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Inverse Faraday effect in graphene and Weyl semimetals
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We report systematic theoretical studies of the inverse Faraday effect in materials with massless Dirac
fermions, both in two dimensions such as graphene and surface states in topological insulators, and in three
dimensions such as Dirac and Weyl semimetals. Both semiclassical and quantum theories are presented, with
dissipation and finite-size effects included. We find that the magnitude of the effect can be much stronger in
Dirac materials as compared to conventional semiconductors. Analytic expressions for the optically induced
magnetization in the low-temperature limit are obtained. Strong inverse Faraday effect in Dirac materials can be
used for the optical control of magnetization, all-optical modulation, and optical isolation.

DOI: 10.1103/PhysRevB.101.174429

I. INTRODUCTION

Inverse Faraday effect (IFE) is a fascinating nonlinear opti-
cal phenomenon. Its key feature is generation of a permanent
magnetization in a medium as a result of interaction with
circularly polarized radiation [1]. The effect was predicted by
Pitaevskii [2], and the name IFE was coined in [3–5]. IFE was
studied extensively in plasmas, metals, and semiconductors
[6–13]. More recent studies explored the use of IFE for
ultrafast modulation of magnetization with femtosecond laser
pulses [14–23] .

There has been a lot of recent interest in the optical prop-
erties of two- and three-dimensional (2D and 3D) materials
with Dirac and Weyl fermions, including the nonlinear optical
[24–38] and magneto-optical [39–44] response of graphene
and Dirac/Weyl semimetals. Strong light-matter coupling in
these systems makes them promising for IFE studies. In
[24,45] the generation of edge photocurrent in graphene was
studied theoretically and in experiments. We show below that
generation of edge photocurrent is related to IFE.

In the Introduction we discuss general features of IFE
based on the Pitaevskii formula (1) obtained from thermo-
dynamic considerations. Section II develops a quasiclassical
theory of IFE in graphene based on the kinetic equation. The
quantum-mechanical derivation of IFE in graphene including
interband transitions is given in Sec. III. Both Secs. II and III
neglect dissipation. In Sec. IV we calculate the magnetization
of graphene by directly summing over the magnetic moments
of individual electrons (in quasiclassical approximation), in-
stead of using the Pitaevskii formula. That is why we can
include dissipation in this treatment. Section V takes into
account finite-size effects and calculates edge photocurrent.
Section VI develops the kinetic-equation theory for the IFE
in Weyl semimetals. In Appendix A we evaluate the effect of
the depolarization field on the IFE in a finite sample, whereas

Appendix B studies saturation of IFE in strong fields.
Throughout the paper, we include only the electric-dipole in-
teraction with the electric field of the electromagnetic waves,
ignoring a much smaller contribution of electron spins.

In a transparent nonmagnetic medium, i.e., in the medium
with magnetic permeability μ = 1, the magnetization excited
by a monochromatic field can be determined from thermody-
namic considerations. The resulting expression is [1]

m =
∑

i j

∂εi j

∂H
Ẽ j Ẽ∗

i

16π
, (1)

where the optical field is given by E = Re(Ẽe−iωt ), i, j are
Cartesian indices, εi j is a Hermitian tensor of the dielectric
permittivity, H is the vector of a constant magnetic field. Here,
the Gaussian units are assumed. In the absence of an external
magnetic field, the derivative in Eq. (1) should be calculated
in the limit limH−→0 ( ∂εi j

∂H ). If the medium is isotropic at H →
0 the induced magnetic moment will be orthogonal to the
plane containing the electric field vector E (see Fig. 1). The
magnitude of magnetization is determined by the difference
between the intensities of right- and left-circularly polarized
components of the optical field. It is obviously zero for a
linearly polarized field.

It is remarkable that Eq. (1) remains valid for media
with frequency dispersion: there is no need to add frequency
derivatives ∂εi j

∂ω
to Eq. (1) whereas such derivatives are present

in the expression for an averaged energy of the optical field
in a dispersive medium [1,2]. The limit of zero dissipation
is more subtle. As we show in Sec. IV in the quasiclassical
approximation, Eq. (1) cannot be obtained by taking the
real part of the complex dielectric function of the dissipative
medium.
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FIG. 1. A sketch of inverse Faraday effect: an incident circularly
polarized light induces magnetization in a sample.

Equation (1) underscores another unique feature of the IFE.
It is well known that any optical response that is quadratic in
powers of the field can be calculated within a standard per-
turbative approach from the second-order (with respect to the
field) perturbation of the density matrix. For a photoinduced
magnetic moment in a system with discrete energy spectrum,
such an approach was developed, e.g., in [46]. At the same
time, Eq. (1) shows that it is possible to calculate photoin-
duced magnetization from the linear dielectric response of the
medium.

It follows from Eq. (1) that IFE exists only in the media
that become gyrotropic in an external constant magnetic field.
Examples of the systems that do not become gyrotropic in an
external magnetic field include an electron-positron plasma
and magnetized vacuum [47]. Condensed matter systems with
complete electron-hole symmetry are also not gyrotropic in
an external magnetic field. One obvious example is a material
with electronic band structure in the form of isotropic Dirac
cones, when the Fermi level crosses the Dirac points, such
as graphene or certain types of Dirac/Weyl semimetals [44].
Of course, this also implies low enough photon frequencies
that probe only the range of electron energies close to the
Dirac point. The selection rules for such systems allow one
to group all electric-dipole allowed optical transitions into
symmetric pairs n → −(n + 1) and n + 1 → −n with the
same transition frequency but opposite direction of rotation of
a circularly polarized optical field [44,48,49]. Gyrotropy, and
therefore the IFE, will appear in these materials only when the
Fermi level is shifted with respect to the Dirac/Weyl point; see
Fig. 2. Moreover, as we argue below, the IFE is strongest in
the limit of small frequencies and large Fermi energies, when
resonant interband transitions are Pauli-blocked minimizing
absorption and the main contribution to IFE comes from
intraband transitions in the vicinity of the Fermi level.

