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The spin-half pyrochlore Heisenberg antiferromagnet (PHAF) is one of the most challenging problems in
the field of highly frustrated quantum magnetism. Stimulated by the seminal paper of M. Planck [M. Planck,
Verhandl. Dtsch. phys. Ges. 2, 202 (1900)] we calculate thermodynamic properties of this model by interpolating
between the low- and high-temperature behavior. For that we follow ideas developed in detail by B. Bernu and
G. Misguich and use for the interpolation the entropy exploiting sum rules [the “entropy method” (EM)]. We
complement the EM results for the specific heat, the entropy, and the susceptibility by corresponding results
obtained by the finite-temperature Lanczos method (FTLM) for a finite lattice of N = 32 sites as well as by the
high-temperature expansion (HTE) data. We find that due to pronounced finite-size effects the FTLM data for
N = 32 are not representative for the infinite system below T ≈ 0.7. A similar restriction to T � 0.7 holds for
the HTE designed for the infinite PHAF. By contrast, the EM provides reliable data for the whole temperature
region for the infinite PHAF. We find evidence for a gapless spectrum leading to a power-law behavior of the
specific heat at low T and for a single maximum in c(T ) at T ≈ 0.25. For the susceptibility χ (T ) we find
indications of a monotonous increase of χ upon decreasing of T reaching χ0 ≈ 0.1 at T = 0. Moreover, the EM
allows us to estimate the ground-state energy to e0 ≈ −0.52.

DOI: 10.1103/PhysRevB.101.174426

I. INTRODUCTION

A paradigmatic highly frustrated spin model is the py-
rochlore Heisenberg antiferromagnet (PHAF). The pyrochlore
lattice is built of corner-sharing tetrahedra, see Fig. 1, below.
There are several compounds where the magnetic atoms re-
side on the sites of the pyrochlore lattice and the exchange
interaction is antiferromagnetic, see, e.g., Refs. [1–3].

Already the classical PHAF (i.e., for spin S → ∞) ex-
hibits interesting properties and its study is far from being
trivial [4–10]. Thus, the ground-state manifold is highly de-
generate; the model exhibits strong short-range correlations,
but it does not exhibit any long-range order, and, because of
the huge degeneracy of the ground state, the model is very
susceptible to various perturbations.

The quantum spin S = 1/2 PHAF is even more compli-
cated. Thus, so far no accurate values for the ground-state
energy e0 for this model are available. On one hand, the
S = 1/2 case opens the route to new quantum phases [11]. On
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the other hand, such powerful straightforward numerical tools
like standard quantum Monte Carlo or molecular dynamics
simulations are not applicable for the S = 1/2 PHAF. More-
over, several approximation methods developed for one- and
two-dimensional quantum spin systems (e.g., density matrix
renormalization group and tensor network methods) are very
limited in three dimensions.

Theoretical studies of the quantum PHAF are mostly fo-
cused on ground-state properties, see, e.g., Refs. [11–25],
whereas much less attention has been paid to its finite-
temperature properties. One reason for that is the lack of
methods to study thermodynamics of three-dimensional frus-
trated quantum spin systems. Among the few papers studying
the thermodynamics of the S = 1/2 PHAF we mention bold
diagrammatic Monte Carlo simulations (stochastic sampling
of all skeleton Feynman diagrams) down to the temperature
J/6 [26]. This paper reports data for the susceptibility χ (T )
but no data for the specific heat c(T ). We will refer to
these data for χ (T ) in Sec. IV B. A comprehensive analysis
of the spin-S J1 − J2 Heisenberg model by employing the
pseudofermion functional renormalization group technique
was presented in Ref. [11]. However, this paper does not
contain data for χ (T ) and c(T ). Finally, we mention the
high-temperature expansion study and the rotation-invariant
Green’s function study of the S = 1/2 PHAF [25,27]. In these
recent papers [11,25,26] no evidence for a finite-temperature
phase transition was found, i.e., the spin-half PHAF is most
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FIG. 1. The pyrochlore lattice visualized here as a three-
dimensional structure which consists of alternating kagome (cyan)
and triangular (gray) planar layers. The four-site unit cell is marked
with the red bonds.

likely a three-dimensional spin system without singularities
in the specific heat and the susceptibility.

The goal of the present paper is to study the thermodynam-
ics of the S = 1/2 PHAF for the whole temperature region
focussing on the specific heat c(T ) and the static uniform
susceptibility χ (T ), both being basic and easily accessible
quantities in experimental studies of PHAF compounds. To
deal with the above mentioned challenges when studying the
finite-temperature properties of the S = 1/2 PHAF, we follow
M. Planck’s ideas of his seminal paper in 1900 [28], see
also Appendix A, and perform a sophisticated interpolation
between the low- and high-temperature behavior of a ther-
modynamic potential, namely, the entropy s as a function of
internal energy e. For that we exploit also sum rules valid
for the specific heat as proposed by B. Bernu and G. Mis-
guich [29,30], for details see Sec. III A. In what follows we
call this approach the entropy method (EM). We complement
our studies based on the EM by using the finite-temperature
Lanczos method (FTLM) for a finite pyrochlore lattice of
N = 32 sites and the high-temperature expansion (HTE) up
to order 13. In the present paper, we estimate the ground-
state energy to e0 ≈ −0.52 and find evidence for a gapless
spectrum, i.e., for a power-law behavior of the specific heat at
low temperatures and for a single maximum in c(T ) at about
25% of the exchange coupling.

The paper is organized as follows. We begin with introduc-
ing the model (Sec. II) and the description of the exploited
methods (Sec. III). We report our findings obtained by the
FTLM (finite lattices) and by the HTE and EM (infinite
lattice) in Sec. IV. We summarize our results in Sec. V.

