δ(1 + δ)

J

+ 1 + δ

δ
J

(
k − π

1 + δ

)2

. (3)

The spin configurations which minimize the Hamiltonian
(2) possess a characteristic wave vector which is lower [35]
than the one minimizing the function Â(k) in Eq. (3), given by
k0 = π/(1 + δ). This means that in the regions of large δ the
modulation in si spans many lattice sites. In this limit, a coarse
grained description is fully justified and the resulting effective
Hamiltonian is:

F[φ] = 1

2

∫
d2�k

(2π )2
Â(k)φ̂(�k)φ̂(−�k) + kBT

∫
d2x S(φ)

− h
∫

d2�x φ(�x). (4)

This form of the effective Hamiltonian coincides with
the mean-field free energy of Eq. (1) in the continuum
limit [22,23]. Here the scalar-field order parameter φ(�x)
is the local magnetization, and S(φ) = (1+φ)

2 log ( (1+φ)
2 ) +

(1−φ)
2 log ( (1−φ)

2 ) represents the local mean-field entropy of the
model given by Eq. (1). Now we proceed with the construction
of the dimensionless variational Hamiltonian, appropriate for
the numerical analysis. The rescaling of momenta and lengths
are taken in the form �k/k0 = �k′ and k0�x = �x′, which leads to a
rescaling of the Fourier transforms as φ̂′(�k′) = k2

0 φ̂(�k/k0). In
the new variables, Eq. (4) can be rewritten as:

F[φ′] = Â(k0)

k2
0

[
1

2

∫
d2�k′

(2π )2
Â′(k′)φ̂′(�k′)φ̂′(−�k′)

+ T ′
∫

d2�x′S(φ′(�x′)) − h′
∫

d2�x′ φ(�x′)
]
, (5)
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where

A′(�k′) = −1 + a(k − 1)2 (6)

a = 3π2/(π2 − 6ζ (3) + 2δ(6 − π2 − 3ζ (3)) + 12δ2) (7)

T ′ = kBT/Â(k0) (8)

h′ = h/Â(k0). (9)

Finally we choose the units of energy as the quantity Â(k0)/k2
0 ,

which leads to the dimensionless Hamiltonian functional
[22,23]

F[φ] = 1

2

∫
d2�k

(2π )2
Â(k)φ̂(�k)φ̂(−�k)

+ T
∫

d2�xS(φ(�x)) − h
∫

d2�x φ(�x), (10)

where prime symbols have been omitted to simplify the nota-
tion. It is worth noticing that the above effective Hamiltonian
depends only on three parameters: temperature T , external
magnetic field H , and the curvature of the fluctuation spec-
trum a, which is controlled only by the relative strength of
the dipolar interaction δ—the weaker this interaction is, the
smaller is a.

This kind of mean field free energy has been extensively
used as a starting point to construct the phase diagram of
systems with competing interactions by looking at the local
structure of the magnetization [22]. At the mean field level a
direct minimization of the free energy functional (10) allows
the construction of a phase diagram that contains three differ-
ent perfectly ordered phases, the stripes phase, the bubbles
phase, and the homogeneous phase. The so-called stripes
phase is defined by a solution in which the local magnetization
is given by a one-dimensional modulation in the general form:

φ(�x) = c0 +
∞∑

n=1

cn cos(nk0x), (11)

where the coefficients cn’s represent the Fourier amplitudes of
the solution and k0 represent the wave vector characterizing
the spatial period of the modulation. Another possible solution
of the free energy minimization problem corresponds to the
bubbles phase. This solution is given by a two-dimensional
magnetization pattern in which bubbles magnetized in the op-
posite direction to the external magnetic field form a triangular
array. Mathematically this solution is given by:

φ(�x) = c0 +
∞∑

n=1

cn cos(k0�bn · �x), (12)

where again the coefficients cn’s represent the Fourier am-
plitudes of the solution and k0 represent the wave vector
characterizing the spacial period of the triangular lattice of
bubbles. Finally, the set of vectors �bn’s are such that they form
a triangular lattice of points with unitary lattice spacing.

The last possible solution of the mean field free energy
minimization problem corresponds to the homogeneous so-
lution, which represent a phase in which the average local
magnetization is spatially homogeneous. Mathematically, this

FIG. 1. An example of an H -T mean field phase diagram for the
case a = 0.5, with illustrations of the stripe and bubbles phases for
particular values of H and T .

solution is given by a local magnetization of the form:

φ(�x) = c0, (13)

where c0 represent the average magnetization. Within the
mean-field approximation, this featureless phase is equivalent
to a paramagnetic phase.

A comparison of the free energy of each kind of solution,
after the minimization procedure, allows the construction of
the external field (h) versus temperature (T ) mean field phase
diagram. Although the properties of the mean field phase
diagram of this system are well understood [22,23], for the
sake of completeness we show in Fig. 1 the resulting phase
diagram for a given value of the fluctuation spectrum curva-
ture parameter (a = 0.5). The reentrance of the homogeneous
phase observed in this phase diagram is an unusual effect
due to both the presence weak enough repulsive interactions
(low a regime) [23,34] and of the large entropy variation
due to small variations of the local magnetization close to its
saturation value [22].

Although the phase diagram resulting from the mean field
approximation allows the identification of phases in which
the average local magnetization develops modulated patterns
with long range positional and orientational order, in two di-
mensions it is expected [9,11,12] that these perfectly ordered
phases lose their long range order due to the presence of
thermal fluctuations. This means that the stripes and bubbles
phases do not exist at any finite temperature beyond the
mean field description, although locally the system displays
magnetic textures made of stripes and bubbles domains in
different regions of the actual phase diagram observed in
experiments [19,20] or in numerical simulations [22]. In this
scenario, the construction of a phase diagram beyond the
mean field level should be made distinguishing each phase
by its symmetries. For a two-dimensional system in which the
local magnetization develops a nontrivial texture constituted
by stripes or bubbles, it is natural to identify the different
phases by characterizing the behavior of the translational
and rotational symmetries of the magnetic pattern. This is
developed throughout the next sections within the classical
theory of two-dimensional melting.
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III. TOPOLOGICAL PHASES

In order to find a more accurate description of the phase
diagram of our system we must include the role of the low
energy excitations over the perfectly ordered patterns mini-
mizing the effective Hamiltonian (10), already considered in
the construction of the mean field phase diagram. The low
energy excitations to take into account in our case are of two
types: smooth and extended deformations of the reference
pattern and strong but localized deformations in the form of
topological defects.