Since the model leading to Eq. (1) does not include dis-
sipation, for condensed matter systems it can give only a
qualitative description. Nevertheless, it provides a useful limit
based on general thermodynamic relations. In Sec. IV we
compare it with a specific model that does take dissipation
into account.

II. QUASICLASSICAL THEORY OF IFE IN GRAPHENE

For a 2D system such as graphene, it is convenient to
use the electric susceptibility tensor instead of the dielectric

FIG. 2. Landau levels and optical transitions in graphene. The
highest Landau level below the Fermi energy is denoted as nF . Dotted
arrows indicate a pair of transitions with contributions to the induced
magnetic moment that cancel each other. Only the transitions shown
with solid arrows (one interband and one intraband) contribute to
inverse Faraday effect at low temperature.

permittivity in Eq. (1), namely, χi j = εi j−δi j

4π
, and integrate this

equation over the layer thickness. In this case, Eq. (1) becomes

m =
∑

i j

∂χi j

∂H
Ẽ j Ẽ∗

i

4
. (2)

Now the tensor χi j is a 2D surface susceptibility tensor which
has the dimension of length; i, j = x, y are coordinates in the
graphene plane. The vector m in Eq. (2) has a meaning of a
magnetic moment of a unit area (see Fig. 1). We will use a
standard low-energy effective Hamiltonian for electrons near
the Dirac point [50]:

Ĥ0 = vF p̂ · σ̂, (3)

where σ̂ = x0σ̂x + y0σ̂y, p̂ = x0 p̂x + y0 p̂y, σ̂x,y are Pauli ma-
trices, p̂x,y are Cartesian components of the momentum oper-
ator, x0, y0 are unit vectors of coordinate axes, vF is the Fermi
velocity. In this model, the degeneracy factor g = 4 (two spin
states and two valleys). The corresponding electron energies
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are

W (p) = svF p, (4)

where p =
√

p2
x + p2

y ; index s = ±1 corresponds to the con-
duction and valence band, respectively.

The analysis below is applicable also to 2D surface states
in 3D topological insulators such as Bi2Se3. Their low-energy
Hamiltonian is related to that of graphene by a unitary
transformation, and the resulting linear and nonlinear optical
responses are both very similar, after rescaling the values of
the Fermi velocity and degeneracy (see, e.g., [29,31,42]).

Since in this model the IFE appears only when the Fermi
energy is shifted from the Dirac point, we consider doped
graphene and assume that the Fermi level is in the conduction
band for definiteness. In the limit of small enough frequencies,
low temperatures, and large Fermi energies (so that the con-
tribution of interband transitions can be neglected) the quasi-
classical theory is adequate. (This is the most interesting limit
anyway: the results for a classical plasma, metals, and semi-
conductors [6–13] indicate that the photogenerated magnetic
moment grows with decreasing frequency as ∝ω−3.) Indeed,
it was shown in [31] that under rather weak restrictions on
the nonuniformity of the electromagnetic field in the plane
of graphene both linear and quadratic intraband susceptibil-
ities derived within the quantum-mechanical density matrix
formalism coincide with the results obtained from the kinetic
equation based on the quasiclassical equations of motion for
carriers. The nonuniformity restriction is L � h̄

pF
, where L is

the spatial scale of the nonuniformity of the field and pF is the
Fermi momentum related to the Fermi energy by WF = vF pF .
The contribution of interband transitions will be small when
electrons are degenerate and

WF � h̄ω. (5)

This is confirmed by fully quantum treatment in Sec. III.
Under a more restrictive condition L � vF

ω
one can

calculate the response neglecting spatial nonuniformity of
the optical field [31]. We will use the kinetic equation
which corresponds to the quasiclassical equations of motion
[27,28,35,40,41]. To calculate the derivative in Eq. (2) it is
enough to know the dependence of the tensor elements χi j on
the external constant magnetic field in linear approximation
with respect to H. Here, the magnetic field is orthogonal to
the monolayer: H = z0Hz. The kinetic equation has the form

∂ f

∂t
− e

{
E(t ) +

[
1

c

(
∂W

p∂ p

)
p × H

]}
· ∂ f

∂p
= Q̂( f ). (6)

Here, Q̂( f ) is the relaxation operator, the electric field vector
E is in the graphene plane, −e is electron charge. We do not
specify any particular electron dispersion W (p) in Eq. (6) in
order to compare the results for linear and quadratic dispersion
(see also [13]).

Consider Eq. (6) when Q̂( f ) = 0. We need to calculate
the linear response to the uniform high-frequency field Ex,y =
Re(Ẽx,ye−iωt ). We will seek the solution to Eq. (6) in the form
f = Re[δ f (θ, p)e−iωt ] + fF (p), where px = p cos θ, py =
p sin θ, |δ f | � fF . Linearization of Eq. (6) gives

−iωδ f + ∂W

p∂ p

eHz

c

∂δ f

∂θ
− e(Ẽx cos θ + Ẽy sin θ )

∂ fF

∂ p
= 0.

This equation has an exact solution

δ f = e

ω2 − (
∂W
p∂ p

eHz

c

)2

∂ fF

∂ p

[
Ẽx

(
iω cos θ − ∂W

p∂ p

eHz

c
sin θ

)

+ Ẽy

(
iω sin θ + ∂W

p∂ p

eHz

c
cos θ

)]
. (7)

The surface current is determined by

jx = −egRe

(
e−iωt

∫
∂W

∂ p
cos θδ f d2 p

)
,

jy = −egRe

(
e−iωt

∫
∂W

∂ p
sin θδ f d2 p

)
.

Substituting Eq. (7) in these equations and keeping only the
terms linear with respect to the magnetic field we obtain the
following expressions for the elements of the conductivity
tensor σi j :

σxx = σyy = σ = −i
gπe2

ω

∫ ∞

0

∂W

∂ p

∂ fF

∂ p
p d p,

σxy = −σyx = −e3gπHz

ω2c

∫ ∞

0

(
∂W

∂ p

)2
∂ fF

∂ p
d p. (8)

Using Eqs. (2) and (8), and the relationship between the
complex conductivity and complex susceptibility χi j = iσi j

ω
,

we arrive at

m(0)
z = −gπe3

2cω3

∫ ∞

0

(
∂W

∂ p

)2
∂ fF

∂ p
d p × Re(iẼyẼ∗

x ), (9)

where the superscript (0) indicates the transparent medium
approximation used to derive the Pitaevskii equation (1).