II. MODEL

We consider the Heisenberg model on the pyrochlore lat-
tice (see Fig. 1) given by the Hamiltonian

H =
∑

〈mα,nβ〉
Smα · Snβ. (2.1)

We have set the antiferromagnetic nearest-neighbor coupling
to unity, J = 1, fixing the energy scale. The sum in Eq. (2.1)
runs over all nearest-neighbor bonds and S2

mα = 3/4.
The pyrochlore lattice consists of four interpenetrating

face-centered-cubic sublattices. The origins of these four
sublattices are located at r1 = (0, 0, 0), r2 = (0, 1/4, 1/4),
r3 = (1/4, 0, 1/4), and r4 = (1/4, 1/4, 0). The sites of the
face-centered-cubic lattice are determined by Rm = m1e1 +
m2e2 + m3e3, where m1, m2, m3 are integers and e1 =
(0, 1/2, 1/2), e2 = (1/2, 0, 1/2), e3 = (1/2, 1/2, 0). As a re-
sult, the N pyrochlore lattice sites are labeled by mα, Rmα =
Rm + rα , where m = 1, . . . ,N , N = N/4 is the number of
unit cells, and α = 1, 2, 3, 4 labels the sites in the unit cell.

There are a few compounds with magnetic atoms residing
on pyrochlore-lattice sites with antiferromagnetic nearest-
neighbor exchange interactions, which can be considered as
experimental realizations of the quantum PHAF. First of all
we may mention two magnetically frustrated molybdate py-
rochlores: S = 1/2 oxynitride Lu2Mo2O5N2 and S = 1 oxide
Lu2Mo2O7 [31,32]. Besides the fluoride NaCaNi2F7 which
provides a good realization of the S = 1 PHAF [33,34], we
may mention the molybdate Y2Mo2O7 [35–37], the chromites
ACr2O4 (A=Mg,Zn,Cd) [38–40], or FeF3 [41].

III. METHODS

A. Entropy method (EM)

In accordance with M. Planck’s strategy to derive the en-
ergy distribution of the black-body radiation [28,42], the EM
is an interpolation scheme that combines presumed knowl-
edge on high- and low-temperature properties and, in addition,
exploits sum rules for the specific heat c(T ) in a clever way.
The EM as used in the present paper was introduced in 2001
by B. Bernu and G. Misguich [29]. The method has been
afterwards used, modified, and extended in Refs. [30,43–46].
Below we explain briefly this procedure for self consistency.

Within the framework of the EM, we use the microcanoni-
cal ensemble working with the entropy per site s as a function
of the energy per site e, s(e), in the whole (finite) range of
energies. The temperature T and the specific heat per site c
are given by the formulas

T = 1

s′ , c = − s′2

s′′ , (3.1)

where the prime denotes the derivative with respect to e. These
equations form a parametric representation of the dependence
c(T ). Knowing the high-temperature series for c(T ) up to nth
order, c(T ) = ∑n

i=2 diβ
i + O(βn+1) (d1 = 0), β = 1/T , we

immediately get the series for s(e) around the maximal energy
e∞ = 0 up to the same order n,

s(e)
∣∣
e→e∞=0 → ln 2 +

n∑
i=2

aie
i, (3.2)

where the coefficients ai are known functions of the coeffi-
cients di, see Appendix A of Ref. [29]. The behavior of s(e)
as e approaches the (minimal) ground-state energy e0 (i.e., as
the temperature approaches 0) is also supposed to be known.
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It is

s(e)
∣∣
e→e0

∝ (e − e0)
α

1+α (3.3)

if c(T ) vanishes as T α when T → 0 (gapless excitations) and

s(e)
∣∣
e→e0

∝ −e − e0

�
(ln [�(e − e0)] − 1) (3.4)

if c(T ) vanishes as T −α exp(−�/T ), α = 2, when T → 0
(gapped excitations). Therefore we proceed differently in the
gapless case and in the gapped case. Here it is assumed that
e0 and α are known (gapless case) or e0 is known and α = 2
(gapped case).

In the gapless case, we introduce the auxiliary function [30]

G(e) = (s(e))
1+α
α

e − e0
(3.5)

and approximate it as

Gapp(e) = G(0)[u, d](e), G(0) = (ln 2)
1+α
α

−e0
. (3.6)

Here [u, d](e) = Pu(e)/Qd (e) is a Padé approximant, where
the coefficients of the polynomials Pu(e) and Qd (e) (of order
u and d , respectively, u + d � n) are determined by the con-
dition that the expansion of [u, d](e) has to agree with the
power series of G(e)/G(0) [which follows from Eqs. (3.5)
and (3.2)] up to order O(eu+d ). Of course, G(0) = Gapp(0).
The approximate entropy follows by inverting Eq. (3.5)

sapp(e) = [(e − e0)Gapp(e)]
α

1+α . (3.7)

The prefactor A in the power-law decay of the specific heat
c(T ) for T → 0, c(T ) → AT α , is given by

Aapp = α1+α

(1 + α)α
[Gapp(e0)]α. (3.8)

In the gapped case, we introduce the auxiliary function [29]

G(e) = (e − e0)

(
s(e)

e − e0

)′
(3.9)

and approximate it as

Gapp(e) = G(0)[u, d](e), G(0) = ln 2

e0
. (3.10)

Here [u, d](e) = Pu(e)/Qd (e) again is a Padé approximant,
where the coefficients of the polynomials Pu(e) and Qd (e)
(of order u and d , respectively, u + d � n) are determined
by the condition that the expansion of [u, d](e) has to agree
with the power series of G(e)/G(0) [which follows now
from Eqs. (3.9) and (3.2)] up to order O(eu+d ). Of course,
G(0) = Gapp(0). The approximate entropy follows by invert-
ing Eq. (3.9)

sapp(e)

e − e0
= ln 2

−e0
−

∫ 0

e0�e�0
dξ

Gapp(ξ )

