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Optical rotation in thin chiral/twisted materials and the gyrotropic magnetic effect
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The rotation of the plane of polarization of light passing through a nonmagnetic material is known as natural
optical activity or optical gyrotropy. The behavior of this effect in thin chiral conductors is of current interest. For
example, the low-frequency limit of gyrotropy in chiral three-dimensional (3D) crystals, known as the gyrotropic
magnetic effect (GME), is controlled by the orbital magnetic moment of electrons, which has been proposed to
be relevant to current-induced switching in twisted bilayer graphene. We show that the GME is not limited to
bulk materials but also appears for quasi-2D systems with minimal structure incorporated in the third direction.
Starting from multiband Kubo formula, we derive a generic expression for GME current in quasi-2D materials
induced by low-frequency light, and provide a Feynman-diagrammatic interpretation. The relations between the
2D finite layered formula and 3D bulk formula are also discussed.
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I. INTRODUCTION

The breaking of symmetry in a medium between polarized
light with different chiralities is called optical gyrotropy,
leading to the rotation of the polarization plane in propagation
[1]. Faraday rotation and magnetic circular dichroism, for
instance, are time-reversal-odd gyrotropic effects and appear
at zeroth order in the wave vector of light. At linear order
in wave vector, the time-reversal-even part of the optical
response is called natural gyrotropy, whose dissipative part
leads to natural circular dichroism, while the reactive part
gives the optical rotation known as natural optical activity
[1–4].

Recently the mechanism of these effects at low frequencies
has been of considerable interest. Beyond merely probing
a material’s symmetry, the low-frequency limit of natural
gyrotropy in chiral three-dimensional (3D) metals turns out to
probe a very basic property of Bloch electrons, in a loosely
similar way to electric polarization and other Berry-phase
phenomena. This limit was named the gyrotropic magnetic
effect (GME) [3], as it includes as a special case one version
of the previously discussed chiral magnetic effect in Weyl
semimetals [5–8]. It is controlled by the intrinsic orbital mag-
netic moment of the electrons on the Fermi surface [3,8,9],
which is determined by the Bloch states and is related to but
distinct from the more familiar Berry curvature. The GME has
recently been studied in Weyl semimetals by first-principles
calculations [10,11]. While there are clearly a variety of non-
linear effects in Weyl semimetals known to be interesting and
even approximately quantized [5–7,12–18], the GME remains
a relatively straightforward probe of chirality as it is a linear
response.

The motivation for this paper is to understand how the sim-
plest electromagnetic response to chirality in a time-reversal-
invariant system, the GME, is modified in a minimal chiral

structure, such as a stack of a few rotated layers, rather than a
bulk crystal. The optical phenomena in thin conductors, with
minimal structure incorporated in the third direction, is of
great current interest [19–21]. One of the platforms is twisted
bilayer graphene [22–34]. The electronic structure of this kind
of quasi-two-dimensional system is significantly modified by
the Moiré superlattice, leading to almost flat bands.

The nontrivial Berry phase of the flat bands generates large
out-of-plane orbital magnetic moment [35–39], which is be-
lieved to be relevant to switching in twisted bilayer graphene
[40–42]. The orbital moment’s effect on light propagating in
the plane of a thin structure is fairly straightforward, but for
light passing through the plane, the situation is more complex.
The quasi-2D chiral structure should give rise to optical
gyrotropy on symmetry grounds, with some connection to
the in-plane orbital magnetic moment, which still remains
obscure due to the breaking of translation symmetry along the
out-of-plane direction [43,44].

In this paper, we start from a standard multiband Kubo
formula to derive a generic expression for GME current (or
equivalently optical rotation) in quasi-2D materials induced
by low-frequency light. We show that the orbital magnetic
moment can be expressed in terms of the position operator
in the presence of open boundary condition. Similar to recent
work on nonlinear optical responses with respect to electric
field [45,46], we provide a diagrammatic interpretation for the
Kubo formula results, which in this case should be viewed
as responding to magnetic field. By stacking quasi-2D layers
periodically along the out-of-plane direction, one obtains a
thermodynamic limit in which the system is equivalent to
a 3D bulk material. The relations between the 2D finite
layered formula and 3D bulk formula are also discussed, both
analytically and numerically. Optical rotation is a powerful
and widely used probe of chirality of quasi-2D materials,
and we hope that our results will extend this technique from
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FIG. 1. (a) The rotation of the polarization plane of light passing
through a quasi-two-dimensional chiral material (see the blue and red
sheets). The blue dashed arrow perpendicular to the plane denotes
the direction of the light. The orange arrows show the rotation of the
polarization plane. (b) Stacking of quasi-2D layers with chiral struc-
ture described in (a), the blue dashed lines illustrate the interlayer
couplings.

simply a probe of symmetry, or the sign of twisting, to a more
quantitative probe of electronic chirality.