As it is well known from KTHNY theory, these are the
most relevant fluctuations in the melting of modulated pat-
terns. This theory concludes that isotropic two-dimensional
stripe systems can at best break the rotational symmetry
into a nematic phase at low temperatures, characterized by
quasi-long-range orientational order and local positional or-
der. Upon heating, this nematic phase will eventually melt
into a disordered phase in which both the positional and the
orientational order exist only locally.

On the other hand it is expected, if the bubbles structure
behaves as a triangular lattice of particles, that it could in
principle melt following a sequence of 2D solid, hexatic,
and liquid phases as temperature is increased from the low
temperature regime. As usual, in the 2D solid phase the
system should exhibit quasi-long-range positional order and
long-range orientational orde, in the hexatic phase, local po-
sitional order and quasi-long-range orientational order, and in
the liquid of bubbles local positional and orientational order.

To study the topological order of the modulated structures
we use as the starting point the free energy functional of
Eq. (10) as our effective coarse grained Hamiltonian depend-
ing on the local order parameter φ(�x). The partition function
of the effective model can be written as:

Z =
∫

Dφ e−βF [φ]. (14)

The evaluation of this partition function implies the con-
sideration of all realizations of φ(�x). However, it is expected
in the low temperature regime that the configurations which
contribute the most to the partition function are those in the
vicinity of the configuration φ0(�x) that minimizes F[φ]. In
this scenario, the role of small fluctuations around φ0(�x) are
usually treated perturbatively. In our context, the classical
theory of two-dimensional melting identifies two kinds of
relevant fluctuations. The first group corresponds to small,
smooth, and continuous deformations of the pattern φ0(�x),
which can be obtained including a deformation field in the
phase of the modulation. The energy cost of these kind of
fluctuations leads to effective elastic Hamiltonians for each
kind of pattern, bubbles, or stripes, which are quadratic in
the deformation fields and naturally leads to the existence
of Goldstone modes. The second relevant contribution to the
partition function comes from localized singular deformations
of the pattern φ0(�x), normally called topological defects.

In the subsequent sections we perform this kind of analysis
and obtain effective elastic Hamiltonians which coincides
with those of the KTHNY theory. Consequently, we can take
advantage of the well established renormalization group (RG)
analysis of this theory, identifying the different topological

phase transitions occurring for each kind of pattern. This
analysis ultimately allows us to calculate the topological
properties of the system at any point in the phase diagram.

A. Topological characterization of the stripes phase

As discussed in the literature [22], one of the possible
configurations minimizing a free energy functional of the
form of Eq. (10) is a periodic modulation in one direction, i.e.,
the stripe solution. When allowing fluctuations in the phase of
this solution, the local order parameter takes the form

φ(�x) = c0 +
∞∑

n=1

cn cos(nk0x + nk0u(�x)), (15)

where u(�x) represent the deformation field of the stripes and
x is the direction transversal to the average orientation of the
stripes. Substituting the proposed anzats in the variational free
energy the elastic effective Hamiltonian, up to second order in
û(�k), is [11,13,32,36]

F[φ] = F[φ0] + 1

2

∫
d2�k

(2π )2
B̂(�k)û(�k)û(−�k), (16)

where

B̂(�k) = B
(
k2

x + λ2k4
y

)
, (17)

and

B = 1

2!

∂2

∂k2
x

( ∞∑
n=1

c2
nn2k2

0

4
[Â(�k − n�k0) + Â(�k + n�k0)]

)∣∣∣∣�k→0

Bλ2 = 1

4!

∂4

∂k4
y

( ∞∑
n=1

c2
nn2k2

0

4
[Â(�k − n�k0) + Â(�k + n�k0)]

)∣∣∣∣�k→0

.

(18)

The quadratic effective Hamiltonian of the deformation
field given by Eq. (16) is an exact and general result, valid
for any stripe pattern. The elastic stiffnesses B and Bλ2 can
be numerically determined from the values of cn and k0

characterizing the stripe pattern minimizing the variational
free energy of Eq. (10). It is worth noticing that setting the
deformation field of the stripes u(�x) as a constant, the effective
Hamiltonian Eq. (10) remains invariant as expected.

The elastic Hamiltonian given in Eq. (16) is just the
starting point of the analysis of the topological melting of a
system of stripes as discussed by Toner and Nelson [11]. The
main consequence of the specific form of the obtained elas-
tic Hamiltonian is the divergence of 〈u2(�x)〉, which implies
that the stripe order is unstable in two dimensions. At the
same time, a careful analysis of the fluctuations of the stripe
orientation θ (x) = ∂yu(x) allows us to conclude that, at low
temperature, the system has a phase with quasi-long-range
orientational order, characterized by power-law decaying ori-
entational correlations. As shown by Toner and Nelson [11],
the establishment of such a weak orientational order at low
temperature is a consequence of the presence of topological
defects (dislocations) in the stripe structure. This scenario
leads to an effective orientational Hamiltonian of the form of
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an XY model, given by:


He f = 1

2

∫
d2x K ( �∇θ (�x))2, (19)

where the effective orientational stiffness (K) is determined to
be [11]

K = Bλ2 + 2Ed

2
, (20)

where Ed represents the energy of a dislocation, which in
our case can be estimated [37] as Ed = πBλ1/2k−3/2

0 . The
RG equations for the XY effective model, Eq. (19), are
known to be

dK

dl
= −4π3K (l )2y2(l )

dy

dl
= (2 − πK (l ))y(l )

, (21)

where the bare quantities are given by y(0) = exp(−Ec/kBT )
and K (0) = K/kBT . The energy of the relevant topological
defects (disclinations) can be estimated by a technique equiv-
alent to that used by Kashuba and Pokrovsky [37] to be
Ec = Kπ (γ − cosintegral(π ) + ln(π )).

