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Motivated by a recent experiment on manganese oxide thin films, we theoretically study the topological Hall
effect in a weakly canted antiferromagnet with textured Néel (n) and uniform (l) components of magnetization.
Treating the Néel texture by a spin gauge field and the uniform component perturbatively, we obtain an analytical
expression for the topological Hall conductivity. The result is proportional to the emergent magnetic field,
∇ × AAF, where AAF,i = l · (∂in × n) is an emergent vector potential in antiferromagnets, which consists of
the spin-chirality density, l̂ · (∂x l̂ × ∂y l̂ ), formed by the normalized uniform moment l̂ = l/|l |, and one formed
by the Néel and uniform components in the presence of spatial variation of canting. The result is discussed in
comparison with the previous study on ferromagnets in the weak-coupling regime.
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I. INTRODUCTION

The topological Hall effect (THE) [1,2] is a closely studied
phenomena in conducting ferromagnets, realized when the
conduction electrons interact with a ferromagnetic spin tex-
ture with nonzero spin chirality. This effect is used to electri-
cally detect skyrmions [3,4], a particlelike spin texture with a
quantized spin chirality, which is anticipated as an information
carrier in next-generation magnetic memory devices.

Besides ferromagnets, antiferromagnets have recently
gained high interests among researchers in the field of spin-
tronics owing to their robustness to external perturbations,
THz range spin dynamics, and the variety of hosting ma-
terials [5,6]. Despite its potentially rich physics, the THE
in antiferromagnets is nonexistent due to the cancellation of
the spin chiralities on different sublattices [7–9]. Recently,
Vistoli et al. reported on the observation of THE in cerium-
doped manganese oxide Ca1−xCexMnO3, a canted antifer-
romagnet. They demonstrated that the skyrmionic magnetic
bubbles formed by the ferromagnetic (canted) component are
responsible for the observed Hall effect [10]. Theoretically,
their experimental result cannot be explained by the strong-
coupling (Berry-phase) formula due to Bruno et al. [2], but
some of the features are well captured by the weak-coupling
formula [11]. A theory on the THE in canted antiferromagnets
is however absent.

In this paper, we theoretically investigate the Hall effect
induced by spin chirality in canted antiferromagnets. Starting
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from a microscopic tight-binding Hamiltonian for electrons
interacting with a textured canted antiferromagnetic (AF)
background, we calculate the Hall conductivity using the
Kubo formula. The spatial variation of the Néel vector n,
expressed by a spin gauge field, and the (locally) uniform
moment l (magnetization) are treated perturbatively. The
obtained topological Hall conductivity (THC) is linear in l
and second order in electron scattering time. An emergent
magnetic field responsible for the Hall motion is identified
as Bs = ∇ × AAF, with an emergent vector potential, AAF,i =
l · [(∂in) × n]. The emergent field Bs consists of spin-chirality
density, l̂ · (∂x l̂ × ∂y l̂ ), formed by the normalized uniform
moment l̂ = l/|l |, and a term ∼(∇|l | × AAF)z that arises from
spatial variation of canting.

Because of the perturbative treatment of l , the present
theory is limited to the case of small ferromagnetic moment
(due to canting). Quantitatively, the spin-splitting energy in
the electron spectrum caused by the canting moment (i.e.,
l) should be small compared to broadening due to impurity
scattering [see Eq. (29)]. On the other hand, the magnitude of
the AF moment can be arbitrary, and the result applies to both
“strong-AF” and “weak-AF” regimes; in the former (latter)
the AF gap is large (small) such that it significantly (negligi-
bly) affects the electronic states at the Fermi level. An inter-
esting result in relation to the above-mentioned experiment
is that the topological Hall (TH) resistivity in the “strong-
AF” regime is proportional to the square of the effective
mass at low carrier density. Discussion will also be given in
comparison with ferromagnets in the weak-coupling regime.

This paper is organized as follows. After explaining the
model in Sec. II and outlining the calculation in Sec. III,
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FIG. 1. Visual representations of the model. (a) Localized spins
(black arrows) in a unit cell, which contains A- and B-sublattice
sites (indicated by red and blue dots, respectively). A collinear
antiferromagnet (upper panel) is described by the Néel vector n
(staggered component), whereas a canted antiferromagnet (lower
panel) requires the uniform component l (magnetization) as well.
(b) Antiferromagnetic spin texture. Randomly distributed impurities,
which act as on-site potentials, are also shown (yellow stars).

we present the result in Sec. IV, followed by discussion
and summary in Secs. V and VI, respectively. Details of the
calculation are described in the Supplemental Material [13].

II. MODEL

We consider electrons on a two-dimensional square lattice
coupled to a static spin texture Si in a canted antiferromagnet.
The Hamiltonian is given by

H = −t
∑
〈i, j〉

(c†
i c j + H.c.) − Jsd

∑
i

Si · (c†
i σci ) + Himp, (1)

where c†
i = (c†

i↑, c†
i↓) is the electron creation operator at site

i. The first term describes the electron hopping (with am-
plitude t), and the sum

∑
〈i, j〉 is taken over the pairs of

nearest-neighbor sites, i and j. The second term describes the
exchange coupling to localized spins Si that form a static and
slowly varying texture of the canted antiferromagnet. Jsd is
the s-d exchange coupling constant and σ = (σx, σy, σz ) are
Pauli matrices.