The paper is structured as follows. In Sec. II, we briefly in-
troduce the model Hamiltonian, as well as basic properties of
the GME coefficient and optical rotation. In Sec. III, we derive
a formula for GME coefficient of quasi-2D material, and show
the emergence of the position operator in the low-frequency
limit. In Sec. IV, we give a diagrammatic interpretation of
a formula derived from Sec. III. In Sec. V, we use the 2D
formula to calculate the GME coefficient for periodic stacked
many-layer system, and show its convergence to 3D bulk
results in thermodynamic limit. We discuss and summarize
the main results in Sec. VI, with an eye towards future
applications.

II. PRELIMINARIES: HAMILTONIAN AND GME

The rotation of the plane of polarization of light passing
through a nonmagnetic material is known as natural optical
activity or optical gyrotropy. Consider the optical gyrotropy
for chiral quasi-2D materials on x-y plane. Here the term
quasi-2D means that the system is infinite in the (x, y)
plane with well-defined (kx, ky), while maintaining finite open
boundary conditions along the ẑ direction, which encodes
inhomogeneous structure. Figure 1(a) shows the minimal
structure of a single (effectively) chiral layer, which consists
of two sheets (see the blue and red planes). On the other hand,
one can stack and couple Nz copies of structure mentioned
in Fig. 1(a) along the ẑ direction, making a 3D bulk chiral
material in the thermodynamic limit, as shown in Fig. 1(b).
For such materials, optical rotation at low frequencies has
been shown to be related to the orbital magnetic moment of
3D Bloch electrons on the Fermi surface [3,8].

A. Model

Let us first consider the following Pauli Hamiltonian for a
free fermion with spin-orbit coupling [3,47], which will be the
starting point for either of the aforementioned cases (single-
layer or many-layer slabs):

H0 = p2

2m
+ V (r) + h̄

4m2c2
(p · σ ) × ∇V (r), (1)

with m the electron mass, p the electron momenta, c the
speed of light, σ = (σx, σy, σz ) the Pauli matrices, and V (r)
the lattice potential. Here and after we set c = 1 for simplicity.
The kinematic momentum associated with H0 is then defined
as:

π̂ = m

ih̄
[r̂,H0] = p̂ + h̄

4m
σ × ∇V (r), (2)

which satisfies the commutation relation [r̂i, π̂ j] = [r̂i, p̂ j] =
ih̄δi j . To the leading order of vector potential A(r, t ) =
A(ω, q)eiq·r−iωt , with q = (qx, qy, qz ), the coupling with an
external electromagnetic field can be treated as a perturbation:

HI ≈ e

2
[v̂ · A(r, t ) + A(r, t ) · v̂] + gse

2m
[∇ × A(r, t )] · S, (3)

with S = (h̄/2)σ being the spin operator. Here the v̂ = π̂/m is
the velocity operator without the external field, whose Fourier
transformation is defined as: πq = e−iq·rπ̂e+iq·r. Thus the total
Hamiltonian reads:

H = H0 + HI. (4)

The velocity operator in the presence of electromagnetic fields
can be defined as follows:

v̂tot = 1

ih̄
[r,H] = π̂

m
+ eA(r, t )

m
. (5)

One can transform the Hamiltonian H0 into Fourier
space H0(kx, ky ), whose eigenstates |� j

k〉 = |� j
kx,ky

〉 =
V−1/2eikxx+ikyy |u j

kx,ky
(z)〉, i.e., the 2D Bloch states satisfy

H0(kx, ky) |� j
kx,ky

〉 = E j
kx,ky

|� j
kx,ky

〉. The Bloch states are
normalized for the entire volume V of the 3D slab:
〈�m

k |�n
k′ 〉All = δmnδk,k′ . Note that j is the band index, which

mixes the spin, orbital, and sheet/layer structure encoded
along ẑ direction.