Since the effect is strongest when the electrons are strongly
degenerate, we consider a zero-temperature 2D Fermi distri-
bution as an unperturbed electron distribution

fF (p) = 1

(2π h̄)2

(pF − p), (10)

where 
(x) is the Heaviside step function. In this case, the
integrals are easily calculated to give

σxx = σyy = σ = i
ge2 pF

4π h̄2ω

(
∂W

∂ p

)
p=pF

,

σxy = −σyx = ge3Hz

4πch̄2ω2

(
∂W

∂ p

)2

p=pF

. (11)

In particular, for graphene with linear dispersion (g =
4, ∂W

∂ p = vF ) the last of Eqs. (11) yields

σ (intra)
xy = e3v2

F Hz

πch̄2ω2
. (12)

Here, we added the label (intra) to emphasize the fact that the
quasiclassical calculation gives only the intraband conductiv-
ity. For the magnetic moment we obtain

m(0)
z = ge3

8πch̄2ω3

(
∂W

∂ p

)2

p=pF

× Re(iẼyẼ∗
x ). (13)

It follows from Eq. (13) that if the electron dispersion is
quadratic, the magnetization is proportional to the surface
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electron density nF = gp2
F

4π h̄2 and inversely proportional to the
square of their effective mass. For a linear dispersion near the
Dirac point as in Eq. (4) and degenerate electron distribution
of Eq. (10) the magnetization does not depend on the Fermi
momentum pF , i.e., it does not depend on the carrier density.
One can write the result in the same form for both cases by
introducing an effective mass for electrons at the Fermi level
in graphene: meff = pF

vF
. One has to keep in mind that the

limit of small pF → 0 is not allowed as it would violate not
only the criterion of negligible contribution from interband
transitions, but also the applicability of the method of small
perturbations that we used when solving the kinetic equation.
The latter condition has the form pF � eE0

ω
, where E0 = |Ẽ|,

as follows from the solution for the strong-field nonlinear
problem solved in Appendix B.

III. QUANTUM THEORY OF THE IFE IN GRAPHENE

The magnetic moment generated as a result of IFE is deter-
mined by the magnetic field dependence of the off-diagonal
element of the conductivity tensor. To find this dependence
within full quantum theory we use the Kubo-Greenwood
formula [51]

σxy = −σyx = ih̄g
∑
αβ

(
fα − fβ

Eβ − Eα

) 〈α|ĵx|β〉〈β|ĵy|α〉
h̄(ω + i

τ
) − (Eβ − Eα )

,

(14)

where |α〉 are basis 2D surface states normalized by unit area
Lx × Ly = 1, Eα and fα are the energy and population of state

|α〉, ĵx,y = −evF σ̂x,y are Cartesian components of the current
density operator [50], g = 4 is the degeneracy factor, τ is the
relaxation time.

To determine the distribution function of carriers in a
magnetic field oriented along the z axis, we extend the mo-
mentum operator in the Hamiltonian (3) in a standard way
[52]: p̂ �⇒ p̂ − x0

eHz

c y. The resulting electron eigenstates are
[49]

|α〉 = |n, k〉 = Cn√
Ly

e−ikyy

(
sgn(n)i|n|−1φ|n|−1

i|n|φ|n|

)
, (15)

φ|n| = H|n|
( x−kl2

c
lc

)√
2|n||n|!√π lc

exp

[
−1

2

(
x − kl2

c

lc

)2
]
, (16)

where Hn(ξ ) is the Hermite polynomial, lc =
√

h̄c
eHz

is the

magnetic length, n = 0,±1,±2, . . . are principal numbers
of the Landau levels, C0 = 1, Cn 
=0 = 1√

2
. The eigenenergy

Eα depends only on the Landau level number Eα = En =
sgn(n)h̄ωc

√|n|, where ωc =
√

2vF
lc

is the cyclotron frequency.
Introducing the notations |α〉 = |n, k〉 and |β〉 = |m, k′〉

and using Eqs. (15) and (16) we obtain the matrix elements
of the components of the current density operator:

〈α|ĵx,y|β〉 = −evF 〈α|σ̂x,y|β〉 = ( jx,y)nmδkk′ , (17)

where

( jx )nm = −evF i|m|−|n|+1CnCm[sgn(n)δ(|n| − |m| − 1) − sgn(m)δ(|n| − |m| + 1)], (18)

( jy)nm = −evF i|m|−|n|CnCm[sgn(m)δ(|n| − |m| + 1) + sgn(n)δ(|n| − |m| − 1)]. (19)

The δ functions in Eqs. (18) and (19) determine the selection rules.
Performing the summation over k in Eq. (14) (see [52]) and using Eqs. (18) and (19), we arrive at the expression which

contains the summation over the Landau level numbers:

σxy = − 2h̄

π l2
c

e2v2
F

∑
mn

(CnCm)2 fn − fm

Em − En

δ(|n| − |m| − 1) − δ(|n| − |m| + 1)

h̄(ω + i
τ

) + (En − Em)
, (20)

where 1 � fn � 0; the degeneracy of a given Landau level per
unit area is 2h̄

π l2
c

including both spin and valley degeneracy.
In the case of a complete electron-hole symmetry, i.e.,

f0 = 1
2 , fn>0 = 0, fn<0 = 1, from Eq. (20) we obtain σxy ≡ 0

for any Hz (see also [44]). Now, consider an n-doped system.
Let the number nF correspond to the highest occupied Landau
level just below the Fermi energy, i.e., WF � h̄ωc

√
nF . Since

we need the limit of small magnetic fields, we assume that
WF � h̄ωc, which can be written as

pF lc � h̄. (21)

This means that nF � 1.