We express Si in terms of two “smooth” variables, ni and
l i,

Si = S[(−)ini + l i], (−)i =
{

1, i ∈ A sublattice,
−1, i ∈ B sublattice,

(2)
where S is the magnitude of the localized spin, ni is the
staggered moment (Néel vector), and l i is the uniform moment
(magnetization); see Fig. 1(a). We impose |(−)ini + l i| = 1,
hence n2

i + l2
i = 1 and ni · l i = 0. Throughout this study, we

consider small canting |l i| � 1 and retain terms up to the
linear order in l i (neglecting l2

i ), hence |ni| = 1 is assumed.
The last term in Eq. (1) is the coupling to randomly placed

nonmagnetic impurities. We consider pointlike impurities de-
scribed by

Himp = uimp

∑
i∈C

c†
i ci, (3)

where uimp is the potential strength and C is the set of
impurity positions [Fig. 1(b)]. The number of impurities on
A and B sublattices is assumed to be equal. The impurity
scattering introduces a finite scattering time τ , and also the
spin dephasing time τϕ for the electrons [see Eqs. (24) and
(28) below].

To treat the spatial variation of the Néel vector ni, we move
to a local spin frame by the SU (2) rotation Ui that sorts the
Néel vector to the z axis [12],

U †
i (ni · σ )Ui = σ z. (4)

We also define the corresponding 3 × 3 matrix Ri that
satisfies

U †
i σα Ui = Rαβ

i σβ, (5)

and an SU (2) spin gauge field Ai j by

U †
i Uj = eiAi j . (6)

This is associated with the hopping from site j to i, and sat-
isfies Ai j = −Aji. As stated, we assume slow spatial variation
of ni and l i, and thus Ai j is small, |Ai j | � 1. To first order in
Ai j , the Hamiltonian reads

H = H0 + HA + Hl + Himp, (7)

with

H0 = −t
∑
〈i, j〉

(c̃†
i c̃ j + H.c.) − J

∑
i

(−)ic̃†
i σ

zc̃i, (8)

HA = −it
∑
〈i, j〉

(c̃†
i Ai j c̃ j + c̃†

j A jic̃i ), (9)

Hl = −J
∑

i

(R−1
i l i ) · (c̃†

i σc̃i ), (10)

where J = JsdS. We introduced the electron operator c̃i =
U †

i ci in the rotated frame. We further assume that the canting
is small, |l | � 1, and treat HA and Hl perturbatively. Intro-
ducing the sublattice representation,

c̃i =
{

ai, i ∈ A sublattice,

bi, i ∈ B sublattice,
(11)

and writing ψk = t(ak↑ ak↓ bk↑ bk↓) with the Fourier
components akσ and bkσ (see below for explicit definition),
the Hamiltonian is written as

H0 =
∑

k

ψ
†
k (εkτ1 − Jτ3σ

3)ψk, (12)

HA =
∑
i=x, y

∑
k,q

(∂iεk)(ψ†
k+τ1 ψk− )Ai(q), (13)

Hl = −J
∑
k,q

(R−1l )q · (ψ†
k+σψk− ), (14)

Himp = uimp

∑
k,k′

ψ
†
k

[ ∑
r=A,B

Prρ
imp
r (k′ − k)

]
ψk′ , (15)

where εk = −2t (cos kx + cos ky), k± = k ± q
2 , and τi and σα

are Pauli matrices that act in sublattice (A or B) and spin
(↑ or ↓) spaces, respectively. We set the lattice
constant to unity. In Himp, PA,B = (τ0 ± τ3)/2 is the
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FIG. 2. Feynman diagrams for the treatment of random impurities. The solid line is the electron Green’s function, and the dashed line with
a cross represents impurity scattering. (a) Self-energy in the Born approximation. (b) Coupling to the uniform moment, Eq. (14), and impurity
correction. The empty (filled) square represents the bare (dressed) vertex. The second term is regarded as a self-energy which is first order in
l . (c) The ladder-type vertex correction. The upper (lower) solid line is the retarded (advanced) Green’s function with spin σ (σ̄ ).

projection operator to each sublattice, and ρ
imp
A,B(k′ − k) =

2
N

∑
j∈(A or B)∩C ei(k′−k)·r j is the Fourier component of the

impurity distribution. We define the Fourier transform of the
electron operators by

ai =
√

2

N

∑
k

akeik·ri , ak =
√

2

N

∑
i∈A

aie
−ik·ri , (16)

bi =
√

2

N

∑
k

bkeik·ri , bk =
√

2

N

∑
i∈B

bie
−ik·ri , (17)

where the k-integral is taken in the reduced Brillouin zone,
|kx + ky| � π , and N is the total number of sites. With this
definition, either ak or bk lacks periodicity (e.g., bk+QAF

=
−bk) with respect to the AF wave vector QAF = (π, π ), but,
in physical quantities, such unsatisfactory operator is always
associated with a compensating factor (such as eikx ) that
recovers the periodicity as a whole. Similarly, we define the
Fourier transform of the gauge field and uniform moment by

Ai j =
∑

q

Aμ(q) eiq·(ri+r j )/2, (18)

(
R−1

i l i
) =

∑
q

(R−1l )q eiq·ri , (19)

where μ̂ = r j − ri, and Ai j is supposed to live on the link
centered at (ri + r j )/2. We expand Aμ in terms of Pauli
matrices,

Aμ(q) =
∑

α=x,y,z

Aα
μ(q)

σα

2
≡ Aμ · σ

2
. (20)

Usually, Az
μ is called the adiabatic component and A⊥

μ ≡
(Ax

μ, Ay
μ, 0) the nonadiabatic component. In the following

calculation, the nonadiabatic components inevitably enter the
expression of THC since a spin flip induced by R−1l needs to
be undone by A⊥

μ in Feynman diagrams (see below).