ξ − e0
. (3.11)

From the technical point of view, before performing the inte-
gration in the right-hand side of Eq. (3.11) one may perform
the partial fraction expansion of the integrand which is obvi-
ously a rational function. The excitation gap � in the decay of

the specific heat c(T ) for T → 0, c(T ) ∝ T −2 exp(−�/T ), is
given by

�app = − 1

Gapp(e0)
. (3.12)

Until now we considered the EM for zero magnetic field
h = 0. Of course, for nonzero h the thermodynamic functions
depend on h, i.e., the entropy is now s(e, h). The magnetiza-
tion per site m and the uniform susceptibility per site χ are
given by the formulas [46]

m = 1

(s(e, h))′
∂s(e, h)

∂h
, χ = m

h
, (3.13)

where the last equation implies that h is infinitesimally small.
Clearly, the HTE coefficients for the specific heat are also
changed. Simple algebra yields

di → di + (i − 1)i

2
ci−1h2, i = 2, . . . , n; (3.14)

we use here the high-temperature series for the static uniform
susceptibility χ (T ) = ∑n

i=1 ciβ
i + O(βn+1), β = 1/T . The

expression (3.2) for the series of s is valid, however, the
coefficients ai are now known functions of the coefficients di,
ci, and h. For the gapless case all reasonings in Eqs. (3.3), (3.5)
to (3.8) hold with the only difference that the ground-state
energy now is e0 − χ0h2/2, where χ0 ≡ χ (T = 0) is the
ground-state susceptibility which is assumed to be known.
The approximate entropy in Eq. (3.7) now also depends on
h, i.e., sapp(e, h). For the case of gapped magnetic excitations
the ground-state energy remains unchanged, because χ0 = 0,
and therefore all the Eqs. (3.4), (3.9) to (3.12) are valid. Again,
the approximate entropy in Eq. (3.11) now also depends on h,
i.e., sapp(e, h).

In summary, knowing the high-temperature series of c(T )
and χ (T ) together with (i) the ground-state energy e0,
the exponent α, and the ground-state susceptibility χ0 for
the gapless case or (ii) only the ground-state energy e0

for the gapped case, we obtain c(T ) and χ (T ) at all tempera-
tures. For that, we use sapp(e, h) which yields the specific heat
c(T ) by Eq. (3.1) and the susceptibility χ (T ) by Eqs. (3.13)
and (3.1).

Based on previous experience with the EM [29,30,43–
46], we use the following strategy: We discard those Padé
approximants in Gapp(e), Eqs. (3.6) and (3.10), which give un-
physical solutions; the remaining ones are called “physical.”
Moreover, we focus on those input parameter sets for which
interpolations based on different Padé approximants lead to
data sets for c(T ) and χ (T ) being quite close to each other.
For further details about the EM in the context of the S = 1/2
PHAF see Sec. IV B.

B. Finite-temperature Lanczos method (FTLM)

The FTLM is an efficient and very accurate approxima-
tion to calculate thermodynamic quantities of quantum spin
systems on finite lattices of N sites at arbitrary temperatures.
It is an unbiased numerical approach, where thermodynamic
quantities such as the specific heat and the susceptibility are
determined using trace estimators [47–55]. The key element is
the approximation of the partition function Z using a Monte-
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Carlo like representation of Z , i.e., the sum over a complete
set of 2N basis vectors present in Z is replaced by a much
smaller sum over R random vectors | ν 〉 for each subspace
H(γ ) of the Hilbert space, where except the conservation of
total Sz we also use the lattice symmetries of the Hamiltonian
to decompose the full Hilbert space into mutually orthogonal
subspaces labeled by γ . The exponential of the Hamiltonian
is then approximated by its spectral representation in a Krylov
space spanned by the NL Lanczos vectors starting from the
respective random vector | ν 〉. The FTLM representation of
the partition function finally reads

Z (T ) ≈

∑

γ=1

dim(H(γ ))

R

R∑
ν=1

NL∑
n=1

exp

(
−ε (ν)

n

T

)
|〈 n(ν) | ν 〉|2,

(3.15)

where | n(ν) 〉 is the nth eigenvector of H in the Krylov
space with the corresponding energy ε (ν)

n . To perform the
symmetry-decomposed numerical Lanczos calculations we
use J. Schulenburg’s SPINPACK code [56,57].

C. High-temperature expansion (HTE)

The HTE is a universal approach to discuss the ther-
modynamics of spin systems [58]. In the present study
we use the Magdeburg HTE code developed mainly by A.
Lohmann [27,59,60] (which is freely available at [61]) in an
extended version up to 13th order, see Appendix B. With
this tool, we compute the series of the specific heat c(T ) =∑n

i=2 diβ
i + O(βn+1) (d1 = 0) and the static uniform sus-

ceptibility χ (T ) = ∑n
i=1 ciβ

i + O(βn+1) with respect to the
inverse temperature β = 1/T .

To extend the region of validity of the “raw” HTE series
we may use Padé approximants [m, n] = Pm(β )/Qn(β ), where
Pm(β ) and Qn(β ) are polynomials in β of order m and n,
respectively. The coefficients of the polynomials Pm(β ) and
Qn(β ) are determined by the condition that the expansion of
[m, n] has to agree with the initial power series up to order
O(βm+n).