A. Contribution of intraband transitions

In this case we set n, m > 0 in Eq. (20). Consider a
narrow vicinity of the Fermi energy where |n − nF | � nF and

|EnF − WF | � WF . In the limit of large n the distance between
neighboring Landau levels is

�E = En+1 − En = h̄ωc(
√

n + 1 − √
n) ≈ 1

2

h̄ωc√
nF

(22)

or

�E = h̄2v2
F

l2
c WF

. (23)

Note that introducing the effective mass meff = pF

vF
we obtain

a standard relation �E = h̄eHz

cmeff
.

Taking into account that fn+1 − fn 
= 0 only in the
near vicinity of the Fermi energy, from Eq. (20) we can
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get

σ (intra)
xy = − h̄

2π l2
c

e2v2
F

1

�E

[
1

h̄
(
ω + i

τ

)− �E
− 1

h̄
(
ω + i

τ

)+ �E

]∑
n>0

( fn+1 − fn), (24)

where
∑

n>0 ( fn+1 − fn) �⇒ ∫∞
0 df = −1. The result is

σ (intra)
xy = 1

π h̄2c

e3v2
F Hz(

ω + i
τ

)2 − ( eHzvF

cpF

)2 . (25)

The last expression coincides with the semiclassical result derived from the kinetic equation (6) for Q̂( f ) = fF − f
τ

. In particular,
when τ → ∞ and Hz → 0 we obtain Eq. (12).

B. Contribution of interband transitions

In this case, the numbers n and m in Eq. (20) have different signs. Taking this into account, we can write the sum in Eq. (20)
as

σ (inter)
xy = −h̄e2v2

F

2π l2
c

[ ∑
n<0,m>0

fn − fm

Em + |En|
δ(n + m + 1) − δ(n + m − 1)

h̄(ω + i
τ

) − (|En| + Em)
−

∑
n>0,m<0

fn − fm

|Em| + En

δ(n + m − 1) − δ(n + m + 1)

h̄(ω + i
τ

) + (En + |Em|)

]
.

(26)

Since in an n-doped degenerate system fn>nF = 0, fn�nF = 1, Eq. (26) yields

σ (inter)
xy = − h̄e2v2

F

2π h̄2l2
c

⎛⎝ −∞∑
−(nF +2)

1
E−n−1+|En|

h̄

[
(ω + i

τ
) − E−n−1+|En|

h̄

] −
−∞∑
−nF

1
E−n+1+|En|

h̄

[(
ω + i

τ

)− E−n+1+|En|
h̄

]
−

∞∑
nF +1

1
|E−n+1|+En

h̄

[(
ω + i

τ

)+ |E−n+1|+En

h̄

] +
∞∑

nF +1

1
|E−n−1|+En

h̄

[(
ω + i

τ

)+ |E−n−1|+En

h̄

]). (27)

Since the energy spectrum is symmetric, |E−|n|| = E|n|, we can regroup the terms on the right-hand side of Eq. (27) as

(. . .) = − 2(
ω + i

τ

)2 − (EnF +1+t |E−nF |
h̄

)2 −
∞∑

nF +2

2(
ω + i

τ

)2 − ( |E−n+1|+En

h̄

)2 +
∞∑

nF +1

2(
ω + i

τ

)2 − ( |E−n−1|+En

h̄

)2 .

It is easy to see that the sums on the right-hand side of the
last equation cancel each other, leaving only the first term
which is the contribution of the transition −nF �⇒ nF + 1
(see Fig. 2). Taking into account that

EnF +1+|E−nF |
h̄ ≈ 2WF

h̄ when
the inequality Eq. (21) is satisfied, we obtain

σ (inter)
xy = 1

π h̄2c

e3v2
F Hz(

ω + i
τ

)2 − ( 2WF
h̄

)2 . (28)

Note that the expressions for the optical conductivity of
graphene in a magnetic field were obtained in [53] where the
direct Faraday effect was investigated.

In the absence of dissipation, the magnitude of the mag-
netic moment is determined by Eq. (2), which gives

m(0)
z = 1

2ω

[
∂
(
σ (intra)

xy + σ (inter)
xy

)
∂Hz

]
τ→∞,Hz→0

Re(iẼyẼ∗
x ).

(29)

Using Eqs. (25) and (28) we finally arrive at

m(0)
z = e3v2

F

2πch̄2ω3

( 2WF
h̄

)2 − 2ω2( 2WF
h̄

)2 − ω2
Re(iẼyẼ∗

x ). (30)

The frequency dependence of the magnetization is shown
in Fig. 3. The incident light intensity was assumed to be
10 kW/cm2, which is much less than the saturation inten-
sity, so that the contribution of photoexcited carriers can be

FIG. 3. Frequency dependence of the magnetization in Eq. (30)
induced by a circularly polarized optical field of intensity
10 kW/cm2. The Fermi energy WF = 0.2 eV.
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neglected. The magnitude of magnetization increases with
decreasing frequency as 1/ω3 when h̄ω � WF and the effect
is dominated by intraband transitions. The magnetization
changes sign twice: at h̄ω = √

2WF and h̄ω = 2WF . There
is also a resonance at the interband transition edge h̄ω =
2WF where the magnitude of magnetization diverges. The
divergence is an artifact of the dissipationless approximation
which was used to relate magnetization to the off-diagonal
susceptibility elements in Eq. (2). Obviously, relaxation pro-
cesses cannot be neglected near resonance. Therefore, the
validity of Eq. (30) in the resonance region is limited by
|ω − 2WF /h̄| > τ−1

inter, where τinter is the interband relaxation
time. It is interesting that taking relaxation processes into
account in the calculation of magnetization is not equivalent
to using the complex susceptibility in Eq. (2) and taking the
real part of the resulting expression. We will illustrate it in the
next section within quasiclassical derivation.

As is clear from Fig. 3 and Eqs. (25), (28), and (30), when
Eq. (5) is satisfied the interband transitions give only a small
contribution to the IFE. In the analysis of the IFE in dissipative
systems below, we will therefore neglect interband transitions.