III. CALCULATION

To calculate the THC, we use Kubo formula for electrical
conductivity,

σμν (Q, ω) = KR
μν (Q, ω) − KR

μν (Q, 0)

iω
,

(21)

KR
μν (Q, ω) = i

∫ ∞

0
dt ei(ω+i0)t 〈[ j̃μ(Q, t ), j̃ν (0, 0)]〉,

and extract the antisymmetric part, 1
2 (σxy − σyx ), which will

also be denoted by σxy. The Hall conductivity given above

looks at the Fourier Q component of the electric current in the
μ direction,

j̃μ(Q) = −e
∑

k

ψ
†
k− Q

2

[(∂μεk)τ1]ψk+ Q
2

− e
∑
k,q

ψ
†
k− Q

2 + q
2

[(
∂2
μεk

)
Aμ(q)τ1

]
ψk+ Q

2 − q
2
, (22)

in response to a uniform electric field in the ν direction. The
wave vector Q of the current is fed by the spin texture, ni or l i

(more precisely, Aμ or R−1l i), and ω is the frequency of the
applied electric field. To obtain the d.c. THC, we take the limit
Q → 0, followed by ω → 0.

For the calculation, we employ the Green’s functions of
H0 + Himp, in which the effects of the impurities (Himp) are
considered by the Born approximation in the self-energy [see
Fig. 2(a)]. The retarded Green’s function in the rotated frame
is given by

GR
k = μR + T R

k τ1 + JRτ3σ
3, (23)

where μR = (μ + iγ0)/DR
k , T R

k = εk/DR
k , JR = (−J +

iγ3)/DR
k with DR

k = (μ + iγ0)2 − ε2
k − (J − iγ3)2. The

damping constants are given by γ0 = π
2 nimpu2

impν and

γ3 = J
μ
γ0, where ν = ν(μ) = 2

N

∑
k δ(|μ| − Ek) is the

density of states and nimp is the impurity concentration.
We assume that the effects of impurity scattering are weak,

and approximate as DR
k � μ2 − E2

k + 2iμγ , where

γ = γ0 + J

μ
γ3 = μ2 + J2

μ2
γ0 ≡ 1

2τ
(24)

is the damping of electrons in the AF band, and

±Ek = ±
√

ε2
k + J2 (25)

is the energy of the upper and lower electron bands (“AF
bands”) in a uniform AF state without canting; the two bands
are separated by a gap 2J (“AF gap”), and both bands are spin
degenerate. The chemical potential μ is measured from the
AF gap center.

There is one more correction that may be classified as
self-energy. It is expressed by Fig. 2(b) and contains an l
vertex. Together with the bare l vertex, (R−1l ) · σ, it gives
(1 ± iζ )J (R−1l ) · σ, where ζ ∼ O(γ ) comes from the impu-
rity correction (see the Supplemental Material [13] for the
expression of ζ ). The sign + (−) corresponds to the retarded
(advanced) Green’s function. Although this correction can in
principle contribute to the leading terms, it did not play an
essential role in the result.
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FIG. 3. Feynman diagrams for the topological Hall conductivity in weakly canted antiferromagnets. (a) Definition of vertices. The filled
circle represents the current vertex, (∂iεk )τ1. The empty circle represents the vertex that contains the spin gauge field A coming from either the
perturbation Hamiltonian (∂lεk )Al (q) · στ1 or the current vertex (∂2

i εk )Ai(q) · στ1. In each diagram in (b–e), the solid line in the upper (lower)
half represents the retarded (advanced) Green’s function, and the left and right vertices come from the current operators in the Kubo formula.
Arrows usually attached to the electron lines are suppressed for simplicity. (b) Diagrams of first order in A and first order in l . (c) Diagrams
of second order in A and first order in l . (d) Diagrams of first order in A and first order in l with ladder VC. (e) Diagrams of second order
in A and first order in l with ladder VC. These diagrams contain gauge-invariant and gauge-noninvariant terms. There occur cancellations of
gauge-noninvariant terms between (b) and (c), and between (d) and (e).

For consistency with the Born approximation [Fig. 2(a)],
one needs to consider vertex corrections (VC) due to impurity
scattering. As shown in Fig. 2(c), we take a ladder sum
since each term contributes by the same order of magnitude
[Fig. 2(c)]. The relevant processes have two Green’s func-
tions with opposite spin and opposite causality (retarded or
advanced), and the result is given by [13]

�σσ̄ (q, ω) = 4nimpu2
imp(

Dq2 − iω + τ−1
ϕ

)
τ

μ2 + J2

μ2 − J2
(26)

� 4nimpu2
imp

μ2 + J2

μ2 − J2

τϕ

τ
, (27)

where

τϕ = μ2 − J2

2J2
τ = μ

4Jγ3

μ2 − J2

μ2 + J2
, (28)

is the spin dephasing time [14] and D is the diffusion constant.
Note that the spin dephasing arises from scattering from
normal (spin-independent) impurities. In Eq. (26), q actually
represents |q|, |q′| or |q ± q′|, where q and q′ are wave vectors
fed by Al (q) and (R−1l )q′ , respectively, which are assumed
very small [see Eq. (30) below] and will finally be neglected.
We also let ω → 0 to obtain the d.c. THC. Note that the result,
Eq. (27), is proportional to τϕ .