The calculation of the renormalized stiffness K (+∞) is
possible by solving the set of ordinary differential equations
of Eq. (21) with proper initial conditions that ultimately can
be written in terms of the bare stiffnesses B and λ given in
Eq. (18). As it is well established in the KTHNY theory,
the disordered phase is identified as the set of points at

which K (+∞) is zero. This allows the identification of the
transition between a quasi-long-range orientationally ordered
stripe phase and the stripe liquid, characterizing what is called
as nematic transition [29].

B. Topological characterization of the bubbles phase

Now the equivalent analysis is described for the bubble
configurations. An analytical study of the topological order
of the bubble pattern, to the best of our knowledge, is not
currently available in the literature. Nevertheless, the same
principles of the classical melting theory of stripes can be
generalized to this case.

We start by deducing the elastic Hamiltonian of the bubble
pattern in the limit of small deformations. In this case we
admit that the deformation field must be a two component
vectorial field. In order to allow only deformation fields
that respect locally the symmetries of the bubble pattern we
consider the following form of the modulation in the presence
of phase fluctuations:

φ(�x) = c0 +
∞∑

n=1

cn cos(k0�bn · �x + k0�bn · �u(�x)), (22)

where �u(�x) represents the deformation field of the bubble con-
figuration. Following a procedure similar to the one described
in the previous subsection it is straightforward to reach the
following elastic Hamiltonian for the bubble system:

F[φ] = F[φ0] + 1

2

∫
d2�k

(2π )2

(
(2m + l )k2

x + mk2
y

)
ûx(�k)ûx(−�k)

+ 1

2

∫
d2�k

(2π )2

(
(2m + l )k2

y + mk2
x

)
ûy(�k)ûy(−�k) + 1

2

∫
d2�k

(2π )2
(2m + 2l )kxkyûx(�k)ûy(−�k), (23)

where the elastic stiffnesses m and l can be calculated by solving the following system of equations:

2m + l = 1

2!

∂2

∂k2
x

( ∞∑
n=1

c2
nk2

0

(
bx

n

)2

4
[Â(�k − k0�bn) + Â(�k + k0�bn)]

)∣∣∣∣�k→0

,

m = 1

2!

∂2

∂k2
y

( ∞∑
n=1

c2
nk2

0

(
bx

n

)2

4
[Â(�k − k0�bn) + Â(�k + k0�bn)]

)∣∣∣∣�k→0

.

(24)

The effective Hamiltonian given by Eq. (23) has the form
of the elastic Hamiltonian of a triangular crystal in two dimen-
sions and as expected the free energy of the pattern remains
invariant if the field �u(�x) is set to a constant. This implies that
the triangular array of bubbles can be treated like a triangular
lattice of particles, with Lamé’s elastic coefficients given by
the expressions in Eq. (24). Consequently, the topological
properties of the bubbles lattice can be studied using the
results from KTHNY theory for the two-dimensional melting
of triangular lattice of particles.

This theory predicts that the triangular lattice of particles
melts by a sequence of two transitions as we increase temper-
ature. At low temperatures, the triangular lattice of particles
(bubbles) finds itself in a state where the positional correlation

decays as a power-law and the next-neighbor bond angle
presents long-range order, characterizing the 2D solid phase.
Upon increasing the temperature a transition is predicted to
an intermediate phase usually called the hexatic phase, char-
acterized by exponentially decaying positional correlations
and power-law bond angle orientational correlations. Finally a
further increase of the temperature leads the system to a liquid
state in which the positional and the bond angle orientational
order are both short ranged.

1. Solid-hexatic transition

The transition between the 2D solid and the hexatic phases
is mediated by the proliferation of dislocation pairs [14]. The
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effective Hamiltonian of the interacting dislocation field is
given by the expression:


HD = − Kd

8πa4

∫
d2x d2x′

[
�b(�x) · �b(�x′) ln

( |�x − �x′|
a

)

− �b(�x) · (�x − �x′)�b(�x′) · (�x − �x′)
|�x − �x′|2

]

+ ED

∫
d2x

a2
|�b(�x)|2,

(25)

where a represents the short distance cutoff of the interact-
ing dislocation problem, which could be interpreted as the
minimum possible distance in a dislocation pair. The elastic
constant Kd is given by 4m(m+l )

(2m+l ) ( 4π√
3k0

)
2

and the parameter ED

represents the energy of a dislocation. Since the energy of an
isolated dislocation diverges in the 2D solid phase, ED must
be understood as half the minimum energy of a dislocation
conjugate pair. To estimate this value we apply a technique
similar to the one used by Kashuba and Pokrovsky [37].
First, the interacting part of the Hamiltonian of Eq. (25) is
written in Fourier space, and a configuration of Burguer’s
vectors of the dislocation pair is selected by minimizing the
interaction energy. Then the calculation is performed directly
in Fourier space properly selecting the momentum cutoff. This
procedure leads to the result ED = Kd (γ − cosintegral(π ) +
ln(π ))/(8π ). We can then use the RG equations for the
renormalized stiffness in the 2D solid phase within the two-
dimensional KTHNY theory, given by:

dKs(l )

dl
= − K2

s (l )

[
3π

2
y(l )2 exp(Ks(l )/8π )I0(Ks(l )/8π )

− 3π

4
y(l )2 exp(Ks(l )/8π )I1(Ks(l )/8π )

]
(26)

dy(l )

dl
=

(
2 − Ks(l )

8π

)
y(l )

+ 2πy(l )2 exp(Ks(l )/8π )I0(Ks(l )/16π ), (27)

where Ks(0) = Kd/kBT and y(0) = exp(−ED/kBT ). The in-
tegration of this system of differential equations allows us to
identify when the transition from the 2D solid to the hexatic
phase takes place. We define the 2D solid phase region as
composed by those points satisfying that Kd (+∞) is finite.
The integration of the RG equations in the regions where
the positional order is only local [Kd (+∞) = 0] allows the
determination of the positional correlation length in units of
the short distance cutoff (ξp/a). As it is well established in
the RG theory ξp/a can be calculated as exp(l∗), where l∗
represents the RG time to Kd (l ) reach Kd (+∞). Normally
Kd (l ) has a very steep evolution so it is relatively easy to
identify l∗. In this way the positional correlation length can
be calculated, which as discussed below is a central quantity
for the characterization of the orientational order.