IV. IFE IN A DISSIPATIVE SYSTEM: A QUASICLASSICAL
THEORY

Here, we calculate the photogenerated magnetic moment
per unit area without any assumptions of a dissipationless
system. Therefore, we cannot use the Pitaevskii formula (1).
Instead, we sum over magnetic moments of individual elec-
trons undergoing induced motion in the optical field. First,
we introduce surface polarization P and relate it with the
surface current j in a standard way Ṗ = j. Next, we repre-
sent polarization as P = −enF R, where the vector R has a
meaning of an average displacement of carriers and nF is the
surface density of a degenerate 2D electron gas. The magnetic
moment per unit area is m = −nF × e

2c 〈R × Ṙ〉, where the
angular brackets mean averaging over the optical period 2π

ω
.

This expression is convenient to write as

m = z0mz = − 1

2cenF
〈P × j〉. (31)

Substituting

j =Re(σ (ω)Ẽe−iωt ), P =Re

(
i

ω
σ (ω)Ẽe−iωt

)
(32)

into Eq. (31), we obtain

mz = |σ (ω)|2
2ceωnF

Re(iẼyẼ∗
x ), (33)

where σ = σxx = σyy; see Eq. (8). For a classical plasma,
Eq. (33) was derived in [7].

To connect with the dissipationless limit in Eq. (2) we note
that the elements of the conductivity tensor given by Eqs. (11)
in a dissipationless system for any electron dispersion are
related as

1

ecnF

i

ω
|σ |2 =

(
i

ω

∂σxy

∂Hz

)
Hz→0

=
(

∂χxy

∂Hz

)
Hz→0

. (34)

FIG. 4. A sketch of an edge photocurrent in a finite-size sample
generated by an incident circularly polarized beam.

Substituting this into Eq. (33), we obtain the expression for
magnetization which coincides with the phenomenological
formula of Eq. (2).

Therefore, an approach based on Eqs. (31) and (32), which
uses the conductivity σ (ω) calculated within a suitable micro-
scopic model, leads to a correct result. Note that this approach
is not based on dissipationless approximation. An advantage
of an approach based on Eq. (31) is that there is no need
to calculate the dielectric susceptibility tensor in the limit of
a linear dependence on the external magnetic field H. It is
enough to calculate linear conductivity without an external
magnetic field. In order to include dissipation, we use Eq. (6),
assuming H = 0 from the very beginning and adopting the
simplest approximation for the relaxation operator: Q̂( f ) =
fF − f

τ
, where τ is the relaxation time. This is equivalent to the

substitution ω → ω + i
τ

in the dissipationless formula for the
conductivity. Then, Eq. (33) gives

mz = m(0)
z

ω2

ω2 + τ−2
, (35)

where m(0)
z is the magnetization of a dissipationless system

[see Eq. (13)]. One can see that Eq. (35) is not equivalent to
using the complex susceptibility in Eq. (2) and taking the real
part of the resulting expression.

At low frequencies, the finite size of a sample starts af-
fecting the result; see Appendix A. The expression for the
magnetic moment which is valid beyond the linearized theory
is derived in Appendix B.

V. MAGNETIZATION CURRENT AND FINITE-SIZE
EFFECTS

The magnetization current density generated in a 2D sys-
tem as a result of IFE is given by j = c(x0

∂mz

∂y − y0
∂mz

∂x ).
This equation yields a simple expression for the photocurrent
around the boundary of a light beam or along the edge of an
illuminated sample:

I =c[n0 × z0]mz, (36)

where n0 is a unit vector in the monolayer plane which is
directed outside from the illuminated area perpendicularly to
the boundary (see Fig. 4).

In a dissipative system, a simple expression (36)
may be used with certain reservations. For example, the
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magnetization current far from the sample edges can be
affected by the viscosity of an electron fluid [54] whereas
edge photocurrent can be affected by interaction of carriers
with a sample boundary. (These effects can be responsible
for various ways of detecting a constant current along the
edge that are not related to IFE.) In fact, Eq. (36) corresponds
to a mirror reflection of carriers from the boundary. Indeed,
consider the edge x = 0 of a graphene sample, assuming
that graphene extends to x > 0. The field component Ex =
Re(Ẽxe−iωt ) excites oscillations of carrier density in a bound-
ary layer near the edge: δn(x) = Re(δñ(x)e−iωt ). Oscillations
of an uncompensated charge δρ = −eδn should obey the
continuity equation, which gives

iωe
∫ ∞

0
δñ(x)dx = σ (ω)Ẽx, (37)

where the conductivity σ (ω) corresponds to the region where
there is no uncompensated charge. Although the integration
here should be formally extended to x → ∞, in practice it is
localized within a certain boundary layer much smaller than
the sample dimensions.

The field component Ey = Re(Ẽye−iωt ) gives rise to the
oscillations of carrier velocity along the edge. We can prove
that for the elastic reflection of electrons from the boundary
the average (hydrodynamic) velocity of electrons along the
boundary (along y) is conserved up to cubic terms with respect
to the field amplitude. Indeed, let us write the particle momen-
tum as p = P + p̃(t ), where P is its value averaged over time
and p̃ = e

ω
Re(i−1Ẽe−iωt ) is an oscillating component. The

velocity v =vF
p
|p| in the linear approximation with respect

to the field E is given by ṽ ≈ vF ( p̃
|P| − P(P·p̃)

|P|3 ), which gives

ṽy = vF

⎛⎝p̃y
P2

x(
P2

x + P2
y

) 3
2

− p̃x
PyPx(

P2
x + P2

y

) 3
2

⎞⎠. (38)

If the particle distribution is symmetric with respect to Py, the
ensemble-averaged velocity obtained from Eq. (38) is

〈vy〉 = Vy = vF p̃y

〈
P2

x

〉
(
P2

x + P2
y

) 3
2

. (39)

For elastic reflection, the momentum components Py and
p̃y are conserved separately whereas the magnitude of P2

x
changes upon reflection. If Px1 and Px2 are the values before
and after the reflection, then Px2 = −[Px1 + 2 p̃x(t∗)], where
t∗ is the moment when the particle hits the edge. If the phases
ωt∗ are uniformly distributed, this effect contributes with the
terms of the order of |Ẽx|2, which leads to corrections cubic
with respect to the field amplitude in Eq. (39). Neglecting
these terms and also any effects of viscosity in the transition
layer we obtain Vy = Re(Ṽye−iωt ), where Ṽy = const. The
result is

Ṽy = Ṽy(∞) = σ (ω)Ey

−enF
. (40)

Now, we can calculate the constant (time-averaged) nonlinear
edge photocurrent as

Iy = − e

2
Re
∫ ∞

0
Ṽyδñ∗(x)dx. (41)

Substituting here Eqs. (37) and (40) yields

Iy = 1

2enF
Re

i

ω
|σ (ω)|2ẼyẼ∗

x . (42)

This result is exactly the same as the substitution of Eq. (33)
into Eq. (36).