Before proceeding, let us make explicit the range of valid-
ity of the present calculation. First, the perturbative treatment
of l is justified when

J|l | < γ , (29)

meaning that the spin-splitting energy, J|l |, caused by the
canting should be smaller than the broadening γ . This corre-
sponds to the weak-coupling condition as to the ferromagnetic
moment [11]. Second, the spatial variation of the spin texture
should be slow and must satisfy

q�ϕ < 1, (30)

where q is the typical magnitude of the wave number of
the texture (n and l), and �ϕ = √

Dτϕ is the spin dephasing
length. This justifies the approximation made in going from
Eq. (26) to Eq. (27). This is the condition for the locality of
the emergent field [11].

Now, with the Green’s functions and the VC in hand, one
can calculate the THC. The diagrams are shown in Fig. 3,
which are classified into two types; the ones without VC
[Figs. 3(b) and 3(c)], whose contribution is denoted by σ (0)

xy ,
and those with VC [Figs. 3(d) and 3(e)], denoted by σ (VC)

xy . We
are interested in the leading-order contribution in the spatial
gradient of the texture (which comes from the spin gauge field
Aα

μ or the wave vector q), the electron damping γ , and the
uniform moment |l |. See the Supplemental Material [13] for
the details of calculation.

IV. RESULT

The result is given by

σxy = σ (0)
xy + σ (VC)

xy , (31)

σ (0)
xy = e2〈Bs,z〉J|μ| τ 2 η, (32)

σ (VC)
xy = 1

2 e2〈Bs,z〉J|μ| ττϕ η′, (33)
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which consists of σ (0)
xy (without VC) and σ (VC)

xy (with VC).
Both are first order in the uniform moment |l | and second
order in the relaxation time τ . The information of the texture
is contained in the emergent magnetic field,

Bs,z = (∇ × AAF)z (34)

= ∂xl · (∂yn × n) − ∂yl · (∂xn × n), (35)

via the spatial average 〈Bs,z〉. Here,

AAF =
⎛
⎝l · (∂xn × n)

l · (∂yn × n)
l · (∂zn × n)

⎞
⎠ (36)

may be regarded as an emergent vector potential in antifer-
romagnets [15]. The i component AAF,i = ∂in · (n × l ) arises
if, as one moves in the i direction, n develops a component
perpendicular to both n and l , namely, if n rotates around l .

As shown in Appendix, the emergent field Bs,z enjoys a
more interesting expression,

Bs,z = |l | l̂ · (∂x l̂ × ∂y l̂ ) + [(∇|l |) × (AAF/|l |)]z. (37)

The first term is proportional to the spin chirality density, l̂ ·
(∂x l̂ × ∂y l̂ ), formed by the (normalized) uniform component
l̂ ≡ l/|l |. Note that it is linearly proportional to |l | (the mag-
nitude of l). The second term arises from spatial variation of
the degree of canting (i.e., |l |). Its combination with AAF can
also give rise to scalar spin chirality. Examples of spin texture
that contributes to these terms will be given in Sec. V B. We
here note that the form of Eq. (36) is in harmony with the
kinetic term in the Lagrangian of antiferromagnets, which is
given to leading order of l by −2h̄S l · (ṅ × n) [16–18]. The
time-component counterpart of Eq. (36) has also been found
to appear in the electromotive force generated by AF spin
dynamics [19].

The coefficients, η and η′, in Eqs. (32) and (33) are
obtained as

η = C
t2ν

|μ| 〈〈1 − cos kx cos ky〉〉FS

= C

(2π )2μ̃

[
2K

(
1 − μ̃

1 + μ̃

)
− (1 + μ̃)E

(
1 − μ̃

1 + μ̃

)]
, (38)

η′ = C
t2ν

|μ| 〈〈1 − cos2 kx〉〉FS

= − C

(2π )2μ̃

[
2μ̃K

(
1 − μ̃

1 + μ̃

)
− (1 + μ̃)E

(
1 − μ̃

1 + μ̃

)]
,

(39)

where 〈〈· · · 〉〉FS ≡ ∑
k(· · · )δ(|μ| − Ek)/

∑
k δ(|μ| − Ek) is

the Fermi-surface average, C is a constant given by

C = 4J2(μ2 − J2)

μ2(μ2 + J2)
, (40)

and K (k) = ∫ 1
0

dt√
(1−t2 )(1−k2t2 )

and E (k) = ∫ 1
0

√
1−k2t2√
1−t2 dt are

the complete elliptic integrals. We defined a reduced chemical
potential μ̃ =

√
μ2 − J2/4t , which takes μ̃ = 1 at the band

bottom/top (μ = ±
√

(4t )2 + J2), and μ̃ = 0 at the AF gap
edge (μ = ±J).

0

0.2

0.4

0.6

0.8

1

1.2

−4 −3 −2 −1 0

σ̃
x
y

μ/t

σ̃
(0)
xy , J/t = 0.8

σ̃xy, J/t = 0.8

σ̃
(0)
xy , J/t = 0.2

σ̃xy, J/t = 0.2

FIG. 4. Normalized topological Hall conductivity,
σ̃xy = σxyγ̃

2/(e2〈Bs,z〉), where γ̃ ≡ πnimpu2
imp/(2t2), plotted as

a function of chemical potential μ for J/t = 0.2 and 0.8. The
dashed (solid) lines represent σ̃ (0)

xy (σ̃xy = σ̃ (0)
xy + σ̃ (VC)

xy ) without VC
(including VC). They are even functions of μ (symmetric about the
AF gap center, μ = 0), hence plotted only for the lower AF band
(μ < 0). When J/t is small (e.g., J/t = 0.2 in this figure), σ (VC)

xy

dominates σ (0)
xy in a wide range of μ, whereas when J/t ∼ 1 (e.g.,

J/t = 0.8 in this figure), the two are comparable in magnitude.

