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Emergence of pure spin current in doped excitonic magnets
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An excitonic magnet hosts a condensate of spin-triplet excitons composed of conduction-band electrons and
valence-band holes and may be described by the two-orbital Hubbard model. When the Hamiltonian has the
nearest-neighbor interorbital hopping integrals with d-wave symmetry and the number of electrons is slightly
away from half filling, the k-space spin texture appears in the excitonic phase with a broken time-reversal
symmetry. We then show that, applying electric field to this doped excitonic magnet along a particular direction,
a pure spin current emerges along its orthogonal direction. We discuss possible experimental realization of this
type of the pure spin current in actual materials.
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I. INTRODUCTION

In a pure spin current, the flow of electrons with up spin
goes along the opposite direction to that with down spin and
the net charge current is absent. Generation of the pure spin
current is one of the key issues in spintronics applications.
Although in the past the spin-Hall effect [1,2] in nonmagnetic
materials composed of heavy atoms with a strong spin-orbit
coupling is employed for this purpose, it has recently been
suggested that, even in the case where the spin-orbit cou-
pling is negligible, the pure spin current can be induced in
antiferromagnetically ordered systems, such as noncollinear
antiferromagnets [3–5] and organic collinear antiferromagnets
with a broken glide symmetry [6].

In this paper, we will show that the pure spin current
can also be generated in a spin-triplet excitonic phase (EP),
where the electrons in the valence band and holes in the
conduction band form spin-triplet pairs by attractive Coulomb
interaction and condense into a state with quantum coherence
at low temperatures. Kuneš and Geffroy [7] used a doped
two-orbital Hubbard model with cross-hopping integrals, i.e.,
the nearest-neighbor hopping terms between different orbitals,
and showed that the k-space spin texture emerges in the spin-
triplet EP. They found that the symmetry of the spin texture
depends on the symmetry of the cross-hopping integrals; in
particular, when the symmetry of the cross-hopping terms is
p wave, an orbital off-diagonal component of the global spin
current becomes finite in the EP. However, unfortunately, the
net spin current must be zero in an equilibrium state [8,9], just
as the Bloch’s theorem claims the absence of any spontaneous
currents [10].

To extract the pure spin current in excitonic magnets,
an external field must be applied to the system. We fo-
cus on the case where the cross-hopping integrals have the
d-wave symmetry. In this case, after the EP transition, the
state loses the time-reversal symmetry, while the net mag-
netization is zero [7]. As a result, the pure spin current

is expected to emerge when an external electric field is
applied.

The rest of this paper is organized as follows. In Sec. II,
we introduce the two-orbital Hubbard model with the d-
wave cross-hopping terms defined on the two-dimensional
square lattice and give the definition of the excitonic order
parameter. The electric and Hall conductivities obtained from
the linear response theory are also introduced in this section.
In Sec. III, we calculate the spin currents generated in the EP
by varying the interaction parameters and density of electrons.
Possible experimental realization of the pure spin current in
doped excitonic magnets is also discussed in this section.
A summary of our results is given in Sec. IV. Appendices
are given to discuss details of the mean-field analysis of
the Hamiltonian and the current-current correlation function
used.

II. MODEL AND METHOD

A. Hamiltonian

We consider the two-orbital Hubbard model defined on the
two-dimensional square lattice, where we include the cross
hopping integrals as well as the standard nearest-neighbor
hopping integrals [7,11,12]. The Hamiltonian is written as

H = H0 + Hint (1)

with the kinetic term

H0 =
∑
j,τ,σ

(tcc†
j+τ,σ c j,σ + t f f †

j+τ,σ f j,σ + H.c.)

+
∑
j,τ,σ

(V1,τ c†
j+τ,σ f j,σ + V2,τ f †

j+τ,σ c j,σ + H.c.)