In the case of a very strong dissipation, when carriers are
thermalized near the edge, one calculates the edge current
using the approach described in [24]. This method relates
the perturbation of carrier density with the perturbation of
the chemical potential in the Fermi distribution. Applying
this approach to a 2D system with linear electron dispersion
gives the result which differs from Eq. (42) by a factor of 1

2 ,
whereas in a 3D with linear dispersion system the difference
is a factor of 2

3 . In materials with a constant effective mass,
the result is the same as Eq. (42). Note that in graphene and
in typical semiconductors the thermalization time for carriers
in a given band is longer than their scattering time by at least
one order of magnitude; see, e.g., [33] and references therein.
For a model with diffuse scattering at the boundary [45],
the expression in Eq. (42) gives only an order-of-magnitude
estimate.

VI. IFE IN WEYL SEMIMETALS

We consider the simplest model of a Dirac or Weyl type
I semimetal (hereafter WSM) valid only at low enough
frequencies in the near vicinity of a Weyl point, which is
basically a 3D generalization of Eqs. (3) and (4), in which
p̂ is a 3D momentum operator, σ̂ = x0σ̂x + y0σ̂y + z0σ̂z is a
3D vector of Pauli matrices, (x0, y0, z0) are unit vectors along
the coordinate axes, and

W (p) = svF

√
p2

x + p2
y + p2

z . (43)

Here, the number of Weyl nodes only adds to the degeneracy
of electron states and the optical anisotropy and gyrotropy
effects related to the finite separation of Weyl nodes [55]
are neglected. The volume conductivity can be derived from
a single-band kinetic equation if the radiation frequency ω,
Fermi energy vF pF , and the distance b between Weyl nodes
in k space are related by [55]

h̄ω � vF pF � h̄vF b.

For an unperturbed Fermi distribution in the conduction band,

fF (p) = 1

(2π h̄)3

(pF − p), (44)

the conductivity has a Drude-type form [55]

σ = i
e2nF

ω + i
τ

× vF

pF
, (45)

where nF = gp3
F

6π2 h̄3 is a volume density of electrons corre-
sponding to the Fermi distribution (44); the degeneracy g takes
into account the contribution of all Weyl nodes, including
those with opposite chiralities.

First consider the collisionless limit. We can again
use Eq. (6), taking Q̂( f ) = 0 and E ⊥ H ‖ z0. For a 3D
system, the solution to Eq. (6) can be sought as f =
Re[δ f (θ, φ, p)e−iωt ] + fF (p), where px = p cos θ sin φ,
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py = p sin θ sin φ, pz = p cos φ; |δ f | � fF . Linearizing
Eq. (6) and taking into account electron dispersion Eq. (43)
gives

−iωδ f + vF

p

eHz

c

∂δ f

∂θ
− e(Ẽx cos θ + Ẽy sin θ ) sin φ

∂ fF

∂ p

= 0. (46)

Equation (46) has the following solution:

δ f = e

ω2 − (
vF
p

eHz

c

)2

∂ fF

∂ p
sin φ

[
Ẽx

(
iω cos θ − vF

p

eHz

c
sin θ

)

+ Ẽy

(
iω sin θ + vF

p

eHz

c
cos θ

)]
. (47)

The corresponding current density is

jx = −egvF Re

(
e−iωt

∫
sin φ cos θδ f d3 p

)
,

jy = −egvF Re

(
e−iωt

∫
sin φ sin θδ f d3 p

)
. (48)

From Eqs. (47) and (48) one can obtain the components of the
conductivity tensor, keeping only the terms linear with respect
to the magnetic field:

σxx = σyy = σ = 4π ie2gvF

3ω

∫ ∞

0
2 fF p d p,

σxy = −σyx = 4πe3gHzv
2
F

3ω2c

∫ ∞

0
fF d p. (49)

This gives the desired components of the dielectric permittiv-
ity tensor εi j = δi j + 4π

iσi j

ω
, and finally the magnetic moment

calculated using Eq. (1):

m(0)
z = 1

8π
Re

⎡⎣(∂ε(intra)
xy

∂Hz

)
Hz→0

ẼyẼ∗
x

⎤⎦
= 2πe3gHzv

2
F

3ω3c

∫ ∞

0
fF d p × Re(iẼyẼ∗

x ), (50)

where the superscript (0) is again to indicate an approximation
of a transparent medium.

For a degenerate electron distribution in the zero-
temperature limit (44) we have

σxx = σyy = σ = i
e2gp2

F vF

6h̄3π2ω
,

σxy = −σyx = e3gHz pF v2
F

6h̄3π2ω2c
, (51)

and

m(0)
z = e3gpF v2

F

12h̄3π2ω3c
Re(iẼyẼ∗

x ). (52)

As in the case of a 2D material, these components of the
conductivity tensor coincide with those obtained for particles
with a constant mass meff , if we express them through a
particle density nF and introduce the effective mass as meff =
pF

vF
.

It is also easy to find out that Eqs. (49) satisfy the equations
similar to those for 2D systems in Eq. (34):

1

ecnF

i

ω
|σ |2 =

(
i

ω

∂σxy

∂Hz

)
Hz→0

= 1

4π

(
∂εxy

∂Hz

)
Hz→0

. (53)

When scattering and dissipation are taken into account, one
can repeat the same derivation steps as above for a 2D system
and arrive at the expression for the photogenerated magnetic
moment in the form of Eq. (33), in which one should sub-
stitute the volume conductivity Eq. (45) and volume carrier
density nF .