Now let us assume that in tight-binding limit the Hamilto-
nian is expanded under maximally localized Wannier func-
tions |φ j

s 〉, which can diagonalize the position operator
ẑ |φ j

s 〉 = (Rs + r j ) |φ j
s 〉. Here s labels the unit cell and j la-

bels the generalized orbital within the unit cell. Rs denotes
the z position for the center of sth unit cell, while r j is
the z position for the center of orbital with respect to the
center of the unit cell. The Bloch-like basis reads: |χ j

k 〉 =∑
s eik(Rs+r j ) |φ j

s 〉, and the Bloch states can be expanded as:
|�n

k〉 = V−1/2 ∑
j Cn

k, j |χ j
k〉. We note that here we excluded

certain topologically nontrivial states such as Chern insulators
for which not all states can be localized.

B. GME coefficient

In this section, we briefly introduce some concepts and
notations from the gyrotropic magnetic effect [3,48,49]. Note
that, to linear order, the total current density induced by a
monochromatic light wave reads:

ji(q) = 	i j (q)A j (q) (6)

and optical gyrotropy is described by the antisymmetric part
of the response tensor 	A

i j = (	i j − 	 ji )/2 to the order O(q)
[1,3]. Its Taylor expansion to first order in q captures the
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natural gyrotropy:

	A
i j (q) = 	A

i j (0) + 	A
i jl ql + · · · . (7)

The time-reversal-even part 	A
i jl (GME tensor) with nine

independent components is antisymmetric under i ↔ j and
can be written using the GME coefficient αGME

i j , where the
latter is a rank-two tensor: [3,48,49]

	A
i jl = iεil pα

GME
j p − iε jl pα

GME
ip (8a)

αGME
i j = 1

4i
ε jl p(	A

l pi − 2	A
il p

)
. (8b)

In the low-frequency limit h̄ω � Egap (Egap stands for the
band gap) where only the intraband absorption can occur, we
further have:

ji = αGME
i j B j . (9)

For a metal with cubic symmetry or higher, one can de-
rive 	A

i jl = −2iᾱGMEεi jl and αGME
i j = ᾱGMEδi j . With this the

rotatory power ρ can be expressed in terms of αGME [3,4]:

ρ = −(1/ε0)ReᾱGME. (10)

In general the rotatory power has the unit of rad/unit length.
According to Eq. (8b), αGME

xx can be expanded by 	A
i jl :

αGME
xx,2D = − i

2
	A

yzx + i

2
	A

xyz − i

2
	A

xzy, (11)

where those GME tensors can be derived from the standard
perturbation theory. One thing we wish to recall for clarity is
that the quasi-2D material here still lives in three dimensions,
and the only fundamental difference is the breaking of trans-
lation symmetry along the out-of-plane direction. The αGME

xx,2D

we defined here has the same units compared with the αGME
xx,3D

for 3D bulk material, aside from the unit length along the
third direction being switched to the thickness of the slab. For
example, the rotatory power for a 3D bulk material by stacking
infinite many structures plotted in Fig. 1(a) has the units of
rad/a, with a is the lattice constant along êz direction. On the
other hand, the rotatory power for a quasi-2D slab with three
unit layers shown in Fig. 1(b) has more naturally the units of
rad/3a since there is no true unit cell or periodicity along êz.
The main goal for this paper is to calculate αGME

xx,2D (or αGME
yy,2D)

for a quasi-2D system, which characterizes the rotation of the
polarization plane of light perpendicular to the quasi-2D slab.

III. GENERIC KUBO FORMULA

Based on standard perturbation theory, we first derive the
generic 2D formula for antisymmetric conductance tensor
	A

αβ as a function of wave vector of light in Sec. III A. Then,
in Sec. III B and Sec. III C, at low-frequency limit we evaluate
the GME tensor 	A

xyz and 	A
yzx/	

A
xzy in terms of position

operator ẑ. We derive the αGME
xx [Eq. (31)] for 2D material at

the end of the section, which is the main general result of this
paper.

A. Response tensor for 2D material

We start this section from standard perturbation theory. We
first derive the net current, then we treat the electromagnetic

field as the perturbation, and evaluate the perturbative matrix
element restricted by photon-momenta transfer. Finally we
arrive at the main result of this section, which is the rank-2
antisymmetric conductance tensor 	A

αβ , see in Eq. (21).