IV. RESULTS

A. Finite lattices

In Ref. [24] finite lattices of N = 28 and N = 36 sites
are used to discuss ground-state properties. These lattices
are built by stacked alternating triangular and kagome layers
imposing periodic boundary conditions within the layers but
open boundary conditions perpendicular to them. We have
calculated the HTE series for these finite lattices. We compare
these finite-lattice series with the corresponding HTE series
of the infinite pyrochlore lattice to judge the finite lattices.
We found that for c(T ) all HTE coefficients are different. For
the susceptibility χ (T ) only the lowest-order term coincides,
i.e., the agreement is only marginally better. This drastic dif-
ference between the finite lattices and the infinite pyrochlore
lattice can be attributed to the edge spins stemming from the
imposed open boundary conditions. Thus, we conclude that
the finite lattices of N = 28 and N = 36 used in Ref. [24]
are not appropriate to discuss the thermodynamics of the
PHAF. However, we note that they can be useful to discuss
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FIG. 2. FTLM data (R = 100) for the temperature dependence
(logarithmic scale) of (top) the specific heat per site c(T ) and
(bottom) the static uniform susceptibility per site χ (T ) of the PHAF
of N = 32 sites.

the ground-state properties, e.g., spin-spin correlations when
considering spins away from the edge spins.

A more suitable finite lattice is the one with N = 32 sites
imposing periodic boundary conditions in all directions. This
lattice contains eight face-centered-cubic cells, i.e., the edge
vectors go along the face-centered-cubic basis vectors and
have twice the length of these. For this lattice the HTE series
for c (χ ) coincides up to third (fourth) order with that of the
infinite lattice.

The FTLM is the adequate approach to study the finite
S = 1/2 PHAF of N = 32 sites. In Fig. 2 we show data for
c(T ) (top) and χ (T ) (bottom) over a wide temperature range
using a logarithmic T scale. The specific heat exhibits the
typical main maximum at T = 0.53 and, in addition, two
low-T maxima at T = 0.012 and at T = 0.117. While the
maximum at T = 0.012 is certainly a finite-size effect, one
can speculate that the other low-T maximum at T = 0.117
signals an extra low-energy scale set by low-lying singlets
(see the density of states shown in the inset of the middle
panel of Fig. 3) that might be also relevant for the infinite
system. Such a feature has been observed in low-dimensional
highly frustrated quantum magnets, e.g., the spin-half kagome
Heisenberg antiferromagnet (HAF), where the existence of
such an extra low-T peak is a subject of a long-standing
and ongoing debate [30,54,62–67]. However, in the three-
dimensional PHAF the finite-size effects are undoubtedly

174426-4



ADAPTING PLANCK’S ROUTE TO INVESTIGATE THE … PHYSICAL REVIEW B 101, 174426 (2020)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4

c

T

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

s/
ln

2

T

E − E0

Sz = 1
Sz = 2

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4

χ

T

FIG. 3. Comparison of FTLM data (R = 100) of the PHAF of
N = 32 sites with corresponding ones of the simple-cubic HAF of
N = 32 sites. (Top) Specific heat per site c(T ). (Middle) Entropy per
site s(T ). (Bottom) Static uniform susceptibility per site χ (T ). The
inset in the middle panel shows the histogram low-energy density of
states (arbitrary units). Note that for the simple-cubic HAF there are
only three tiny bars in the energy region shown here (their positions
are indicated by green labels “sc”).

stronger than in the two-dimensional kagome HAF. Thus, to
conclude a double-peak structure in c(T ) from our FTLM data
is inappropriate. For the static uniform susceptibility χ (T ) the
low-lying singlets are not relevant and χ (T ) does not show
extra peaks except the well-pronounced maximum that is typ-
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FIG. 4. Several Padé approximants of the specific heat c(T ) of
the PHAF: comparison of the finite lattice of N = 32 (broken) with
the infinite lattice (solid).

ical for finite spin systems with χ0 ≡ χ (T =0)=0. Again, this
behavior might be not representative for the infinite system,
particularly, in case that χ0 > 0 for N → ∞.

To quantify the temperature region where the finite N =
32 lattice may be representative for the infinite lattice we
compare in Figs. 4 and 5 several Padé approximants of the
HTE series of the finite and the infinite lattices. Obviously, the
data for N = 32 and N = ∞ coincide only down to T ∼ 0.7,
thus, indicating that finite pyrochlore lattices accessible by
FTLM are not suitable to discuss the thermodynamics of the
spin-half PHAF below this temperature.

Nevertheless, the finite-size data for the PHAF are useful to
demonstrate the frustration effects. Although the suppression
of energy scales in frustrated magnets is a known fact nowa-
days, see, e.g., Refs. [54,68], the discussion of the specific
case of the S = 1/2 PHAF might be instructive. For that we
may compare the PHAF with the S = 1/2 HAF on the simple-
cubic lattice, because both have six nearest neighbors, i.e., a
simple mean-field decoupling of the Heisenberg Hamiltonian
would yield identical thermodynamics. However, the simple-
cubic HAF exhibits a finite-temperature phase transition to
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FIG. 5. Several Padé approximants of the uniform susceptibility
χ (T ) of the PHAF: comparison of the finite lattice of N = 32
(broken) with the infinite lattice (solid).
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Néel order, but the PHAF does not order. Thus, we compare
both models on finite lattices of N = 32 sites, where the
simple-cubic finite-temperature phase transition is irrelevant,
see Fig. 3, where we compare FTLM data of the specific heat,
the entropy, and the susceptibility using a linear T scale for
N = 32. The tremendous influence of frustration is visible
at all temperature scales. In particular, the spectrum at low
energies in the frustrated system is much denser than that
of the unfrustrated one [see the density of states (histogram,
�E = 0.02) in the inset in the middle panel of Fig. 3], thus
leading to the drastic differences at low T , see the upper and
middle panels of Fig. 3. Remarkably, the noticeable differ-
ences in all quantities are present at pretty high temperatures.
Only, beyond T � 3 the corresponding curves approach each
other. A striking effect of frustration is also the shift of the
maximum in χ (T ) to lower temperatures, see the lower panel
of Fig. 3.