In Fig. 4, σ (0)
xy (without VC) and σxy = σ (0)

xy + σ (VC)
xy

(including VC) are plotted as functions of μ. Each
curve is normalized as σ̃xy = σxyγ̃

2/(e2〈Bs,z〉), where γ̃ ≡
πnimpu2

imp/(2t2) = γ0/(t2ν) is a dimensionless damping pa-
rameter. Overall, each curve shows a broad peak. When J is
comparable to t , σ (0)

xy and σ (VC)
xy are comparable but the peak

position is relatively shifted. In a closer look, whether the VC
is important or not depends on the chemical potential μ. The
dashed curves for σ (0)

xy are peaked at around μ = −2J , which
separates the two characteristic regions. When μ is close to
the AF gap, −2J < μ < −J , the effects of VC are negligible,
but they become quantitatively very important for μ < −2J .
We also see that the VC is more important for smaller J . To
sum up, we may say that the VC is important (negligible) for
electrons with good (poor) itineracy.

The above discussion may be put in a more “theoretical”
form. Since σ (VC)

xy /σ (0)
xy � τϕ/τ (η and η′ are comparable in

size), the ratio τϕ/τ determines the relative importance of the
two contributions and leads to the classification,

Weak-AF regime : τϕ � τ or |μ| �
√

3J,

Strong-AF regime : τϕ � τ or |μ| �
√

3J.

From a closer look at Fig. 4 (in particular, the curves for
J/t = 0.8), one may see that |μ| = √

3J gives a more precise
boundary.

In Fig. 5, we show the normalized THC σ̃xy (including VC)
and the normalized Hall angle α̃xy = σ̃xy/σ̃xx in the plane of
band filling n and J/t . (The diagonal conductivity is given by
σxx = 2e2Dν [13], which is normalized as σ̃xx = σxxγ̃ /e2.) As
seen, the Hall conductivity σ̃xy is peaked at around J/t = 1 ∼
2 and n = 0.2 ∼ 0.3. The Hall angle αxy shows a plateau for
J/t � 2 and n � 0.4, and approaches a finite value as n → 0.
The TH resistivity is thus inversely proportional to n (for fixed
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FIG. 5. Color plots in the plane of band filling n and J/t . (n = 1
corresponds to completely filled lower and empty upper AF bands.)
(a) Normalized topological Hall conductivity, σ̃xy = σ̃ (0)

xy + σ̃ (VC)
xy .

(b) Normalized Hall angle, α̃xy = σ̃xy/σ̃xx , where σ̃xx = σxx γ̃ /e2. The
Hall angle is given by αxy = α̃xy〈Bs,z〉/γ̃ .

τ and the effective mass) near the band bottom (n � 1). It also
shows a divergent behavior as n → 1.

V. DISCUSSION

In this section, we discuss the present results for canted
antiferromagnets in relation to the previous work on ferro-
magnets in the weak-coupling regime [11]. We also present
an example of spin texture that gives rise to each term of the
emergent field in Eq. (37).

A. Comparison with weak-coupling ferromagnets

First, the characteristic features of THC in weak-coupling
ferromagnets [11] are summarized as follows.

(i) Like in Bruno’s strong-coupling result, the emergent
magnetic field is given by the spin chirality even at weak
coupling.

(ii) The THC is linearly proportional to the uniform mo-
ment (or M, the exchange splitting). This is a nonperturbative
effect governed by the precession-dominated propagation of
transverse spin density of electrons (see below for details).

(iii) The THC is proportional to the inverse effective (band)
mass, σxy ∝ (m∗)−1, and the TH resistivity is proportional to
the effective mass, ρxy ∝ m∗ (for fixed carrier density and
scattering time).

In the following, we discuss the present results for canted
antiferromagnets.

1. Emergent field in weakly canted antiferromagnet

The THE is absent in locally collinear (uncanted) anti-
ferromagnets because of the cancellation between opposite
chirality components on the two sublattices [7–9]. If the AF
moments are canted, then this cancellation becomes imperfect
and the THC arises, as we have seen, at linear order in |l |.
One might think that it should start from third order in |l | con-
sidering the results of weak-coupling (perturbative) treatment
[20–22]. This is where we see the AF moment in play, namely,
the Néel vector and the uniform moment cooperate to give rise
to a nonvanishing spin chirality in the antiferromagnet.

The terms linear in |l | can be obtained by the perturbative
treatment of l , as adopted in this paper. This is valid in the
“weak-coupling” (weakly canted) regime, J|l |τ � 1. (This
corresponds to Mτ < 1 for ferromagnets.)