2. Hexatic-liquid transition

As we mentioned before, once the 2D solid phase melts,
the system can develop an hexatic or a liquid phase. In this
region of the phase diagram the orientational order, according

to the classical theory of melting, can be effectively described
by a Hamiltonian of the form:


Ho = 1

2

∫
d2x KA( �∇θ (�x))2, (28)

where the so-called Frank’s constant KA is normally estimated
[12,14] to be 2ED(ξp/a)2. Since the effective model describ-
ing the orientational order in the long wave limit coincides
with the XY model, as can be seen in Eq. (28), we can take
advantage of the well known RG equations for this model
to evaluate the renormalized Frank’s constant [Kh(l )]. These
equations have the form:

dKh(l )

dl
= −4π3Kh(l )2y2(l )

dy(l )

dl
= (2 − πKh(l ))y(l ),

(29)

where the bare elastic constant Kh(0) is given by KA/kBT
and the bare fugacity y(0) is taken as usual exp(−EA/kBT ),
with EA representing the energy of the relevant topological
defects (disclinations) of this transition. The energy of the
disclinations can be estimated in a form equivalent to the one
used for calculating the energy of a dislocation in the previous
section. Following that procedure we reach to EA = KAπ (γ −
cosintegral(π ) + ln(π ))/36. This result completes the set of
equations for characterizing the orientational order of the
bubbles phase. The set of equations obtained in this section
allows us to identify the melting temperature of the hexatic
phase as the one in which the renormalized orientational
stiffness Kh(+∞) first goes to zero.

IV. TOPOLOGICAL PHASE DIAGRAMS

The numerical procedure for the construction of the topo-
logical phase diagram in the H-T plane can be outlined as
follows. First the free energy functional of Eq. (10) is mini-
mized, which allows us to find the optimal stripes and bubbles
solution. These results are then used to calculate the Lamé’s
coefficients (B, Bλ2, m, 2m + l) for the stripes and bubbles.
The knowledge of these quantities is the starting point for the
application of the two-dimensional classical theory of melting
described in the previous sections, which ultimately allows us
to establish the topological order for each local pattern.

Following this procedure we construct several H-T phase
diagrams varying the curvature of the fluctuation spectrum a
in Eq. (10). As can be noticed in the definition of the model,
different values of the parameter a are equivalent to different
relative strengths of the dipolar interaction δ−1 in the micro-
scopic Hamiltonian of Eq. (1). As studied in previous works,
varying the curvature of the fluctuation spectrum this system
develops a strong reentrance of the homogeneous phase with
temperature [22]. However, to the best of our knowledge this
type of topological phase diagrams have not been obtained be-
fore, and consequently a number of interesting questions like
the influence of the reentrance in the topological properties of
the system remains open.

In Fig. 2 a sequence of H-T topological phase diagrams is
presented varying the curvature of the fluctuation spectrum a
from a regime with practically zero reentrance to a regime of
strong reentrance. The first thing we notice for all diagrams
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FIG. 2. H -T topological phase diagrams varying the curvature of the fluctuation spectrum a. From top to bottom and left to right the values
are a = 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0, 0.5. The points represent the numerical results in all cases, and the lines are guides to the eye. Full
black curves identify lines of critical points, while the dashed red and blue curves, resulting from mean-field calculations, identify first-order
transitions. In all phase diagrams three phases with broken symmetries can be identified: nematic, 2D solid, and hexatic. All other phases are
topologically equivalent since the rotational and translational symmetries are preserved. As discussed in the text, we expect that the transitions
between liquid phases and the homogeneous phase are not actual phase transitions, just crossovers.

is that, depending on the value of the magnetic field, the
sequence of transitions is not always the one predicted by
the classical theory of melting. This happens not only due to
the relative change of stability between the modulated phases

but also because of the occurrence of direct transitions from
the modulated to the disordered phase (homogeneous phase).
These kind of transitions are beyond the scope of the classical
theory of two-dimensional melting and are obtained here as a
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result of the simultaneous use of a density functional theory
and the RG techniques, providing a richer outcome than that
produced by each technique separately.

In all phase diagrams we distinguish six different regions.
Three are phases with broken symmetries, namely the stripes
nematic, the bubbles 2D solid, and the bubbles hexatic phases.
The other three regions (stripes liquid, bubbles liquid, and ho-
mogeneous phase) are equivalent in terms of their symmetries,
and consequently there is no symmetry breaking between
these regions. Based also on previous results from numerical
simulations [22,30,38], we expect that the transitions between
these regions are not actual phase transitions, just crossovers.

The sequence of phase diagrams in Fig. 2 shows that
decreasing the relative strength of the dipolar interaction δ−1,
the development of reentrance in the phase diagram produces
continuously a qualitative transformation of the topologi-
cal phases, specifically of the boundary between different
phases. In the absence of reentrance, for high values of a,
the boundaries between the topological phases are given by
monotonous decreasing curves in the H-T plane. This is
the behavior expected in a normal phase diagram since the
intuition suggests that the application of an external mag-
netic field weakens the modulations and consequently these
phases are less pronounced. However, we observe that, as the
homogeneous reentrance becomes stronger, the boundaries
of the topological phases develop a nonmonotonic behavior.
This tendency is responsible for the eventual appearance of
unexpected reentrances of the topological phases when the
magnetic field is increased at constant temperature. See for
instance the phase diagram presented for the lowest value of
the parameter a (a = 0.5), in this case increasing the magnetic
field a reentrance appears in the boundaries of all topological
phases.