B. Infinite lattice

Let us now move to a detailed investigation of the infinite
PHAF by using the EM interpolation scheme, see Sec. III A.
Using our Magdeburg HTE code [27,59,60] we have created
the HTE series for c(T ) and χ (T ) up to order 13 (see
Appendix B) that provides the high-temperature input for the
EM. Since the EM finally uses Padé approximants of a power
series of s(e) derived from the initial HTE series, the HTE
input determines the highest order of the Padé approximants
of the EM interpolation scheme.

As a low-temperature input for the EM we need the
ground-state energy e0. There is a large variety of re-
ported values for e0 of the spin-half PHAF ranging from
e0 = −0.57 to e0 = −0.45, namely, e0 = −0.572 [69],
−0.56 [15], −0.49 [12,16], −0.482081 [24], −0.466971 [24],
−0.459 [22], −0.457804 [13], −0.45093 [25], −0.4473 [23],
i.e., accurate values for e0 are missing. We also need the
low-temperature law for c(T ), where we have to distinguish
between gapped and gapless behavior (cf. Sec. III A). Finally,
in case of gapless excitations the exponent α of the power law
is an input parameter, and for the susceptibility χ0 ≡ χ (T =
0) is required as input. Fortunately, for gapped excitations the
value of the gap is not needed as an input, it is rather an output
of the EM. Moreover, we have χ0 ≡ χ (T = 0) = 0 in this
case.

We begin with the specific heat c(T ) for which the EM
is better justified (two sum rules are exploited). Actually, the
low-temperature law for c(T ) is not known for the S = 1/2
PHAF. Advantageously, the previous ample of experience
with the EM [29,30,43–46] provides valuable hints to over-
come this difficulty. Thus, in case that these input data are too
far from the true (but possibly unknown) data one gets incon-
sistent or unphysical results. Hence, to get physical (i.e., pole
free) Padé approximants requires reasonable values for e0 and
reasonable assumptions on the low-T behavior of c(T ). More-
over, getting a large number nP of similar Padé approximants
for a certain input data set indicates the physical relevance
of this set. On the other hand, the appearance of significant
differences between the various Padé approximants is a crite-
rion to discard the corresponding input set. The successfulness
of this strategy has been demonstrated for several examples
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FIG. 6. EM for gapped spectrum: The gap �app as it follows
from Eq. (3.12) versus the ground-state energy e0 varied in region
−0.57 . . . − 0.45.

where excellent reference data are available, in particular, for
the S = 1/2 XY , HAF, and Ising chains [29,44], for the S = 1
HAF (Haldane) chain [29], for the S = 1/2 square-lattice and
triangular-lattice Heisenberg ferro- and antiferromagnets [29]
or for the S = 1/2 kagome-lattice HAFs [30,44,46]. In what
follows, we often show bundles of curves which represent
different Padé approximants. The closeness of the various
curves (due to which they sometimes are not very well distin-
guishable) serves as a qualitative indication of the precision
of the EM estimates and in particular of their independence of
the precise values of the chosen parameters, see Ref. [30].

By combining different assumptions on the ground-state
energy and low-T behavior of c(T ) of the PHAF we have
generated a large set of temperature profiles for the specific
heat. In the next step, we use the guidelines described above
to evaluate the used input data, this way obtaining definite
conclusions on their relevance. In sum, a crucial criterion
is that a particular input data set leads to a close bundle of
temperature profiles obtained by many physical Padé approx-
imants. Since the high-temperature part is per se identical this
criterion concerns the temperature region T � 0.5. In what
follows, we will present in the main text only data for the
most relevant input sets, whereas presentation of some other
illustrative results, only briefly mentioned in the main text, are
transferred to Supplemental Material [70].

As a first result, we found that the assumption of gapped
excitations is not favorable for the following reasons. We var-
ied e0 in the region −0.57 . . . − 0.45 and calculated the gap
given in Eq. (3.12) using different Padé approximants, where
we focused on nearly diagonal Padé approximants [u, d](e),
u ∼ d , constructed from HTE data of 10th, 11th, 12th, and
13th order, see Fig. 6. We find that the gap �app, Eq. (3.12),
is negative if the ground-state energy exceeds approximately
−0.515, thus providing evidence that a gapped spectrum
together with e0 � −0.515 can be excluded. For ground-state
energies in the region −0.519 . . . − 0.517 we obtain �app =
0.16 . . . 0.18, see Fig. 6 (and Fig. 1 in Ref. [70]), and there is a
decent number nP of Padé approximants yielding similar c(T )
profiles, see Fig. 7. For e0 less than −0.521 the number of
physical Padé approximants noticeably decreases. Although
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FIG. 7. EM results for the specific heat; gapped spectrum, e0 =
−0.521 . . . − 0.516. The parameter nP in brackets behind energy
values denotes the number of (very similar) Padé approximants
shown here.

the results for c(T ) do not entirely discard a gapped ground
state, further EM analysis of χ (T ) under this assumption leads
to disagreement with diagrammatic Monte Carlo simulations
of Ref. [26] at T < 0.7, see Fig. 13 below. We may con-
sider these findings for c(T ) and χ (T ) as an indication to
favor a gapless ground state. We mention that the Green’s
function results indicate gapless magnetic excitations [25],
and, as mentioned already above, the data for χ (T ) given in
Ref. [26] down to T = J/6 seem also to be in favor of gapless
excitations.

We focus now on the gapless case with a power-law decay
of the specific heat c(T ) = AT α as T → 0. Since we do
not know the exponent α, we study different values α =
1, 3/2, 2, 5/2, 3. As for the gapped case, we again varied e0

in the region −0.57 . . . − 0.45. We observed that only in a
much smaller region around e0 = −0.52 reasonable results
can be obtained (see also the discussion of Fig. 8, below).
Thus, in what follows we consider preferably the region
−0.53 . . . − 0.50 in more detail.