+ D

2

∑
j,σ

(nc
j,σ − n f

j,σ ) (2)
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FIG. 1. (a) Schematic representation of the kinetic term of the
two-orbital Hubbard model with d-wave cross-hopping integrals
[see Eq. (2) in the main text]. The red (blue) circles indicate the
f (c) orbital. (b) Calculated k-space spin texture with the d-wave
symmetry in the spin-triplet EP away from half filling. The red (blue)
lines denote the Fermi surfaces for up (down) spin. The interaction
strengths are set to be U = 9.5, U ′ = 5.0, and J = J ′ = 0, and the
density of electrons is set to be N = 1.92.

and the interaction term

Hint = U

2

∑
i,σ

( f †
i,σ fi,σ f †

i,−σ fi,−σ + c†
i,σ ci,σ c†

i,−σ ci,−σ )

+ U ′ ∑
i,σ,σ ′

f †
i,σ fi,σ c†

i,σ ′ci,σ ′ − J
∑
i,σ,σ ′

f †
i,σ fi,σ ′c†

i,σ ′ci,σ

+ J ′

2

∑
i,σ

( f †
i,σ ci,σ f †

i,−σ ci,−σ + c†
i,σ fi,σ c†

i,−σ fi,−σ ), (3)

where c†
i,σ ( f †

i,σ ) and ci,σ ( fi,σ ) are the creation and annihila-
tion operators of an electron on the conduction-band orbital
c (valence-band orbital f ) at site j with spin σ , and nc

j,σ

(n f
j,σ ) is the electron number operator on the c ( f ) orbital at

site j with spin σ . In Eq. (2), D is the onsite energy-level
splitting, tc and t f are the hopping integrals between the same
orbitals on the nearest-neighbor sites, V1,τ and V2,τ are the
hopping integrals between the different orbitals on the nearest-
neighbor sites (which are referred to as the cross-hopping
integrals), and τ denotes the primitive translation vector aτ .
For the cross-hopping integrals with the d-wave symme-
try, we assume V1,x = V2,x = V1,−x = V2,−x = V and V1,y =
V2,y = V1,−y = V2,−y = −V , where −τ denotes the primitive
translation vector of an opposite sign, i.e., a−τ = −aτ . The
kinetic term is schematically illustrated in Fig. 1(a). In Eq. (3),
U , U ′, J , and J ′ represent the intraorbital Coulomb interaction,
interorbital Coulomb interaction, Hund’s rule coupling, and
pair hopping, respectively.

We assume the periodic boundary condition. Then, the
Fourier transformation of Eq. (2) reads

H0 =
∑
k,σ

[
εc(k)c†

k,σ
ck,σ + ε f (k) f †

k,σ
fk,σ

+ (γ (k)c†
k,σ

fk,σ + H.c)
]
, (4)

where

εc(k) = 2tc
∑

τ

cos kτ + D

2
, (5)

ε f (k) = 2t f

∑
τ

cos kτ − D

2
, (6)

and

γ (k) = 2V (cos kx − cos ky) (7)

with kτ = k · aτ . Hereafter, we assume the hopping integrals
as −tc = t f = 1 (direct gap and the unit of energy), which
leads to a uniform excitonic order. We set D = 6, V = 0.1,
and the lattice constant to be unity (|aτ | = 1) throughout the
paper.

B. Order parameters

We assume the spin-triplet excitonic order of the
spin direction along the z axis. Note that the energy of the
spin-singlet excitonic order is strictly equal to that of the spin-
triplet excitonic order if the Hund’s rule coupling is absent and
that the finite Hund’s rule coupling stabilizes the spin-triplet
excitonic order [13]. We do not consider the spin-singlet
excitonic order here, which may be stabilized in the presence
of strong electron-phonon coupling terms [14].