1. Net current

Based on standard perturbation theory [50–53], the 2D
current density induced by the monochromatic light A(r, t ) =
A(ω, q)eiq·r−iωt reads:

Ĵ (q) = − e

2
Tr

[
(v̂tote−iq·r + e−iq·rv̂tot )N

]

≈ −e2

m
Tr

[
e−iq·rN0A(r, t )

]

− e

2
Tr

[(
v̂e−iq·r + e−iq·rv̂

)
δN

]
, (12)

where the trace and integral is conducted in “All” space V
under the quasi-2D Bloch states |� j

k〉 defined in Sec. II A.
Here the particle density N has been decomposed into the
unperturbed density N0 and the density fluctuation induced
by interaction: N = N0 + δN .

One can also decompose the total current Eq. (12) as
Ĵ (q) = Ĵ1(q) + Ĵ2(q). The first term Ĵ1(q) is the so-called
diamagnetic term:

Ĵ1(q) = −e2

m
Tr

[
e−iq·rN0A(r, t )

] = −e2

m

∑
j

f (Ej )A, (13)

where f (Ej ) = 1/(1 + e(Ej−μ)/kBT ) is the Fermi distribution
function for the system with chemical potential μ. Hereafter,
we simply write A for A(ω, q).

Now we want to evaluate the second term in Eq. (12):

Ĵ2(q) = − e

2
Tr

[
(v̂e−iq·r + e−iq·rv̂)δN

]
. (14)

We insert a complete set 1 = ∑
k′, j′ |� j′

k′ 〉 〈� j′
k′ |

inside: Ĵ2(q) = − e
2

∑
j, j′

∑
k′,k 〈� j

k| (v̂e−iq·r +
e−iq·rv̂) |� j′

k′ 〉 〈� j′
k′ | δN |� j

k〉. We will consider the

〈� j
k| (v̂e−iq·r + e−iq·rv̂) |� j′

k′ 〉 in Sec. III A 2.

The matrix element 〈� j′
k′ | δN |� j

k〉 can be derived
from Schrodinger equation under adiabatic approximation
[3,51,54], with η = 1/τ interpreted as the scattering rate:

〈
�

j′
k′
∣∣ δN ∣∣� j

k

〉 = f 0(E j′
k′ ) − f 0(E j

k )

E j′
k′ − E j

k − h̄ω − ih̄η

〈
�

j′
k′
∣∣HI

∣∣� j
k

〉
, (15)

Following some well-known tricks in the low-
frequency limit [3,54], we find that the prefactor
[ f 0(E j′

k′ ) − f 0(E j
k )]/(E j′

k′ − E j
k − h̄ω − ih̄η) can be divided

into two parts:

h̄ω[ f 0(E j
k ) − f 0(E j′

k′ )]

E j
k − E j′

k′ + ih̄η

(
1

h̄ω
− 1

h̄ω + E j
k − E j′

k′

)
. (16)

The first term in Eq. (16) can be viewed as: P{[ f 0(E j
k ) −

f 0(E j′
k′ )]/(E j

k − E j′
k′ )} + iπ [ f 0(E j

k ) − f 0(E j′
k′ )]δ(E j

k − E j′
k′ ),

where the P stands for Cauchy principle value. The term
related to principle value canceled with the diamagnetic
term Ĵ1(q) [Eq. (13)]. The second term vanishes, since when
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δ(E j
k − E j′

k′ ) = 1, we have f 0(E j
k ) − f 0(E j′

k′ ) = 0 [3,54].
Thus, by combining Ĵ1(q) and Ĵ2(q), only the second term of
Eq. (16) contributes to the net current:

Ĵ (q) = − e

2

∑
j, j′

∑
k′,k

〈
�

j
k

∣∣ [v̂e−iq·r + e−iq·rv̂]
∣∣� j′

k′
〉 〈δN 〉 j′ j

k′k.

(17)
Here we define 〈δN 〉 j′ j

k′k = F j j′
k,k′ 〈� j′

k′ |HI |� j
k〉, with

F j j′
kk′ = − f 0(E j

k ) − f 0(E j′
k′ )

E j
k − E j′

k′ + ih̄η

h̄ω

h̄ω + E j
k − E j′

k′ + ih̄η
. (18)

2. Perturbative matrix element and momentum transfer

We would like to evaluate the matrix element of HI be-
tween two Bloch states. For the monochromatic light with
wave vector q = (q̃, qz ) = (qx, qy, qz ), and vector potential
A = (Ax, Ay, Az ), we have the coupling with light as:

HI = e

2

∑
i

[
vie

i(qxx+qyy+qzz) + ei(qxx+qyy+qzz)vi
]
Ai. (19)

Note that, in a quasi-2D layered system (a slab in ẑ direction),
for given cell-periodic operator Ôk = e−ik·rÔe+ik·r (say ve-
locity operator v̂k) we have:

〈� j′
k′ | Ôeiq̃·r |� j

k〉All = δkx,k′
x−qx δky,k′

y−qy 〈u j′
k′ | Ôk′ |u j

k〉Cell .