In our level of approximation, all topological transitions
within the bubbles or stripes mean-field regions occur at
a fixed value of the relevant elastic constants normalized
by the thermal energy, K (0), Ks(0), and Kh(0). If we trace
back the dependence of these quantities with the microscopic
parameters we find a relation of proportionality with the
microscopic elastic coefficients (B, Bλ2, m, 2m + l) and with
the modulation length (2π/k0). A numerical analysis of the
behavior of these quantities in the region of the boundaries of
the topological phases reveals that in all cases, as expected,
when the external field is increased, the microscopic elastic
coefficients decrease as modulations become less pronounced.
At the same time, however, the modulation length of the pat-
terns is a quantity that increases as we raise the external field.
This scenario suggests that, in the presence of a reentrance
of the homogeneous phase, the nontrivial behavior of the
topological phase boundaries is mainly a consequence of the
behavior of the modulation length when increasing the exter-
nal field. We identify that for these topological reentrances
the modulation length of the pattern growths with the external
field fast enough to overcome the effect of the decreasing
microscopic elastic coefficients, making finally the relevant
normalized elastic constants [K (0), Ks(0), Kh(0)] to increase
with the external field.

At this point, it is worth to discuss which are our expecta-
tions for the topological phase diagrams of the system beyond
our perturbative treatment. As can be appreciated in Fig. 2

FIG. 3. Nematic critical temperature TN at zero external field
as a function of the curvature of the fluctuation spectrum a. Dots
represent the numerical results, while the dashed line corresponds to
the best fit by a functionality of the form TN (a) = 1 − ca−1. For large
values a → ∞ the nematic transition approaches the mean-field
critical temperature.

the boundaries of the topological phases determined by the
combined application of the classical theory of melting and
the mean field techniques produces cusps at the intersection
of the phase boundaries determined through each different
method. More than this, in the case of low values of a,
very sharp ends of the hexatic and 2D solid phases results
also as an effect of the calculation method employed. We
understand that although the microscopic mechanism produc-
ing the topological reentrances is robust, as explained above,
the discontinuities in the derivative of the H vs T phase
boundaries are certainly an artifact of the perturbative method.
In contrast, we expect that the actual phase diagrams still
present the described topological reentrances but with smooth
and probably more round phase boundaries, as well as lower
critical temperatures considering the underlying mean-field
and perturbative treatment of the fluctuations.

V. CRITICAL PROPERTIES OF THE TOPOLOGICAL
TRANSITIONS

Although the critical properties are well understood in the
context of KTHNY theory, considering temperature as the
tuning parameter, no predictions are available for the phase
transitions varying parameters like the magnetic field H and
the fluctuation spectrum curvature a. It is worth noticing
that varying these parameters do not break explicitly any
symmetry of the system.

A first inquiry that one may ask would be about the depen-
dence with a of the value of the critical nematic temperature at
zero magnetic field TN , which is shown in Fig. 3. The obtained
results confirm the expectation that increasing the curvature
of the fluctuation spectrum, maintaining the position of the
minimum Â(k), increases the value of TN . In the limit of large
values of a the nematic transition temperature approaches the
mean field critical temperature.

Considering that in our effective model exists only one
free parameter (a), the curve presented is universal, since any

174438-8



TOPOLOGICAL PHASE DIAGRAMS OF THE FRUSTRATED … PHYSICAL REVIEW B 101, 174438 (2020)

0.324 t

2.36 �t

0.00001 0.0001 0.001 0.01
0.001

0.002

0.005

0.05

0.015

t

h
�t
�

FIG. 4. Critical nematic field hc(t ) varying the reduced temper-
ature [t = T − TN (a)] for fluctuation spectrum curvatures a = 2.5
(blue) a = 0.2 (red). For a = 2.5 (TN = 0.937529) there is a normal
hc(t ) behavior while for a = 0.2 (TN = 0.589172), reentrance exists
varying the external field.

microscopic Hamiltonian like that of Eq. (1) can be mapped
into an effective Hamiltonian of the form of Eq. (10) and will
correspond to a single value of a and Â(k0).

Regarding the characterization of the form of the nematic
phase boundary (nematic to stripe liquid) at low external
fields, we found that the critical field hc varies with temper-
ature following a law of the form hc ∝ |Tc − T |1/2. This kind
of behavior can be understood considering that, as discussed
before, the topological transitions occur at specific values
of the relevant stiffness normalized by the thermal energies
[K (0), Ks(0), Kh(0)]. In the case of the nematic transition, the
fact that this transition occurs within the stripe region allows
us to conclude that K (0, H, T ) have to be an even function of
H , so that K (0, H, T ) = K (0,−H, T ). This property can be
deduced once it is recognized that the mean-field free energy
is an even function of H . In the region of low fields we can
expand K (0, H, T ) around the point (TN , 0) obtaining

K (0, H, T ) = K (0, 0, TN ) + ∂T K (0, 0, TN )(T − TN )

+ 1
2∂2

H K (0, 0, TN )H2. (30)

In this way the solution of the equation K (0, H, T ) =
K (0, 0, TN ) will be

H =
[
−2∂T K (0, 0, TN )(T − TN )

∂2
H K (0, 0, TN )

]1/2

, (31)

which explains the form of the observed curves of H versus T
for the nematic boundary at low external fields.

With varying the curvature of the fluctuation spectrum
a we observe a change in the shape of the nematic phase
boundary (see Fig. 2). In Fig. 4 the nematic boundary is
shown for two different cases: one in which the boundary
behaves as expected with hc(T ) monotonically decreasing
(blue curve) and one with hc(T ) monotonically increasing
(red curve), in which a reentrance of the disordered phases
appears with varying the external field. We realize that even
in the anomalous case the field-temperature scaling does not
change, as expected from Eq. (31).