Since the present model has a direct gap, we ignore any ex-
citonic density-wave states. We instead consider the uniform
spin-triplet excitonic order, of which the order parameter is
defined as

�t = |�t|eiφ = 1

L2

∑
j,σ

σ 〈c†
j,σ f j,σ 〉, (8)

where φ is the phase of the complex order parameter, σ = 1
(−1) indicates the up (down) spin, and L2 is the number
of sites in the system. We apply the mean-field approxi-
mation to the Hamiltonian (see Appendix A) and solve the
self-consistent equations to obtain the order parameter. The
representative d-wave spin texture in the EP at a hole-doped
region is illustrated in Fig. 1(b). We find that the Fermi
surfaces for each spin are anisotropic, implying that the time-
reversal symmetry, which exists in the original Hamiltonian,
is apparently broken in the EP.

In the definition of the spin-triplet excitonic order pa-
rameter, we assume that the real and imaginary parts of the
order parameter point along the same direction. However, we
should note that there is no restriction to the relative direction
between them, except for the case where the pair hopping,
which makes the order parameter real [14], is present. Since
the aim of our study is to discuss the spin current generated
in the excitonic phase with k-space spin texture, we restrict
ourselves to considering such a definition, as in Ref. [9], for
simplicity.

We also consider the competition between the EP and anti-
ferromagnetic (AFM) phase [15]. The AFM order parameter
is defined as

m� = 1

L2

∑
j,σ

σe−iQ·r j 〈�†
j,σ � j,σ 〉, (9)

where � (= c, f ) is an orbital index, r j is the position of site j,
and Q = (π, π ) is a checkerboard-type AFM ordering vector.

Even though the mean-field approximation used here is not
sufficient in the intermediate or strong coupling regime, it is
suitable for obtaining the excitonic ground state with k-space
spin texture. This is because any symmetry breaking of the
system can in principle be described in this approximation,
irrespective of its coupling strength. For simplicity, we neglect
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other possible phases such as incommensurate spin-density
waves and superconductivity here. The statistical average
〈· · · 〉 is taken at absolute zero temperature. The computations
are performed with L2 = 4002.

C. Charge and spin currents

We introduce the external electric field via the Peierls
phase. The electron operators are then changed as

� j,σ → eiA·r j � j,σ , (10)

where A is a vector potential. The speed of light c, reduced
Planck constant h̄, and elementary charge e are all set to
unity. We assume a spatially uniform vector potential. Only
the hopping terms in the kinetic term of the Hamiltonian
are modified by the Peierls substitution. The electric current
operator may be defined as

j = − ∂H(A)

∂A

∣∣∣∣
A=0

=
∑

σ

jσ , (11)

where

jσ = i
∑

j,τ

aτ

[
(tcc†

j+τ,σ c j,σ + t f f †
j+τ,σ f j,σ )

+ (V1,τ c†
j+τ,σ f j,σ + V2,τ f †

j+τ,σ c j,σ )
] + H.c. (12)

indicates the current of the conduction electrons with spin
σ . If the system shows a real-space spin texture [16] or the
Hamiltonian has spin-orbit interaction terms [17], the spin
current should be defined as a second-rank pseudotensor given
by the flow direction of electron spin and the orientation of
the spin. These effects are not included in our model, and
we assume that both the real and imaginary parts of the
spin-triplet excitonic order parameter point along the z axis.
Hence, we can simply define a spin current as js = j↑ − j↓.
We call the electric current a charge current jc = j↑ + j↓.

D. Conductivity

We carry out the calculation of the spin and charge currents
within the linear response theory, where the response function
with regard to the applied external field can be obtained from
the equilibrium state. This implies that the external field is
assumed to be weak enough, so that the order parameter is not
affected. The Hamiltonian is expanded with respect to A as
[18]

H(A) = H(0) − j · A − 1
2 A · uA + O(|A|3), (13)

where

uαβ =
∑
j,τ,σ

a(α)
τ a(β )

τ

[
(tcc†

j+τ,σ c j,σ + t f f †
j+τ,σ f j,σ )