(20)
Here “All” stands for the entire space V where the
Bloch states is defined, while the “Cell” stands for
the volume of a quasi-2D unit cell. By applying this
relation, i.e., take Ô = v̂eiqzz, which is cell periodic
in (x, y) plane, then we will see: 〈� j′

k′ |HI |� j
k〉All =

δk,k′−q̃ 〈u j′
k+q̃|HI,k+q̃/2 |u j

k〉Cell, where HI,k+q̃/2,β stands for
the 2D Fourier transformation of the term associated with
Aβ in Eq. (19). Here HI,k+q̃/2,β stands for the 2D Fourier
transformation of the term associated with Aβ in Eq. (19).
Similar tricks also apply for the matrix element ahead
of 〈δN 〉 j′ j

k′k in Eq. (17): 〈� j
k| (v̂e−iq·r + e−iq·rv̂) |� j′

k′ 〉All =
〈u j

k| vk+q̃/2,αe−iqzrz + e−iqzrzvk+q̃/2,α |u j′
k+q̃〉Cell

. Now we have
successfully transformed the full space integral into the cell
integral, and illustrated the momentum shift restriction for a
quasi-2D Bloch electron’s scattering with light.

3. Rank-2 GME tensor �A
αβ

Combined with results in Sec. III A 2, one can subtract
the conductance tensor jα = 	αβAβ from Eq. (17). The GME
tensor is related to its antisymmetric part 	A

αβ = (	αβ −
	βα )/2:

	A
αβ = ie

∑
j, j′,k

F j j′
kk+q̃MA

αβ, (21a)

MA
αβ = Im 〈u j

k| vk+q̃/2,αe−iqzrz + e−iqzrzvk+q̃/2,α |u j′
k+q̃〉

× 〈u j′
k+q̃|HI,k+q̃/2,β |u j

k〉 /2. (21b)

Hereafter we drop the subscript “Cell” (“All”) if the operator
is evaluated under cell-periodic part of Bloch wave function
(full Bloch wave function).

Note that F j j′
kk+q̃ does not explicitly depend on qz. One

can send q̃ → 0. In this case k′ → k. We have assumed
that the frequency is so low, such that ∀k = (kx, ky), j 
= j′,
|E j

k − E j′
k | � h̄ω, thus F j j′

k,k+q̃ = 0. For the j = j′, we will
see:

F j j′
k = lim

q̃→0
F j j′

kk+q̃ = − lim
q̃→0

f 0(E j
k ) − f 0(E j

k+q̃)

E j
k − E j

k+q̃

h̄ω

h̄ω + ih̄η

= −∂ f 0(E j
k )

∂E j
k

h̄ω

h̄ω + ih̄η
= ∂ f 0(E j

k )

∂E j
k

iωτ

1 − iωτ
, (22)

where we have interpreted η = 1/τ as a scattering rate 1/τ

[3,54]. In this case 	A
αβ reads:

	A
αβ = e2ωτ

1 − iωτ

∑
j

∑
k

∂ f 0(E j
k )

∂E j
k

MA
αβ, (23)

with MA
αβ given in Eq. (21) for j = j′.

B. GME tensor �A
xyz

To get 	A
xyz, let us assume that we have light that is

not strictly perpendicular to the (x, y) plane. Instead,
assuming that q = (qx, 0, qz ), i.e., q̃ = (qx, 0) with
|q̃| � |qz|. We can approximately view A = (0, Ay, 0).
In this case we will have q · r = qxx + qzz. The coupling
with light reads: HI = e

2 [vyei(qxx+qzz) + ei(qxx+qzz)vy]Ay.
Substituting back to Eq. (21) we have: MA

xy(qz ) =
Im[ 〈u j

k| v̂k+q̃/2,xe−iqzz |u j
k+q̃〉 〈u j

k+q̃| v̂k+q̃/2,ye+iqzz |u j
k〉 ]. We

first take the low-frequency limit, and then send q̃ → 0, such
that F j′ j

k = F j j
k δ j′ j = δ j′ j[∂ f 0(E j

k )/∂E j
k ][iωτ/(1 − iωτ )].