VII. DISCUSSION

In order to compare the magnitude of the IFE in Dirac
materials with that in conventional semiconductors, we note
that for materials with conventional quadratic dispersion of
carriers the induced magnetic moment per free carrier scales
inversely proportional to their effective mass squared. As
we already pointed out, the same dependence exists in both
2D and 3D Dirac materials if we denote meff = pF

vF
= WF

v2
F

as
an effective mass. Assuming vF ≈ c/300, the ratio of the
effective to free-electron mass is meff

m0
� 2 × 10−4 WF

1 meV . For
example, when WF = 50 meV, the effective mass is 0.01m0,
which is one order of magnitude lower than in a typical
semiconductor with a band gap of the order of 1 eV. Therefore,
at low frequencies h̄ω � WF , the IFE in Dirac materials can
be stronger than in conventional semiconductors by a couple
of orders of magnitude.

Let us estimate the magnetization obtained in the exper-
iment [45], where the excitation of edge photocurrent in
graphene was investigated. They used an NH3 laser with 10
kW power and minimum frequency of 1.1 THz. For a 1-mm
radius of a laser focus and Fermi energy of 0.2–0.3 eV the
condition pF � eE0

ω
is satisfied. Using the current dissipation

time τ ∼ 100 fs (which corresponds to ωτ ∼ 1), the magnetic
moment of an illuminated spot is about ∼10−7 G cm3, and
the photoinduced average magnetic moment per free carrier
particle is of the order of 100 Bohr magnetons.

If the optical pumping creates the magnetic moment of
100 Bohr magnetons per carrier, the magnetic moment per
unit area of graphene scales as 4πmz ∼ 10−5( WF

100 meV )
2

G cm.
Similarly, the magnetic moment per unit volume in an illu-
minated volume of a Weyl semimetal sample scales roughly
as 4πmz ∼ 2.2g( WF

100 meV )
3

G, where g is degeneracy including
the total number of Weyl nodes.

One possible application for the IFE is to provide all-
optical modulation of the polarization of the probe light
transmitted through (or reflected from) an area of the optical
excitation. For example, a probe light passing along the z axis
through the area of optically induced magnetization mz experi-
ences direct Faraday effect. The magnitude of the polarization
rotation χ can be calculated using textbook Faraday effect
formulas in which an external magnetic field Bz is replaced
by 4πmz, where mz is an optically induced magnetic moment
per unit volume:

χ (L) =
∫ L

0
α dz, (54)
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where

α = ω

2c
(nO − nX ) (55)

and nO,X are refractive indices of normal electromagnetic
modes, i.e., ordinary and extraordinary modes. In the simplest
case of a dielectric tensor with εxx = εyy the normal modes are
circularly polarized and

n2
O,X = εxx ± |εxy|, (56)

where εxx = εyy = 1 + 4π iσ/ω. For small magnetic fields
εxy ∝ Bz, so Eqs. (55) and (56) give

α ≈ ω

2c
√

εxx
|εxy| ≈ ω

2c
√

εxx

∣∣∣∣∣
(

∂εxy

∂Bz

)
Bz→0

Bz

∣∣∣∣∣. (57)

Note that for the material with no intrinsic magnetic order
and for linear dependence of the off-diagonal component of
the dielectric tensor on the magnetic field, we can replace
the magnetic field Hz with the magnetic induction Bz in all
expressions in this paper. Then, taking into account that

mz = 1

8π

(
∂εxy

∂Bz

)
Bz→0

|E |2,

we obtain

α = ω

4c

1√
1 + 4π iσ/ω

(
∂εxy

∂Bz

)2

Bz→0

|E |2, (58)

where

σ = i
e2gvF p2

F

6h̄3π2ω
,∣∣∣∣∂εxy

∂Bz

∣∣∣∣
Bz→0

= 4π

ω

∣∣∣∣∂σxy

∂Bz

∣∣∣∣
Bz→0

= 2e3gv2
F pF

3h̄3πω3c
.

For a specific example, consider an incident optical pump
with the electric field of magnitude 10 kV/cm at frequency
ω/2π = 1 THz. For the Fermi energy of 100 meV in a WSM
sample, the Faraday rotation parameter α ≈ 6.6g3/2 rad/cm,
which is already interesting for applications. The modulation
magnitude could be further enhanced by integration of a Dirac
material with a suitable plasmonic structure which supports
highly localized plasmon modes. For example, in [56] a strong
enhancement of Faraday rotation was predicted for a graphene
sheet encapsulated in a 2D metallic grating.

VIII. CONCLUSIONS

In conclusion, we investigated the inverse Faraday effect
in materials with massless Dirac fermions, both in two di-
mensions such as graphene and surface states in topological
insulators, and in three dimensions such as Dirac and Weyl
semimetals. Both semiclassical and quantum theories were
presented. The dissipation, finite size, and strong field effects
were analyzed in the quasiclassical approximation. We found
that the magnitude of the IFE can be significantly enhanced in
Dirac materials as compared to conventional semiconductors.
This makes Dirac materials promising for the optical control
of magnetization, all-optical modulation, and optical isolation
in compact optoelectronic devices.
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APPENDIX A: FINITE SAMPLE EFFECTS AND THE
DEPOLARIZATION FIELD

Consider a sample shaped as a thin disk of radius R in the
(x, y) plane and introduce polar coordinates r and ϕ on the
disk. Consider a circularly polarized optical field incident on
a disk, with electric field vector components

Ex = E0 cos (ωt ), Ey = −E0 sin (ωt ), (A1)

where ω > 0 corresponds to the clockwise rotation of the
vector E and ω < 0 to the counterclockwise rotation. The
rotating field excites a rotating current in the disk:

jx = j0 cos (ωt + φ), jy = − j0 sin (ωt + φ), (A2)

where the phase shift φ is determined by dissipative processes
in the sample. The current given by Eqs. (A2) corresponds to
the rotating electric polarization:

Px = P0 sin (ωt + φ), Py = P0 cos (ωt + φ), (A3)

where P0 = j0
ω

, i.e., Ṗx = jx, Ṗy = jy.
The current excitation by a time-dependent external field

in a finite sample leads to an uncompensated time-dependent
charge at a certain distance l from the disk edge. The mag-
nitude of the charge depends on the specific mechanism of
interaction of carriers with a boundary. Strictly speaking,
both the current and the electric polarization are described by
Eqs. (A2) and (A3) only at a certain distance ρ � l from the
disk edge. Since we do not want to get into the details of the
carrier-boundary interaction, we will assume that the width
of the boundary layer is much smaller than the disk radius:
l � R.