First we consider the prefactor Aapp that is given within
the EM by Eq. (3.8). According to above outlined criteria
for physically relevant EM outcomes the values of Aapp ob-
tained by different Padé approximants must be very close
to each other. From Fig. 8 (see also Fig. 2 in Ref. [70]
for additional information) it is evident that for each value
of α there is a well-defined relevant region of e0, namely,
−0.515 . . . − 0.513 for α = 1, −0.518 . . . − 0.516 for α =
3/2, −0.521 . . . − 0.518 for α = 2, −0.522 . . . − 0.520 for
α = 5/2, −0.524 . . . − 0.522 for α = 3. In all cases the
ground-state energy is within the interval e0 = −0.524 . . . −
0.513, which is much narrower than the wide region re-
ported in the literature ranging from e0 = −0.57 to e0 =
−0.45 [12,13,15,16,22–25,69].

We consider the coincidence of A values for different Padé
approximants as a necessary criterion to figure out regions
of relevant values for e0 and α. Since A (together with α)
determines the c(T ) profile at sufficiently low T , we can
get additional reliability by examining the region around the
main (“high”-temperature) maximum. For that we compare
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FIG. 8. EM for gapless spectrum: The prefactor Aapp as it follows
from Eq. (3.8) for α = 1, 3/2, 2, 5/2, 3 versus the ground-state
energy e0 varied in the region −0.53 . . . − 0.50.

the position Tmax and the height c(Tmax) of this maximum
obtained from different Padé approximants in dependence on
e0 within the regions guided by the previous inspection of A
for α = 3/2, 2, 5/2 in Fig. 9 (Fig. 3 in Ref. [70] reports such
data for a wider region of e0 including also α = 1 and 3). For
each α we find pretty small regions of e0 which yield almost
identical Tmax and c(Tmax), and, consistently, this region fits
well to the region obtained by inspection of A. For example,
for α = 2 all Padé approximants give almost identical Tmax

and c(Tmax), cf. Fig. 9 (red symbols), if e0 is taken within the
region −0.522 . . . − 0.519, which is in excellent agreement
with that obtained from the prefactor A, see above. Note,
however, that for α = 1 and 3 the diversity of Tmax and c(Tmax)
is noticeably larger than for α = 3/2, 2, 5/2, cf. Fig. 3 in
Ref. [70], indicating that the exponents α = 1 and 3 are less
favorable.

Finally, after the specification of the ground-state energy
values as outlined above, we present in Fig. 10 the full c(T )
curves obtained by the EM for α = 3/2, 2, 5/2 and a few
related optimal values of e0. [Corresponding curves for α = 1
and α = 3 are shown in Fig. 4 in Ref. [70]. Moreover, Fig. 5 in
Ref. [70] provides additional results of c(T ) comparing data
for all α = 1, 3/2, 2, 5/2, 3 for various values of e0].

As can be seen in Fig. 10, there is a quite large number
of Padé approximants (see the parameter nP in brackets be-
hind energy values) yielding very similar temperature profiles
c(T ). Thus, for α = 2 we show in the middle panel of Fig. 10
nP = 10 Padé approximants if e0 = −0.519 and −0.518 and
nP = 9 Padé approximants if e0 = −0.521 and e0 = −0.520.
Outside this region of e0 values the number of physical Padé
approximants becomes noticeably smaller.

Without favoring any of the assumptions on the low-T
behavior of c(T ) and taking into account all (i.e., gapped
and gapless excitations) EM predictions for c(T ) collected in
Figs. 7 and 10 (see also Fig. 6 in Ref. [70], where we present
a direct comparison of both cases), we have clear evidence
(1) for a quite narrow region of reasonable e0 values and (2)
for the absence of a double-peak profile in c(T ). (3) Though,
the position Tmax and the height c(Tmax) of the maximum of
the specific heat slightly depend on the assumption about the
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FIG. 9. EM for gapless spectrum: Position Tmax (top) and height
c(Tmax) (bottom) of the specific heat versus the ground-state energy
e0 varied in the region region −0.522 . . . − 0.515 for exponents α =
3/2 (green), α = 2 (red), and α = 5/2 (dark gray).

ground-state energy e0 and low-lying excitations, all cases
yield Tmax around ≈0.25 and c(Tmax) around ≈0.2.

Finally, we compare our EM results for c(T ) with data
calculated by HTE (without subsequent EM interpolation)
and by the Green’s function approach [25], cf. Fig. 11. The
Green’s function results deviate from the EM results already
below T ∼ 1, whereas the HTE data deviate below T ∼ 0.7.

The EM straightforwardly also provides the temperature
profile of the entropy s(T ), see Fig. 12. Since the finite-
temperature phase transition present in the simple-cubic HAF
does not influence s(T ) as much as c(T ) [71], we compare the
data for the PHAF with corresponding ones for the simple-
cubic HAF taken from Ref. [72]. We also show HTE data.
Similar as already found for the finite system, cf. the middle
panel of Fig. 3, the frustration leads to a much faster increase
of s at low temperatures for the PHAF. Thus, at T = 0.5 the
entropy already amounts to more than 50% of its maximal
value ln 2 ≈ 0.69. (Note that in Fig. 7 in Ref. [70] we present
a direct comparison of the gapped and gapless temperature
profiles of s).