An important feature of the boundary between topological
phases in the phase diagrams is that they are formed by actual
critical points. The external field do not break the symmetries
of the modulated patterns and consequently we have the
possibility of a spontaneous symmetry breaking varying both
temperature and magnetic field. The critical properties vary-
ing temperature are those from KTHNY theory at any point
of the boundary between the topological phases. However, the
critical properties varying the magnetic field are not obvious.

Now we will show that the critical properties varying the
external field is defined by the local form of the topological
phase boundary. In what follows, the arguments raised for the
nematic phase are valid for the 2D solid and the hexatic phases
as well. Let us consider an arbitrary point of the nematic phase
boundary (H0, T0). Since K (0, H, T ) is an analytic function in
the H-T plane, the series expansion in powers of (T − T0) and
(H − H0) have the form:

K (0, H, T ) = K (0, 0, TN ) + ∂T K (0, H0, T0)(T − T0)

+ 1

n!
∂n

H K (0, H0, T0)(H − H0)n, (32)

where only the leading order terms in (T − T0) and (H − H0)
are kept and n represents the order of the lowest external
field contribution. The relation K (0, H0, T0) = K (0, 0, TN )
has been used. Around the point (H0, T0) the solution of the
equation K (0, H, T ) = K (0, H0, T0) has the form:

H − H0 =
[
−n!∂T K (0, H0, T0)(T − T0)

∂n
H K (0, H0, T0)

]1/n

. (33)

At the same time, studying the variations of K (0, H, T )
around (H0, T0) by fixing T or H , it can be seen that the critical
exponents varying the external field νh are related to those
varying temperature νT in the form νh = nνT . This means
that the critical properties varying temperature and varying the
external field can be related by just looking at the local form
of the topological phase boundary, for any black curve shown
in Fig. 2.

To further illustrate this argument, it is presented in Fig. 5
the numerical results for the nematic and the solid correlation
lengths as a function of the external field for two points of
the respective phase boundaries—one at the nematic-liquid
and other at the solid-hexatic phase boundaries. Since at the
selected critical points the phase boundary is not vertical it is
natural to expect that the critical behavior varying the external
field coincides with that varying temperature. This means,
according to the classical theory of melting, that the correla-
tion length should behave as log ξ (h) ∝ (h − hc)−νh , where h
represent the external applied field and νh represent the corre-
lation length critical exponent for K.T. like transitions [10–12]
taking the external field as the control variable. As mentioned
before, considering the selected critical points around which
the correlation lengths are analyzed, it is expected to have in
both cases νh = νT . This expectation is confirmed in Fig. 5
where the best fit of the correlation length curves shows the
same scaling of the classical theory of melting.
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FIG. 5. Natural logarithm of the nematic (left) and solid (right) correlation lengths as a function of the external field for a = 2.5, at
T = 0.937 and T = 0.4, respectively. The estimated critical fields at those temperatures are hc = 0.0551001 and hc = 0.7582755, respectively.
The red lines are fits of the logarithm of the correlation length to the form A(h − hc )−νh , where A is the only fitting parameter. The value of νh

for the nematic (νh = νT = 1/2) and for the 2D solid-hexatic (νh = νT = 0.36963477) transitions are fixed to those predicted by the classical
theory of melting [12].

VI. CONCLUSIONS

We have studied the full topological phase diagram of a
model of ultrathin dipolar ferromagnetic layer in the limit of
strong perpendicular anisotropy. These type of systems have
already been experimentally synthesized and the relevance
of the present work leans partially on this fact [18,19]. Our
theoretical analysis suggest the existence of several topo-
logical phases within the stripe and the bubble regions of
the H-T diagrams. Although experimental observation and
characterization of such intermediate phases is a challenge
by itself, the state of the art in magnetic measurement
techniques [39] allows in principle a topological character-
ization of the phases of the magnetic textures considered
here.

The existence of such exotic phases in magnetic systems
is quite interesting because what intuition may suggest is
that the temperature would only produce local fluctuations in
a way that either the thermal fluctuations are weak enough
to be unable to destroy the magnetic texture or they are
just strong enough to destroy the magnetic pattern at once.
This scenario would be only consistent with the occurrence
of a single transition from the low temperature ordered
phase to the paramagnetic phase, as is normally predicted
by mean-field theories. Instead, what we find is the occur-
rence of intermediate topological phases including “liquid”
states, in which the magnetic textures fluctuate and move

as robust structures. These states are particularly interesting
since the motion of these structures occurs without any mass
transportation.

In this work we developed a technique based on the
combined use of density functional minimization and the
RG equations from the two-dimensional KTHNY melting
theory. This approach enables to observe phase transitions not
predicted by each theory separately, resulting in rich phase
diagrams for ultrathin ferromagnetic films. Additionally, we
established a relation between the strong reentrance of the
homogeneous phase and the existence of anomalous or reen-
trant topological transitions. The relation between these two
features can be understood in terms of a considerable growth
of the modulation length as the external field is increased,
producing an anomalous behavior of the elastic constant of
the magnetic patterns [24,34].

ACKNOWLEDGMENTS

We gratefully acknowledge useful discussions with Mats
Wallin and Jack Lidmar. A.M.-C. acknowledges financial
support from Fundação de Amparo à Pesquisa e Inovação do
Estado de Santa Catarina (FAPESC). R.D.-M. acknowledges
the Swedish Research Council Grant Nos. 642-2013-7837,
2016-06122, 2018-03659 and Göran Gustafsson Foundation
for Research in Natural Sciences and Medicine and Olle
Engkvists Stiftelse.

[1] I. Booth, A. B. MacIsaac, J. P. Whitehead, and K. De’Bell, Phys.
Rev. Lett. 75, 950 (1995).

[2] D. Sornette, J. Phys. 48, 151 (1987).
[3] D. Andelman, F. Brochard, and J. F. Joanny, J. Chem. Phys. 86,

3673 (1987).
[4] R. Allenspach, M. Stampanoni, and A. Bischof, Phys. Rev. Lett.

65, 3344 (1990).

[5] S. A. Cannas, M. Carubelli, O. V. Billoni, and D. A. Stariolo,
Phys. Rev. B 84, 014404 (2011).