The form of the emergent magnetic field can be obtained
based on symmetry. We focus on terms which are first order
in l and second order in spatial gradient of n or l , and consider
in the rotated frame a perturbative expansion in terms of the
SU (2) gauge field (Aα

i ), the magnetization l̃ ≡ R−1l , and
spatial gradient ∂ j . First, the (global) spin-rotation symmetry
around z axis allows three terms, giving

σi j = c1(∂iA j − ∂ jAi ) · l̃ + c2(A j · ∂i l̃ − Ai · ∂ j l̃ )

+ c3(Ai × A j ) · l̃

= (c1 + c3)(∂iA⊥
j − ∂ jA⊥

i ) · l̃

+ c2(A⊥
j · ∂i l̃ − A⊥

i · ∂ j l̃ ), (41)

where cn’s are coefficients. Since the SU (2) field strength
vanishes, F i j ≡ ∂iA j − ∂ jAi − Ai × A j = 0 [11,23], the first
term and the third term are the same, hence combined in the
last expression. The U (1) gauge invariance (invariance under
local spin rotaion around the z axis [23]) requires c1 + c3 =
c2, and only in this case, one obtains a gauge-invariant form,

σi j = c2{∂i(A⊥
j · l̃ ) − ∂ j (A⊥

i · l̃ )}. (42)

As shown in the Supplemental Material [13], this is actually
the case. Note that c2 (= c1 + c3), though evaluated at l̃ =
0, does not vanish in general (in contrast to the case of
ferromagnets [11]) since n is well-developed and breaks the
symmetry between the z direction and the x, y directions in the
rotated spin space. Therefore, unlike in Ref. [11], the l-linear
contribution survives at the perturbative level. From Eq. (42),
we can read off the emergent vector potential,

AAF,i = A⊥
i · l̃ = l · (∂in × n), (43)

where we used the identity, RA⊥
i = ∂in × n [24]. This is

nothing but Eq. (36).
When J � |μ|, which we call “weak-AF” regime, the Néel

component is negligible and the full spin-rotation symmetry is
recovered. Thus, c2 (= c1 + c3) vanishes like ∼J3 as J → 0
(for σ (0)

xy , see the next subsection), and the l-linear terms
disappear. This corresponds to what has been observed in
ferromagnets in the weak-coupling regime (at the perturbative
level without spin diffusion propagator).

174432-6



TOPOLOGICAL HALL EFFECT IN WEAKLY CANTED … PHYSICAL REVIEW B 101, 174432 (2020)

2. Propagation of transverse spin density

As seen, l is required for the THE, which flips electron
spin with respect to the Néel vector direction. This means that
the THE involves a process of transverse spin propagation
(perpendicular to the Néel vector). Such processes occur at
the single-particle level, and also at the collective level.

The vertex correction �σ̄σ , Eq. (26), describes the collec-
tive propagation of transverse spin density of electrons in a
uniform antiferromagnet. The corresponding quantity for a
ferromagnet is given by

�
(Ferro)
σ̄ σ (q, ω) = nimpu2

imp(
Dq2 + 2iσM − iω + τ−1

s

)
τ

, (44)

where M is the coupling to the ferromagnetic moment. The
pure-imaginary term 2iσM in the denominator of Eq. (44)
describes spin precession, but the corresponding term is ab-
sent in Eq. (26) for (collinear) antiferromagnets. This means
that spin precession is virtually absent in antiferromagnets,
and this is reasonable considering the alternating nature of
the ordered moments (effective fields). The real term τ−1

ϕ

in the denominator of Eq. (26) describes spin relaxation
(dephasing) [14], similar to τ−1

s in Eq. (44), but restricted to
the transverse components. Here, it arises from nonmagnetic
impurities. This contrasts with ferromagnets, in which some
spin-flip scattering is necessary for spin relaxation to arise.
As seen from Eq. (28), τ−1

ϕ is proportional to γ3 and J; the
former (γ3) introduces sublattice asymmetry (through τ 3σ z

in self-energy), while the latter (J) represents spin precession
with site-to-site alternation. These together violate the above-
mentioned cancellation of sublattice-dependent precession
and leads to dephasing [6,14].

The vertex correction �σ̄σ , Eq. (26), for antiferromagnets
is large in the “weak-AF” regime, J � |μ|, where a precise
analogy to (ii) for ferromagnets comes up. In this case, σ (0)

xy

is proportional to J3, as understood perturbatively [20–22],
whereas σ (VC)

xy is linearly proportional to J , a nonperturbative
effect due to �σ̄σ . Thus, σ (VC)

xy dominates σ (0)
xy by a factor

of τϕ/τ � (μ/J )2 (except for a narrow region, |μ| � √
3J;

see the curves for J/t = 0.2 in Fig. 4), which reflects the
behavior of τϕ ; for smaller J , the conduction electrons keep
their transverse spin for a longer time, and σ (VC)

xy is enhanced.
As stated above, the same happens in weak-coupling ferro-
magnets. Note, however, that, in contrast to the ferromagnetic
case, the present THC is linear in l regardless of the strength
of the exchange coupling constant J .

3. Effective mass dependence at low carrier density

To see the dependence on the effective mass, we consider
the regime of low carrier density. When the chemical potential
lies near the bottom of the lower AF band (or the top of the
upper AF band), the electron dispersion can be approximated
by a parabolic one, and η and η′ tend to coincide. In fact, if
we set μ̃ = 1 − δμ̃, where δμ̃ measures the distance from the
band bottom (or top) and is related to the electron (or hole)
number per site n as δμ̃ = πn/2, one has

η � η′ � J2(4t )2

((4t )2 + J2)((4t )2 + 2J2)

δμ̃

2π
(45)

to the leading order in δμ̃. Then,
σ (VC)

xy

σ
(0)
xy

� μ2−J2

4J2 � ( 2t
J )

2
. For

J � t (“weak-AF” regime) [25], the effect of VC is signif-
icant. In this case, the THC is inversely proportional to the
effective mass, m∗ =

√
(4t )2 + J2/8t2, and the TH resistivity

is proportional to m∗, ρxy ∝ m∗. This feature is shared by
ferromagnets in the weak-coupling regime [11].