Let us denote an uncompensated charge per unit length
along the disk edge as δρ(t, ϕ). It can be expressed as δρ =
Pr , where Pr is the normal component of the polarization
vector: Pr = Px cos ϕ + Py sin ϕ. The edge charge leads to
generation of the depolarization field Ep [1]. For a uniform
external field given by Eq. (A1), we can use the solution of a
corresponding electrostatic problem in [1]. If we approximate
a thin disk with an ellipsoid of rotation with semiminor axis
a � R, we get

Ep = −π2

2R
P,

where P is a 2D density of the dipole moment. Taking into
account the effect of the depolarization field and Eqs. (A1)–
(A3), we obtain

σ

[
E0 − i

π2

2Rω
j0e−iφ

]
= j0e−iφ, j0e−iφ = E0

σ

1 + iσ π2

2Rω

,
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FIG. 5. F ( eE0
ωpF

, ωτ ) as a function of the parameter eE0
ωpF

at differ-
ent ωτ .

where σ is a 2D conductivity of the layer including relaxation
processes. Using Eq. (31) for the magnetic moment, we arrive
at the expression which generalizes Eq. (35):

mz = m(0)
z

ω4(
ω2 − ω2

p

)2 + ω2τ−2
, (A4)

where m(0)
z is the magnitude of the magnetic moment gen-

erated by a circularly polarized field without including dis-

sipation and depolarization effects, ωp =
√

πge2 pF vF

8h̄2R
, where

∂W
∂ p = vF . The resonant frequency ωp in Eq. (A4) coincides

up to a numerical factor with the frequency of 2D plasmons

in graphene at wavelength 2R (see, e.g., [57]). In the limit
R → ∞, Eq. (A4) gives the result for an infinite medium.

APPENDIX B: IFE IN GRAPHENE BEYOND SMALL
PERTURBATION

Here, we consider an incident radiation of an arbitrarily
strong intensity and go beyond the linear approximation. Let
us again assume a circularly polarized field given by Eq. (A1).
The kinetic equation (6) with H = 0 and relaxation operator
Q̂( f ) = fF − f

τ
takes the form

∂ f (p, t )

∂t
− eE0 cos(ωt )

∂ f (p, t )

∂ px
+ eE0 sin(ωt )

∂ f (p, t )

∂ py

= fF (p) − f (p, t )

τ
. (B1)

Its solution in quadratures can be found by the method of
characteristics. At times t � τ for any initial conditions the
solution approaches

f = e− t
τ

1

τ

∫ t

0
dt ′e

t ′
τ fF

[
px + eE0

ω
(sin ωt − sin ωt ′), py

+ eE0

ω
(cos ωt − cos ωt ′)

]
. (B2)

After cumbersome but fairly straightforward derivation, the
surface current density j = −egvF

∫ p
p f d2 p can be found:

jx = −enFVx(t ), jy = −enFVy(t ). (B3)

Here, the functions Vx,y(t ) are given by

Vx(t ) = vF

1 − e− 2π
|ω|τ

∫ 2π
|ω|τ

0
e−z�

(
eE0

ωpF
, ωτ z

)
×{[1 − cos(ωτ z)] sin(ωt ) + sin(ωτ z) cos(ωt )}dz,

(B4)

Vy(t ) = vF

1 − e− 2π
|ω|τ

∫ 2π
|ω|τ

0
e−z�

(
eE0

ωpF
, ωτ z

)
×{[1 − cos(ωτ z)] cos(ωt ) + sin(ωτ z) sin(ωt )}dz,

(B5)

where

�

(
eE0

ωpF
, ωτ z

)
=
(

2eE0

πωpF

)∫ π

0

sin2 α√
1 + 4

( eE0
ωpF

)2
sin2

(
ωτ z

2

)+ 4
∣∣ eE0
ωpF

sin
(

ωτ z
2

)∣∣ cos α

dα. (B6)

It follows from (B3)–(B6) that the surface current density vector can be presented in the form of Eq. (A2), in which

j0 = evF nF F

(
eE0

ωpF
, ωτ

)
,

F

(
eE0

ωpF
, ωτ

)
=
(

1 − e− 2π
|ω|τ
)−1

⎛⎝{∫ 2π
|ω|τ

0
e−z�

(
eE0

ωpF
, ωτ z

)
[1 − cos(ωτ z)]dz

}2

+
{∫ 2π

|ω|τ

0
e−z�

(
eE0

ωpF
, ωτ z

)
sin(ωτ z)dz

}2
⎞⎠1/2

. (B7)

The value of the phase shift φ does not matter in this case.
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Figure 5 shows the dependence F ( eE0
ωpF

, ωτ ) on the pa-

rameter eE0
ωpF

at different ωτ . There is an obvious saturation

effect at eE0
ωpF

� 1. The current defined by Eqs. (A2) and (B7)
corresponds to the surface polarization given by Eq. (A3).
Using the expression (31) for the magnetization, we arrive at

mz = enF v2
F

2cω
F 2

(
eE0

ωpF
, ωτ

)
. (B8)

For weak fields, when eE0
ωpF

� 1, we have the limit

�

(
eE0

ωpF
, ωτ z

)
∼= eE0

ωpF
, F

(
eE0

ωpF
, ωτ

)
∼= eE0

pF

√
τ−2 + ω2

.

In this case, Eq. (B8) is reduced to Eq. (35) for Ẽy = −i Ẽx,
Ẽx = E0. The expression in Eq. (B8) allows one to estimate
the magnitude of the IFE for strong fields, when eE0

ωpF
� 1.
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