+ (V1,τ c†
j+τ,σ f j,σ + V2,τ f †

j+τ,σ c j,σ )
] + H.c. (14)

is the αβ component of a stress tensor. We denote a(α)
τ as the

α component of aτ .
The electric field is given by E = − ∂A

∂t . From the linear
response theory, the optical conductivity tensor as a function

of the frequency ω of the electric field may be given as [18]

σαβ (ω+) = 1

L2

i
[
χR

αβ (ω+) − 〈uαβ〉]
ω+ (15)

with a retarded current-current correlation function

χR
αβ (ω+) = −i

∫ ∞

0
dt eiω+t 〈[ j (α)(t ), j (β )]〉, (16)

where ω+ = ω + iη (with a positive infinitesimal value η) and
j (α)(t ) = eiHt j (α)e−iHt . The explicit form of χR

αβ (ω+) in the
mean-field approximation is given in Appendix B. The Drude
weight tensor defined by

Dαβ = π

L2

(
Re χR

αβ (0) − 〈uαβ〉) (17)

may be separated into contributions from the up-spin and
down-spin electrons, i.e.,

Dαβ =
∑

σ

Dαβ (σ ), (18)

where Dαβ (σ ) corresponds to the electric-field response of the
spin-σ current. The static conductivity is equal to the real part
of the optical conductivity at ω = 0. In actual materials, there
are defects and impurities, which scatter the moving electrons.
If the scattering rate is approximated to be a constant �, the
conductivity tensor may be given by [19]

Re σαβ (0) = Dαβ

π�
. (19)

When the direction α is parallel (perpendicular) to the direc-
tion β, Eq. (19) represents the electric (Hall) conductivity.

III. RESULTS OF CALCULATION

A. Pure spin current

The calculated result for the field-angle dependence of the
charge and spin currents in the hole-doped (N = 1.92) spin-
triplet EP with the d-wave spin texture is illustrated in Fig. 2.
We find that, reflecting the broken time-reversal symmetry,
the spin currents are nonzero in any field angles. We also find
that, when the electric field is along the diagonal direction of
the square lattice, the spin current runs along the direction
perpendicular to the electric field, while the charge current
is parallel to the electric field. This result clearly indicates
that the pure spin current is obtained in the doped excitonic
magnet when the electric field is applied along the diagonal
direction of the square lattice. In other words, the excitonic
magnets with the broken time-reversal symmetry can host the
pure spin current.

We denote the electric and Hall components of the Drude-
weight tensor with spin σ as D‖(σ ) and D⊥(σ ), respectively.
In the rest of this section, the direction of the electric field
is fixed to the (1,1) direction of the square lattice, so that
we have the identity D⊥(↑) = −D⊥(↓). We define the con-
version rate of the spin current to the charge current as β =
|D⊥(↑)/D‖(↑)|. The spin current is present when β �= 0, and
the value of β indicates the generation efficiency of the pure
spin current with respect to the applied electric field.
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FIG. 2. Calculated electric-field-angle dependence of the aver-
age values of up-spin current j↑ (red arrows), down-spin current j↓
(blue arrows), charge current jc (yellow arrows), and spin current js

(green arrows), in the case where the k-space spin texture with the
d-wave symmetry is present. The charge current is always parallel to
the applied electric field. The parameters are set to be the same as
used in Fig. 1(b).

B. The case of J = J′ = 0

First, let us discuss the case where the Hund’s rule coupling
and pair hopping term are both absent, i.e., J = J ′ = 0 in
Eq. (3). It is known that the system at half filling (N = 2)
without the cross-hopping terms is AFM when U � U ′, while
it is band insulating when U ′ � U , and that the EP emerges
between these two phases [15].

The EP remains even if the cross-hopping terms are intro-
duced. The phase of the excitonic order parameter is fixed to
φ = π/2 when the cross-hopping integrals have the d-wave
symmetry. Figure 3(a) shows the phase diagram of the two-
orbital model with the d-wave cross-hopping terms at half-
filling. The cross-hopping terms yield the Dirac-cone band
dispersions in the noninteracting bands [20], so that the four
different phases appear in the U -U ′ phase diagram at half-
filling; i.e., the band insulating phase, normal semimetallic
phase, EP with φ = π/2, and the AFM phase.