In the “strong-AF” regime, J � 4t [25], the VC is less
important. In this case, the THC is independent of the effective
mass m∗ � J/8t2, and the TH resistivity is proportional to the
square of m∗, ρxy ∝ (m∗)2. This result may be relevant to the
experiment in Ref. [10].

In Ref. [10], the authors reported a very large TH resistivity
ρxy in Mn oxide thin films at low carrier density n. To interpret
their experimental result that ρxy shows a strong n dependence
(ρxy ∝ n−β with β � 2.7), they noted that the weak-coupling
formula of ρxy obtained for ferromagnets [11] is linearly
proportional to the effective mass m∗ (in contrast to the strong-
coupling formula, which is independent of m∗), and supposed
that m∗ would be enhanced at low n like m∗ ∝ n−α because
of some many-body effects not included in the theoretical
calculation. To fit the experimental data, they assumed a rather
strong n dependence with α = 2. With the present result
for canted antiferromagnets that ρxy is proportional to the
square of m∗, a more moderate behavior with α = 1 would
be sufficient to fit the data.

B. Examples of spin texture

As shown in Eq. (37), the emergent field that induces THE
in antiferromagnets consists of two terms. The first one is due
to the spin chirality formed by l̂ , and the detailed form of n is
irrelevant. The second term is associated with the variation of
the magnitude |l |, and also requires a concert of n and l . Here
we present an example of spin texture that gives rise to each
term in the emergent field.

1. l-skyrmion

If |l | is constant, then the second term vanishes in Eq. (37).
The first term is finite when l forms, e.g., a skyrmion (“l
skyrmion”) as illustrated in Fig. 6(a). In this case, the Néel
vector, an example of which is shown in Fig. 6(b), inevitably
has singularity (in the bulk) or winding (on the edge) as
explained in the caption. Since singularities (vortices in the
present case) of the Néel vector are energetically unfavorable,
we suppose that, when l forms a skyrmion, n winds twice
about the equator along the edge of the system as in Fig. 6(b).

When there are finite density of such l skyrmions, the THC
is given by

σxy = 4πe2J|l ||μ| τ 2

(
η + μ2 − J2

4J2
η′

)
nsk, (46)

where nsk is the sheet (two-dimensional) density of l
skyrmions. Here we estimated 〈Bs,z〉 = 4π |l |nsk using the
chirality-density formula [the first term of Eq. (37)]. The
factor of 4π comes from the solid angle subtended by the
l̂ vector per skyrmion. Alternatively, the expression Bs,z =
(∇ × AAF)z [Eq. (34)] allows us to calculate 〈Bs,z〉 purely
from the edge spin texture. Focussing on a single skyrmion
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FIG. 6. An example of spin texture that gives rise to the emergent
field, Bs,z ∼ |l | l̂ · (∂x l̂ × ∂y l̂ ), the first term of Eq. (37). (a) Uniform
component l . (b) Néel component n. When the uniform component l̂
forms a skyrmion, as illustrated in panel (a), the Néel vector n, which
is locally normal to l̂ , would form a texture such as the one illustrated
in panel (b). Since panel (a) is obtained by a stereographic projection
from the normal vector field of a two-sphere (with the direction of
vectors preserved), the Néel vector n can be obtained from a tangent
vector field by the same projection. Since any tangent vector field on
a two-sphere inevitably has singularity (a pole with index 2, or two
poles with index 1), known as the “hairy ball theorem” [26], the Néel
vector must also form a pole (or poles) of the same character. The
only way to avoid the singularity in the Néel vector is to spread the
pole to the edge of the system. The Néel vector shown in panel (b) is
obtained in this way, and therefore it winds twice the equator as one
travels around the edge. (The color of the arrow indicates its in-plane
direction.)

for simplicity, we consider∫
S

Bs,zdxdy =
∮

C
AAF,idxi = −|l |

∮
C

(∂in × n)zdxi, (47)

where S is the two-dimensional region displayed in Fig. 6, and
C is its perimeter. [Note that l = (0, 0,−|l |) on the edge, as
seen from Fig. 6(a).] Then, the factor of 4π comes from the
in-plane winding angle of the n-vector,

∮
C (n × ∂in)zdxi = 4π

[see Fig. 6(b)]. Here, in using the Stokes theorem, we assumed
that the vector field n has no singularity in S.

A single winding [winding angle by 2π , or precisely, by
−2π around l̂ = (0, 0,−1)] of the in-plane Néel vector n
on the perimeter can be absorbed into the bulk as a vortex
(not anti-vortex) in which n circulates around l (in the plane
perpendicular to l). If there are such vortices in the bulk, then
the winding angle along the perimeter is reduced, but one
has to consider the integration along contours that circle the
vortices in the opposite (clockwise) sense, and the total result
is the same [27]. Here, we can relax the constraint of constant

|l |, and evaluate the effective flux as∫
S

Bs,zdxdy =
∮

C−∑
i Ci

AAF,idxi

= −2π

{∮
C

|l |dNedge −
∑

i

Ni|l i|
}

, (48)

where S now represents the whole sample region with the
singularity points excluded, C (Ci) is the contour on the edge
(around ith singularity), l i = l (xi ) is evaluated at the position
xi of ith singularity and Ni = 1

2π

∮
Ci

l̂ i · (n × ∂ jn)dx j is its
vorticity. The winding number along C is given by Nedge =∮

C dNedge with the differential, dNedge = 1
2π

l̂ · (n × dn) [28].
If specialized again to the case that |l | is constant, then this
reduces to ∫

S
Bs,zdxdy = −2π |l |(Nedge − Nv), (49)

where Nv = ∑
i Ni is the total vorticity in S. Because of the

topological constraint, Nv − Nedge = 2Nsk, where Nsk is the
number of l skyrmions, Eq. (49) leads to 〈Bs,z〉 = 4π |l |nsk,
and thus to Eq. (46).