We consider now the static uniform susceptibility χ cal-
culated by the EM as described in Sec. III A. According to
the results of the rotation-invariant Green’s function method,
there is χ0 ≡ χ (T = 0) > 0. A nonzero χ0 may be also ex-
pected from the diagrammatic Monte Carlo simulations [26].
Nevertheless, we will not exclude from the beginning χ0 =
0, i.e., a nonzero spin gap. Although the above discussed

FIG. 10. EM results for the specific heat; gapless spectrum. (Top)
e0 = −0.518 . . . − 0.516, α = 3/2. (Middle) e0 = −0.521 . . . −
0.518, α = 2. (Bottom) e0 = −0.522 . . . − 0.520, α = 5/2. The pa-
rameter nP in brackets behind energy values denotes the number of
(very similar) Padé approximants shown here.

EM data for c(T ) are in favor of a gapless spectrum, the
specific heat profiles were not fully conclusive to entirely
reject the gapped spectrum. Moreover, one could have gap-
less singlet (i.e., nonmagnetic) excitations but gapped triplet
(i.e., magnetic) excitations. Thus we studied the case with
exponential decay of χ (T ) and c(T ) as T → 0 (i.e., gapped
singlet and triplet excitations), see Fig. 13, as well as the
case with exponential decay of χ (T ) and power-law decay
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FIG. 11. Specific heat c(T ) of the S = 1/2 PHAF: Comparison
of our EM data (e0 = −0.522, α = 5/2; e0 = −0.520, α = 2; e0 =
−0.517, α = 3/2) with results obtained by the rotation-invariant
Green’s function method [25] (dashed blue) and by the HTE (thin
solid curves; we show the same HTE data for N = ∞ as shown
in Fig. 4).

of c(T ) as T → 0 (i.e., gapless singlet and gapped triplet
excitations), see Fig. 14, where we consider those values for e0

and α which are previously used to get c(T ) (see also Figs. 8
and 9 in Ref. [70]). From these figures, it is obvious that the
susceptibility profiles based on gapped magnetic excitations
are not compatible with the diagrammatic Monte Carlo data
of Ref. [26] in the temperature region below 0.7, thus pro-
viding further evidence against a gapped spectrum. On the
other hand, the EM results for gapless excitations with α =
3/2, 2, 5/2 and e0 = −0.522 . . . − 0.516 and with nonzero χ0

as shown in Fig. 14 fit much better to the data of Ref. [26].
This argument complements the previous observations about
the number of close Padé approximants for c(T ) [compare
Figs. 7 (gapped) and 10 (gapless)] and for χ (T ) [compare
Figs. 13 (gapped) and 14 (gapless)]: The EM results favor the
assumption of gapless excitations.
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FIG. 12. EM data for the entropy for the gapless case with e0 =
−0.522, α = 5/2; e0 = −0.520, α = 2; e0 = −0.517, α = 3/2. We
also show quantum Monte-Carlo data for the simple-cubic HAF [72]
as well as HTE data (thin solid lines), where we show the same Padé
approximants as used in Fig. 4 for c(T ). (Note that the HTE data are
very close to the EM data).
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FIG. 13. EM results for the susceptibility; gapped spectrum,
e0 = −0.520 . . . − 0.517.

As for the specific heat, we finally compare our EM results
for χ (T ) with data calculated by HTE (without subsequent
EM interpolation), by the Green’s function approach [25], cf.
Fig. 15, where we also include the data of the diagrammatic
Monte Carlo simulations [26]. The Green’s function results
deviate already below T ∼ 1.5, and the HTE coincides down
to T ∼ 0.7, whereas χ (T ) profiles with χ0 = 0.1 are in excel-
lent agreement with the data of Ref. [26].

V. CONCLUSIONS AND SUMMARY

We have studied the specific heat c(T ), the entropy s(T ),
and the static uniform susceptibility χ (T ) of the spin-half
pyrochlore Heisenberg antiferromagnet (PHAF) on a finite
lattice of N = 32 sites using the finite-temperature Lanczos
method (FTLM) and on the infinite lattice using the high-
temperature expansion (HTE) up to order 13 and a sophis-
ticated interpolation between the low- and high-temperature
behavior of the thermodynamic potential entropy s as a func-
tion of internal energy e [the entropy method (EM)].

We found that finite lattices of such size are not appropriate
to get reasonable results below T ∼ 0.7, but they might be
useful to get a general impression on the strong frustration ef-
fects present in the PHAF by comparison of the HAF on finite
pyrochlore and simple-cubic lattices. A similar limitation to
temperatures above T ∼ 0.7 is valid for the HTE even if the
range of validity of the high-temperature series is extended by
Padé approximants. Only the EM interpolation is suitable to
overcome these limitations and to provide sound data for the
whole temperature range.

Our main findings for the specific heat c(T ) are as follows.
(i) Contrary to the two-dimensional kagome HAF, we do not
find hints either for an extra low-T peak or an extra shoulder
below the main maximum. However, the absence of an extra
low-T feature goes hand in hand with a significant shift of
the single maximum towards T ∼ 0.25, which is much lower
than for the kagome HAF, where the main maximum is at
Tmax/J = 0.67 [46,54]. This conclusion is robust, i.e., it is
obtained not only for gapless excitations for all reasonable
exponents α of the low-temperature power law of c(T ) but
holds also for gapped excitations. (ii) A gapless spectrum is
more favorable than a gapped one, i.e., most likely there is
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FIG. 14. EM results for the susceptibility; gapless spec-
trum. (Top) e0 = −0.518 . . . − 0.516, α = 3/2. (Middle) e0 =
−0.521 . . . − 0.518, α = 2. (Bottom) e0 = −0.522 . . . − 0.520, α =
5/2. χ0 = 0, 0.08, 0.1. Three values of nP in brackets correspond to
the assumed values χ0 = 0.1, χ0 = 0.08, and χ0 = 0, consequently.

power-law low-T behavior of c(T ). Although best results are
for an exponent α = 2, other exponents (α = 1, 3/2, 5/2, 3)
cannot be excluded. (iii) We predict a ground-state energy
e0 ≈ −0.52 [73].