As holes are slightly doped into the system, the new EP
with 0 � φ < π/2 appears. Figure 3(b) shows the phase
diagram at N = 1.98. We find that upon doping the k-space
spin texture immediately appears in the Fermi surface, which
leads to the emergence of the spin current. Note that the
k-space spin texture (or the spin current) is originated from the
cooperation of the EP transition and cross-hopping integrals
and that the spin current remains even when φ = 0 in the
hole-doped region. However, when φ = π/2, the k-space spin
texture disappears in the Fermi surface [9], so that the spin
current is no longer observed. Figure 3(c) shows the phase
diagram at N = 1.92. As the doping rate increases, the EP
with 0 < φ < π/2 disappears.

The excitonic order parameter and conversion rate as a
function of the electron density at U = 9.5 and U ′ = 5.0 are

FIG. 3. Calculated phase diagrams of the two-orbital Hubbard
model at (a) N = 2, (b) N = 1.98, and (c) N = 1.92 in the (U,U ′)
plane, where we set J = J ′ = 0. The intensity contour plots indicates
the conversion rate β.

illustrated in Fig. 4. Both the order parameter and conversion
rate monotonically decrease as the density of doped holes in-
creases. We find that, when the k-space spin texture disappears
(or equivalently β = 0), the EP with φ = π/2 is stabilized. In
the over-doped region, the EP completely vanishes, and the
system becomes normal metallic.

C. The case of finite J and J′

Next, to be more realistic, let us take into account the
Hund’s rule coupling and pair-hopping terms. We assume
the relations U ′ = U − 2J and J = J ′ in this subsection. It
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FIG. 4. (a) Calculated magnitude of the excitonic order param-
eter |�t|, (b) its phase φ, and (c) conversion rate β as a function
of the electron density N . Interaction strengths are set to U = 9.5,
U ′ = 5.0, and J = J ′ = 0.

is known that the pair-hopping terms force the phase of the
excitonic order parameter to be zero [14].

Figure 5 shows the calculated results for the excitonic order
parameter and conversion rate as a function of the electron
density. We find that the spin current appears even when
finite J and J ′ are present. However, the conversion rate is
not proportional to the excitonic order parameter because the

FIG. 5. Calculated excitonic order parameters |�t| (blue solid
lines) and conversion rate β (green dashed lines) as a function
of the electron density N . We assume J/U = 0.15 in (a)–(c) and
J/U = 0.20 in (d)–(f), and U = 4 in (a) and (d), U = 6 in (b) and
(e), and U = 8 in (c) and (f).

FIG. 6. Schematic picture of the orbital pattern leading to the k-
space spin texture with the d-wave symmetry in the EP. Note that the
tilting of the ligand p orbitals makes the cross-hopping integrals be
of the d-wave symmetry.

rate is not determined by the magnitude of the order but is
determined by the degree of the spin splitting in the k-space
spin texture. We note that the AFM phase is not stabilized in
the parameter region shown in Fig. 5.

D. Possible realization of the pure spin current

Finally, let us discuss possible experimental realization of
the spin current in actual materials. A number of transition-
metal oxides have been regarded as candidates for the exci-
tonic magnets. For example, some kinds of cobalt oxides with
the d6 electron configuration were suggested to be the spin-
triplet excitonic magnets [21–25], where the electrons in the eg

orbitals and holes in the t2g orbitals form excitonic pairs. Also,
Ca2RuO4 with the d4 electron configuration was suggested to
be an excitonic magnet [26–28]. However, unfortunately, no
experimental observations of the spin texture have so far been
reported in these materials.