2. n-domain wall with canting gradient

If the direction of l is constant, then the first term vanishes
in Eq. (37). As an example that contributes to the second
term in this case, consider a domain wall formed by the Néel
vector n lying in the xz plane, n = [(cosh x

λ
)−1, 0, tanh x

λ
],

with a uniform component, l = (0, a + by, 0), pointing in the
y direction and varying in magnitude in the y direction (λ,
a, and b are constants). In this case, AAF has a nonzero x
component, and its cross product with ∇|l | (‖ ŷ) is finite. Such
a texture may be realized if a magnetic field gradient is applied
on a “Néel-type” AF domain wall (a domain wall formed by
n with divn �= 0) in the direction perpendicular to the Néel
vector plane. The degree of canting |l | may also be changed
by gradating some material parameters.

To evaluate the THC, let us first look at the effective flux
obtained by integrating Bs,z = −b(λ cosh x

λ
)−1 in a rectangle

region, |x| � Lx/2 and |y| � Ly/2 with Lx � λ, which con-
tains a single domain wall (in the x direction),∫

Lx×Ly

Bs,zdxdy =
∫ Lx/2

−Lx/2

−bLy

λ cosh x
λ

dx = −πbLy. (50)

When there are NDW domain walls in the interval of length Lx,
Eq. (50) is multipied by NDW, and we have 〈Bs,z〉 = −πbρDW,
where ρDW = NDW/Lx is the line (one-dimensional) density
of the domain walls. This leads to

σxy = −πe2bJ|μ| τ 2

(
η + μ2 − J2

4J2
η′

)
ρDW. (51)

It should be noted that this holds when all domain
walls have the same chirality. When both chiralities, n± =
[±(cosh x

λ
)−1, 0, tanh x

λ
], coexist, ρDW is given by ρDW =

(NDW,+ − NDW,−)/Lx, where NDW,± is the number of domain
walls of type n±.

The above expression can also be obtained from Eq. (48).
Since there are no singularities in the bulk, the THC is deter-
mined by the winding along the perimeter. For the calculation,
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it is sufficient to observe the followings. (i) On the edges
perpendicular to the domain walls (y = ±Ly/2), |l | = |a ±
bLy/2| is constant on each edge, and the respective wind-
ing number is Nedge = ±s±(NDW,+ − NDW,−)/2 with s± =
sgn(a ± bLy/2). (ii) Along the edges parallel to the domain
walls, there is no winding, dNedge = 0.

VI. SUMMARY

In this paper, we calculated the topological Hall conduc-
tivity in a weakly canted antiferromagnet to the leading order
in the spatial gradient of spin texture, uniform moment l , and
electron damping γ . The uniform moment induced by canting
is assumed small and is treated perturbatively. This means
that we considered the weak-coupling regime in the sense that
J|l | � γ , namely, the spin splitting (due to l) is smaller than
the broadening in the electron spectrum while the coupling to
the AF moment is left arbitrary (thus including both the weak-
AF regime and the strong-AF regime). The obtained THC
[Eqs. (31)–(33)] is first order in uniform moment |l |, second
order in scattering time τ , and proportional to an emergent
magnetic field [Eq. (37)], which consists of a spin-chirality
density formed by the normalized uniform moment l̂ and that
coming from spatial variation of canting |l |.

Whether a given antiferromagnet is in the strong-AF
regime or in the weak-AF regime depends on the chemical
potential μ relative to the AF band structure. If it is located
close to the AF gap edge (|μ| � √

3J), then it is in the strong-
AF regime, where the vertex corrections are unimportant and
the topological Hall resistivity is proportional to the square
of the effective mass, ρxy ∝ (m∗)2. In the weak-AF regime
(|μ| � √

3J), the vertex correction is important, and one sees
σxy ∝ J; this J-linear dependence is a nonperturbative result
due to the long dephasing time, τϕ ∝ J−2, coming from the
vertex correction.

Enhancement due to vertex corrections in the weak-AF
regime is also observed in the topological spin Hall effect
in (locally collinear) antiferromagnets but in a somewhat
different way. This will be reported elsewhere [29].
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APPENDIX: DERIVATION OF EQ. (37)

Consider an orthonormal frame {l̂, m, n} formed by n, l̂ ≡
l/|l | and m ≡ n × l̂ . Using n = l̂ × m, and then m × n = l̂ ,
one may calculate as

∂yn · (n × ∂x l̂ ) − (x ↔ y)

= (∂y l̂ × m + l̂ × ∂ym) · (n × ∂x l̂ ) − (x ↔ y)
= m × (n × ∂x l̂ ) · ∂y l̂ − (x ↔ y)

= (∂x l̂ · m)(∂y l̂ · n) − (∂x l̂ · n)(∂y l̂ · m)

= (∂x l̂ × ∂y l̂ ) · l̂ . (A1)

In the third line, we noted the orthogonality relations n · l̂ = 0
and l̂ · ∂x l̂ = 0. Therefore, Bs,z given by Eq. (35) is expressed
as

Bs,z = |l | l̂ · (∂x l̂ × ∂y l̂ ) + [(∇|l |) × (AAF/|l |)]z. (A2)
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