Our EM data for the susceptibility χ (T ) in comparison
with data obtained by diagrammatic Monte Carlo [26] provide
further evidence for a gapless spectrum with a ground-state
energy e0 ≈ −0.52. The temperature profile of χ most likely
does not show a maximum, rather there is a monotonous in-
crease of χ upon decreasing of T reaching a zero-temperature
value of χ0 ≈ 0.1. Recently, we have learned that R. Schäfer
et al. [74] also examined thermodynamics of the quantum
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FIG. 15. Susceptibility χ (T ) of the S = 1/2 PHAF: Comparison
of our EM data (e0 = −0.522, α = 5/2; e0 = −0.520, α = 2; e0 =
−0.517, α = 3/2) with results obtained by the rotation-invariant
Green’s function method [25] (dashed blue), by the diagrammatic
Monte Carlo [26], and by the HTE (thin solid curves; we show the
same HTE data for N = ∞ as shown in Fig. 5).

PHAF, however, using for that numerical linked-cluster ex-
pansions.
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APPENDIX A: M. PLANCK’s DERIVATION OF THE
SPECIFIC HEAT c(T ) OF AN OSCILLATOR

In his revolutionary paper in 1900 [28] (see also the Nobel
Prize address [Notes 7, 12, and 13 at the end of the Nobel
Prize address “The origin and development of the quantum
theory” by Max Planck delivered before the Royal Swedish
Academy of Sciences at Stockholm, 2 June, 1920] [42]), M.
Planck investigated the energy distribution of electromagnetic
radiation emitted by a black body in thermal equilibrium. For
that he considered the entropy of the equilibrium radiation
S [75] in relation with its energy U , or more accurately, the
second derivative d2S/dU 2. According to Wien’s law it is

d2S

dU 2
= − 1

bU
. (A1)

But in view of experiments for high temperatures one has U =
cT , i.e.,

d2S

dU 2
= − c

U 2
. (A2)
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(M. Planck here refers to experiments by F. Kurlbaum.)
While Wien’s law (A1) is valid for small energy values
(short wavelength), Eq. (A2) describes the high-energy limit
(long wavelength, Rayleigh-Jeans law). To get agreement with
experimental data M. Planck suggested

d2S

dU 2
= − c

U (bc + U )
−→

{
− 1

bU , U � bc,

− c
U 2 , U � bc,

(A3)

which interpolates between both limiting cases. By integrating
we get

1

T
= dS

dU
= 1

b
ln

(
1 + bc

U

)
, (A4)

which yields Planck’s formula

U = bc

eb/T − 1
. (A5)

These arguments can be formulated within the setup of
the entropy method to find the specific heat c(T ) of a (Bose)
oscillator, which represents the electromagnetic radiation with
the frequency ν = 2πω. Now we know that b = h̄ω and
c = 1. Taking into account the zero-point energy we have to
replace U → e = U + h̄ω/2. Then the Planck’s interpolation
formula (A3) for the auxiliary function G(e) = (s(e))′′ reads:

G(e) = − 1(
e − h̄ω

2

)(
e + h̄ω

2

) = 1(
h̄ω
2

)2 − e2

−→
{− 1

h̄ω

(
e− h̄ω

2

) , e � h̄ω,

− 1
e2 , e � h̄ω.

(A6)

The subscript app in the left-hand side of this equation is omit-
ted since the suggested expression for G(e) = (s(e))′′ (A6)
appears to be exact. By integrating we get

1

T
= s′(e) =

∫ ∞

e
de

1

e2 − (
h̄ω
2

)2 = 1
h̄ω
2

arccth
e

h̄ω
2

(A7)

and then

c(e) = − (s′(e))2

s′′(e)
= e2 − (

h̄ω
2

)2(
h̄ω
2

)2 arccth2 e
h̄ω
2

(A8)

and finally

c(T ) =
(

h̄ω
2T

sh h̄ω
2T

)2

. (A9)

APPENDIX B: HTE FOR THE S = 1/2 PHAF

We report here the HTE coefficients for the spin-half PHAF
up to order 13 obtained by the Magdeburg HTE code devel-
oped mainly by A. Lohmann [59]. Note that the coefficients
up to order 10 where presented previously for arbitrary spin S
in Refs. [27,60].

For the specific heat (per site) we have

c(β ) =
∑

i

diβ
i,

d1 = 0,
d2

J2
= + 9

16
,

d3

J3
= − 9

32
,

d4

J4
= −207

256
,

d5

J5
= +195

256
,

d6

J6
= +3 549

4 096
,

d7

J7
= −59 073

40 960
,

d8

J8
= −34 535

65 536
,

d9

J9
= +345 491

163 840
,

d10

J10
= − 9 385 203

36 700 160
,

d11

J11
= −337 285 883

132 120 576
,

d12

J12
= +39 036 781 051

26 424 115 200
,

d13

J13
= +144 963 365 443

58 133 053 440
. (B1)

For the static uniform susceptibility (per site) we have

χ (β ) =
∑

i

ciβ
i,

c1 = +1

4
,

c2

J
= −3

8
,

c3

J2
= +3

8
,

c4

J3
= −17

64
,

c5

J4
= + 85

512
,

c6

J5
= − 97

640
,

c7

J6
= + 20 207

122 880
,

c8

J7
= − 210 989

1 720 320
,

c9

J8
= + 92 147

1 966 080
,

c10

J9
= − 4 936 709

247 726 080
,

c11

J10
= + 540 939 383

9 909 043 200
,

c12

J11
= − 5 315 724 257

72 666 316 800
,

c13

J12
= + 20 479 483 351

747 424 972 800
. (B2)
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