In order to realize excitonic magnets with k-space spin
texture of the d-wave symmetry, we may focus on transition-
metal oxides with the layered perovskite structure. Figure 6
illustrates an orbital pattern, which leads to the cross-hopping
integrals of the d-wave symmetry. To make the direct-gap
band dispersions in the square lattice, we may assume that
the one band comes from the dxy orbitals and the other
comes from the dx2−y2 (or d3z2−r2 ) orbitals. This is because the
nearest-neighbor hopping integrals between the dxy orbitals
are positive, while those between the dx2−y2 orbitals are neg-
ative [29]. Note that the cross-hopping integrals between the
dxy and dx2−y2 orbitals via the tilted p orbitals on ligand oxygen
ions may have the d-wave symmetry (see Fig. 6). Thus, we
may suggest a possible experimental realization of the pure
spin current in such transition-metal oxides with the layered
perovskite structure.
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IV. CONCLUSIONS

We have studied the pure spin current in the doped exci-
tonic magnets, which is generated by applying the external
electric field. The two-orbital Hubbard model defined on
the two-dimensional square lattice with the cross-hopping
integrals of the d-wave symmetry was solved in the mean-
field approximation. We thus found that the k-space spin
texture emerges in the spin-triplet EP when the holes are
slightly doped. Since the spin texture breaks the time-reversal
symmetry, we found that the pure spin current is generated
along the orthogonal direction of the charge current when the
electric field is applied parallel to the diagonal direction of the
square lattice.

We also obtained the phase diagrams of the two-orbital
Hubbard model by varying the intra- and interorbital in-
teractions. We found that the pure spin current emerges in
slightly hole-doped EP, which is however suppressed by the
excess hole doping. When the phase of the excitonic order
parameter becomes φ = π/2, the spin texture disappears and
consequently the spin current vanishes. We also investigated
the case where the Hund’s rule coupling and pair-hopping
terms are present and confirmed that the pure spin current
can exist in such realistic cases as well. We suggested that
some kinds of 3d transition-metal oxides with the layered
perovskite structure may host the pure spin current driven
by the excitonic order, of which the experimental studies are
desired.

We want to emphasize that the spin current discussed
in this paper is induced purely from the effects of electron
correlations. Thus, we found a route to generate the pure spin
current in correlated electron systems without the spin-orbit
coupling.
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APPENDIX A: MEAN-FIELD HAMILTONIAN

First, let us introduce the expectation value defined as

n��′
q =

∑
σ

n��′
q,σ = 1

L2

∑
k,σ

〈�†
k,σ

�′
k+q,σ 〉 (A1)

and denote c̄ = f and f̄ = c. Thereby, ncc
0 and n f f

0 represent
the numbers of electrons on the c and f orbitals per site,
respectively.

The mean-field Hamiltonian of the two-orbital Hubbard
model may then be obtained as

HMF = H0 + HMF
int , (A2)

where

HMF
int =

∑
k,q,σ

[
ñcc

q,σ c†
k+q,σ

ck,σ + ñ f f
q,σ f †

k+q,σ
fk,σ

+ ñ f c
q,σ c†

k+q,σ
fk,σ + ñc f

q,σ f †
k+q,σ

ck,σ

] + L2ε0 (A3)

with

ñ��
q,σ = Un��

q,−σ + U ′n�̄�̄
q − Jn�̄�̄

q,σ , (A4)

ñ��̄
q,σ = −U ′n��̄

q,σ + J���̄
q + J ′n�̄�

q,−σ , (A5)

and

ε0 = − U

2

∑
σ,q

[
n f f

q,−σ

(
n f f

q,σ

)∗ + ncc
q,−σ

(
ncc

q,σ

)∗]

− U ′ ∑
q

[(
n f f

q

)∗
ncc

q −
∑

σ

(
nc f

q,σ

)∗
nc f

q,σ

]

+ J
∑

q

[∑
σ

(
n f f

q,σ

)∗
ncc

q,σ − (
nc f

q

)∗
nc f

q

]