[6] S. Pighín, O. V. Billoni, D. A. Stariolo, and S. A. Cannas,
J. Mag. Mag. Mat. 322, 3889 (2010).

[7] A. Deutsch and S. A. Safran, Phys. Rev. E 54, 3906 (1996).
[8] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[9] D. R. Nelson, Phys. Rev. B 18, 2318 (1978).

174438-10

https://doi.org/10.1103/PhysRevLett.75.950
https://doi.org/10.1103/PhysRevLett.75.950
https://doi.org/10.1103/PhysRevLett.75.950
https://doi.org/10.1103/PhysRevLett.75.950
https://doi.org/10.1051/jphys:01987004801015100
https://doi.org/10.1051/jphys:01987004801015100
https://doi.org/10.1051/jphys:01987004801015100
https://doi.org/10.1051/jphys:01987004801015100
https://doi.org/10.1063/1.451970
https://doi.org/10.1063/1.451970
https://doi.org/10.1063/1.451970
https://doi.org/10.1063/1.451970
https://doi.org/10.1103/PhysRevLett.65.3344
https://doi.org/10.1103/PhysRevLett.65.3344
https://doi.org/10.1103/PhysRevLett.65.3344
https://doi.org/10.1103/PhysRevLett.65.3344
https://doi.org/10.1103/PhysRevB.84.014404
https://doi.org/10.1103/PhysRevB.84.014404
https://doi.org/10.1103/PhysRevB.84.014404
https://doi.org/10.1103/PhysRevB.84.014404
https://doi.org/10.1016/j.jmmm.2010.08.014
https://doi.org/10.1016/j.jmmm.2010.08.014
https://doi.org/10.1016/j.jmmm.2010.08.014
https://doi.org/10.1016/j.jmmm.2010.08.014
https://doi.org/10.1103/PhysRevE.54.3906
https://doi.org/10.1103/PhysRevE.54.3906
https://doi.org/10.1103/PhysRevE.54.3906
https://doi.org/10.1103/PhysRevE.54.3906
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevB.18.2318
https://doi.org/10.1103/PhysRevB.18.2318
https://doi.org/10.1103/PhysRevB.18.2318
https://doi.org/10.1103/PhysRevB.18.2318


TOPOLOGICAL PHASE DIAGRAMS OF THE FRUSTRATED … PHYSICAL REVIEW B 101, 174438 (2020)

[10] J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys.
6, 1181 (1973).

[11] J. Toner and D. R. Nelson, Phys. Rev. B 23, 316 (1981).
[12] D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).
[13] A. Abanov, V. Kalatsky, V. L. Pokrovsky, and W. M. Saslow,

Phys. Rev. B 51, 1023 (1995).
[14] J. M. Kosterlitz, Rep. Prog. Phys. 79, 026001 (2016).
[15] T. Garel and S. Doniach, Phys. Rev. B 26, 325 (1982).
[16] K. De’Bell, A. B. MacIsaac, and J. P. Whitehead, Rev. Mod.

Phys. 72, 225 (2000).
[17] K. De’Bell, A. B. MacIsaac, I. N. Booth, and J. P. Whitehead,

Phys. Rev. B 55, 15108 (1997).
[18] O. Portmann, A. Vaterlaus, and D. Pescia, Nature (London) 422,

701 (2003).
[19] N. Saratz, A. Lichtenberger, O. Portmann, U. Ramsperger, A.

Vindigni, and D. Pescia, Phys. Rev. Lett. 104, 077203 (2010).
[20] N. Saratz, U. Ramsperger, A. Vindigni, and D. Pescia, Phys.

Rev. B 82, 184416 (2010).
[21] N. Saratz, D. A. Zanin, U. Ramsperger, S. A. Cannas, D. Pescia,

and A. Vindigni, Nat. Commun. 7, 13611 (2016).
[22] A. Mendoza-Coto, L. Nicolao, and R. Díaz-Méndez, Sci. Rep.

9, 2020 (2019).
[23] A. Mendoza-Coto, O. V. Billoni, S. A. Cannas, and D. A.

Stariolo, Phys. Rev. B 94, 054404 (2016).
[24] A. Mendoza-Coto and D. A. Stariolo, Phys. Rev. E 86, 051130

(2012).

[25] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).
[26] A. P. Young, Phys. Rev. B 19, 1855 (1979).
[27] K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).
[28] S. A. Cannas, M. F. Michelon, D. A. Stariolo, and F. A. Tamarit,

Phys. Rev. B 73, 184425 (2006).
[29] D. G. Barci and D. A. Stariolo, Phys. Rev. Lett. 98, 200604

(2007).
[30] L. Nicolao and D. A. Stariolo, Phys. Rev. B 76, 054453

(2007).
[31] D. G. Barci, A. Mendoza-Coto, and D. A. Stariolo, Phys. Rev.

E 88, 062140 (2013).
[32] A. Mendoza-Coto, D. A. Stariolo, and L. Nicolao, Phys. Rev.

Lett. 114, 116101 (2015).
[33] R. Díaz-Méndez and R. Mulet, Phys. Rev. B 81, 184420

(2010).
[34] O. Portmann, A. Gölzer, N. Saratz, O. V. Billoni, D. Pescia, and

A. Vindigni, Phys. Rev. B 82, 184409 (2010).
[35] S. A. Pighín and S. A. Cannas, Phys. Rev. B 75, 224433 (2007).
[36] A. Mendoza-Coto, D. A. Stariolo, and L. Nicolao, Phys. Rev.