− J ′

2

∑
σ,q

[(
nc f

q,σ

)∗
n f c

q,−σ + (
n f c

q,σ

)∗
nc f

q,−σ

]
. (A6)

1. Spin-triplet excitonic order

The order parameter for the uniform spin-triplet excitonic
condensation may be written as

�t =
∑

σ

σnc f
q=0,σ , (A7)

where we assume that the terms with q �= 0 vanish in the
uniform EP. Diagonalizing the 2 × 2 mean-field Hamiltonian
matrix, we obtain a quasiparticle operator α

†
k,σ,ε

for the band
ε, which creates a quasiparticle with energy E ε

k,σ
. The quasi-

particle operators satisfy HMF = ∑
k,σ

∑
ε E ε

k,σ
α

†
k,σ,ε

αk,σ,ε +
L2ε0 and �k,σ = ∑

μ ψ�;ε (k, σ )αk,σ,ε . The chemical potential
μ is determined from the equation

N = 1

L2

∑
k,σ

[ f (E+
k,σ

) + f (E−
k,σ

)] (A8)

and the order parameter is obtained by solving the self-
consistent equation

�t = 1

L2

∑
k,σ,ε

ψ∗
c;εψ f ;ε f (E ε

k,σ ), (A9)

where we define the Fermi distribution function as f (E±
k,σ

) =
〈α̂†

k,σ,±α̂k,σ,±〉 = 1/(1 + eβ(E±
k,σ

−μ) ) with the reciprocal tem-
perature β. Details of the mean-field calculation of the two-
orbital Hubbard model are given in Ref. [9].

2. AFM order

The order parameter for the AFM state may be written as

m� =
∑

σ

σn��
Q,σ (A10)

with Q = (π, π ). The k summation over the Brillouin zone
was rewritten as

∑
k → ∑

k0

∑
m=0,1 with k → k0 + mQ,

where the sum of k0 was taken over the reduced AFM
Brillouin zone. Diagonalizing the 4 × 4 mean-field
Hamiltonian matrix for each wave vector and spin, we obtain
a quasiparticle operator α

†
k0,σ,ε

for the band ε, which creates a
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quasiparticle with energy E ε
k0,σ

. The quasiparticle

operators satisfy HMF = ∑
k0,σ

∑
ε E ε

k0,σ
α

†
k0,σ,ε

αk0,σ,ε +
L2ε0 and �k0+mQ,σ = ∑

μ ψ�,m;ε (k0, σ )αk0,σ,ε . The
chemical potential is determined from the equa-
tion N = (1/L2)

∑
k0,σ,ε f (E ε

k0,σ
) and the order

parameter is obtained by solving the self-consistent
equations.

APPENDIX B: CURRENT-CURRENT
CORRELATION FUNCTION

Using the results of the mean-field approximation given in
Appendix A, we obtain the current operator as

j =
∑
k0,σ

∑
ε,ε′

Jε,ε′ (k0, σ )α†
k0,σ,ε

αk0,σ,ε′ (B1)

with

Jε,ε′ (k0, σ ) = i
∑

m

∑
τ

∑
�,�′

aτ t��′ (τ )

× e−i(k0+mQ)·aτ ψ∗
�,m;ε (k0, σ )ψ�′,m;ε′ (k0, σ ),

(B2)

where we define t��(τ ) = t�, tc f (τ ) = V1,τ and t f c(τ ) = V2,τ .
Using the matrix elements of the current operator, we obtain
the current-current correlation function as

χR
αβ (ω+) =

∑
k0,σ

∑
ε,ε′

f
(
E ε

k0,σ

) − f
(
E ε′

k0,σ

)
(
E ε

k0,σ
− E ε′

k0,σ

) + ω+

× J (α)
ε,ε′ (k0, σ )J (β )

ε′,ε (k0, σ ), (B3)

where the sum of k0 is taken over the original Brillouin zone
and m = 0 for the uniform excitonic state, but it is taken over
the reduced Brillouin zone and m = 0, 1 for the AFM state.
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