Lett. 117, 239602 (2016).
[37] A. Kashuba and V. L. Pokrovsky, Phys. Rev. Lett. 70, 3155

(1993).
[38] L. Nicolao, A. Mendoza-Coto, and D. A. Stariolo, J. Phys.:

Conf. Series 686, 012005 (2016).
[39] M. Kronseder, T. N. G. Meier, M. Zimmermann, M. Buchner,

M. Vogel, and C. H. Back, Nat. Commun. 6, 6832 (2015).

174438-11

https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevB.23.316
https://doi.org/10.1103/PhysRevB.23.316
https://doi.org/10.1103/PhysRevB.23.316
https://doi.org/10.1103/PhysRevB.23.316
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevB.51.1023
https://doi.org/10.1103/PhysRevB.51.1023
https://doi.org/10.1103/PhysRevB.51.1023
https://doi.org/10.1103/PhysRevB.51.1023
https://doi.org/10.1088/0034-4885/79/2/026001
https://doi.org/10.1088/0034-4885/79/2/026001
https://doi.org/10.1088/0034-4885/79/2/026001
https://doi.org/10.1088/0034-4885/79/2/026001
https://doi.org/10.1103/PhysRevB.26.325
https://doi.org/10.1103/PhysRevB.26.325
https://doi.org/10.1103/PhysRevB.26.325
https://doi.org/10.1103/PhysRevB.26.325
https://doi.org/10.1103/RevModPhys.72.225
https://doi.org/10.1103/RevModPhys.72.225
https://doi.org/10.1103/RevModPhys.72.225
https://doi.org/10.1103/RevModPhys.72.225
https://doi.org/10.1103/PhysRevB.55.15108
https://doi.org/10.1103/PhysRevB.55.15108
https://doi.org/10.1103/PhysRevB.55.15108
https://doi.org/10.1103/PhysRevB.55.15108
https://doi.org/10.1038/nature01538
https://doi.org/10.1038/nature01538
https://doi.org/10.1038/nature01538
https://doi.org/10.1038/nature01538
https://doi.org/10.1103/PhysRevLett.104.077203
https://doi.org/10.1103/PhysRevLett.104.077203
https://doi.org/10.1103/PhysRevLett.104.077203
https://doi.org/10.1103/PhysRevLett.104.077203
https://doi.org/10.1103/PhysRevB.82.184416
https://doi.org/10.1103/PhysRevB.82.184416
https://doi.org/10.1103/PhysRevB.82.184416
https://doi.org/10.1103/PhysRevB.82.184416
https://doi.org/10.1038/ncomms13611
https://doi.org/10.1038/ncomms13611
https://doi.org/10.1038/ncomms13611
https://doi.org/10.1038/ncomms13611
https://doi.org/10.1038/s41598-018-38465-8
https://doi.org/10.1038/s41598-018-38465-8
https://doi.org/10.1038/s41598-018-38465-8
https://doi.org/10.1038/s41598-018-38465-8
https://doi.org/10.1103/PhysRevB.94.054404
https://doi.org/10.1103/PhysRevB.94.054404
https://doi.org/10.1103/PhysRevB.94.054404
https://doi.org/10.1103/PhysRevB.94.054404
https://doi.org/10.1103/PhysRevE.86.051130
https://doi.org/10.1103/PhysRevE.86.051130
https://doi.org/10.1103/PhysRevE.86.051130
https://doi.org/10.1103/PhysRevE.86.051130
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/RevModPhys.60.161
https://doi.org/10.1103/RevModPhys.60.161
https://doi.org/10.1103/RevModPhys.60.161
https://doi.org/10.1103/RevModPhys.60.161
https://doi.org/10.1103/PhysRevB.73.184425
https://doi.org/10.1103/PhysRevB.73.184425
https://doi.org/10.1103/PhysRevB.73.184425
https://doi.org/10.1103/PhysRevB.73.184425
https://doi.org/10.1103/PhysRevLett.98.200604
https://doi.org/10.1103/PhysRevLett.98.200604
https://doi.org/10.1103/PhysRevLett.98.200604
https://doi.org/10.1103/PhysRevLett.98.200604
https://doi.org/10.1103/PhysRevB.76.054453
https://doi.org/10.1103/PhysRevB.76.054453
https://doi.org/10.1103/PhysRevB.76.054453
https://doi.org/10.1103/PhysRevB.76.054453
https://doi.org/10.1103/PhysRevE.88.062140
https://doi.org/10.1103/PhysRevE.88.062140
https://doi.org/10.1103/PhysRevE.88.062140
https://doi.org/10.1103/PhysRevE.88.062140
https://doi.org/10.1103/PhysRevLett.114.116101
https://doi.org/10.1103/PhysRevLett.114.116101
https://doi.org/10.1103/PhysRevLett.114.116101
https://doi.org/10.1103/PhysRevLett.114.116101
https://doi.org/10.1103/PhysRevB.81.184420
https://doi.org/10.1103/PhysRevB.81.184420
https://doi.org/10.1103/PhysRevB.81.184420
https://doi.org/10.1103/PhysRevB.81.184420
https://doi.org/10.1103/PhysRevB.82.184409
https://doi.org/10.1103/PhysRevB.82.184409
https://doi.org/10.1103/PhysRevB.82.184409
https://doi.org/10.1103/PhysRevB.82.184409
https://doi.org/10.1103/PhysRevB.75.224433
https://doi.org/10.1103/PhysRevB.75.224433
https://doi.org/10.1103/PhysRevB.75.224433
https://doi.org/10.1103/PhysRevB.75.224433
https://doi.org/10.1103/PhysRevLett.117.239602
https://doi.org/10.1103/PhysRevLett.117.239602
https://doi.org/10.1103/PhysRevLett.117.239602
https://doi.org/10.1103/PhysRevLett.117.239602
https://doi.org/10.1103/PhysRevLett.70.3155
https://doi.org/10.1103/PhysRevLett.70.3155
https://doi.org/10.1103/PhysRevLett.70.3155
https://doi.org/10.1103/PhysRevLett.70.3155
https://doi.org/10.1088/1742-6596/686/1/012005
https://doi.org/10.1088/1742-6596/686/1/012005
https://doi.org/10.1088/1742-6596/686/1/012005
https://doi.org/10.1088/1742-6596/686/1/012005
https://doi.org/10.1038/ncomms7832
https://doi.org/10.1038/ncomms7832
https://doi.org/10.1038/ncomms7832
https://doi.org/10.1038/ncomms7832