With above we have the conductance tensor as:

	A
xy = e2ωτ

1 − iωτ

∑
j

∑
k

∂ f 0(E j
k )

∂E j
k

MA
xy(qz ), (24a)

MA
xy(qz ) = Im

〈
u j

k

∣∣ v̂k,xe−iqzz
∣∣u j

k

〉 〈
u j

k

∣∣ v̂k,ye+iqzz
∣∣u j

k

〉
. (24b)

Here v̂k,x = h̄−1∂kx H0(kx, ky), and v̂k,y = h̄−1∂ky H0(kx, ky).
Note that in Eq. (23) we have used the fact that v̂k,x and
v̂k,y does not explicitly contain z, such that they commute
with e±iqzz. We would like to evaluate Eq. (23) to the lead-
ing order of qz. One can carry out the Taylor expansion as
follows: e±iqzz ≈ 1 ± iqzz in small qz limit, drop the real part
〈u j

k| v̂k,x |u j
k〉 〈u j

k| v̂k,y |u j
k〉, and insert a complete set between

v̂k,y and ẑ, such that we have

MA
xyz ≈

∑
j1, j1 
= j

Re
[ 〈

u j
k

∣∣ v̂k,x

∣∣u j
k

〉 〈
u j

k

∣∣ v̂k,y

∣∣u j1
k

〉 〈
u j1

k

∣∣ ẑ
∣∣u j

k

〉

− 〈
u j

k

∣∣ v̂k,x

∣∣u j1
k

〉 〈
u j1

k

∣∣ ẑ
∣∣u j

k

〉 〈
u j

k

∣∣ v̂k,y

∣∣u j
k

〉 ]
, (25)

with the j1 = j term canceling out.

C. GME tensor �A
yzx and �A

xzy.

The calculation of 	A
αzβ [with (α, β ) = (x, y) or (y, x)]

is slightly different from 	A
xyz due to the lack of periodicity

in z direction. Let us assume the light with wave vector
q, while q̃ = qβ êβ , qz = 0, and A = (0, 0, Az ). Accordingly,
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the coupling with light reads: HI = e
2 (vzeiqβvβ + eiqβvβ vz )Az.

Similar to the calculation in 	A
xyz, by using Eq. (23), in the

low-frequency limit we have:

MA
αz(qβ ) = Im

[ 〈
u j

k

∣∣ v̂k+qβ êβ/2,α

∣∣u j
k′
〉 〈

u j
k′
∣∣ v̂z

∣∣u j
k

〉 ]
, (26)

with k′ = k + qβ êβ . Here v̂k,α = h̄−1∂kα
H0(kx, ky) and

v̂k±q/2 = v̂k ± q/2m [47] for α = x, y. However, v̂z

can not be written in this form due to the breaking of
translation symmetry along êz direction, one can treat
v̂z as in real space since it commutes with eik·r and
eiqβvβ . With the above we can expand |u j

k〉 and 〈u j
k| to

the leading order of qβ (|u j
k+qβ êβ

〉 ≈ |u j
k〉 + |∂kβ

u j
k〉 qβ and

〈u j
k+qβ êβ

| ≈ 〈u j
k| + 〈∂kβ

u j
k| qβ), and substitute back into

Eq. (26), we arrive at:

MA
αz(qβ ) = Im

[ 〈
u j

k

∣∣ v̂k,α

∣∣∂kβ
u j

k

〉 〈
u j

k

∣∣ v̂z

∣∣u j
k

〉
]qβ

+ Im
[ 〈

u j
k

∣∣ v̂k,α

∣∣u j
k

〉 〈
∂kβ

u j
k

∣∣ v̂z

∣∣u j
k

〉 ]
qβ + O(q2

β ),

(27)

where we have dropped the real part 〈u j
k| v̂k,α |u j

k〉 〈u j
k| v̂z |u j

k〉.
By inserting a complete set inside we have:

MA
αzβ =

∑
j1, j1 
= j

Im
[ 〈

u j
k

∣∣ v̂k,α

∣∣u j1
k

〉 〈
u j1

k

∣∣∂kβ
u j

k

〉 〈
u j

k

∣∣ v̂z

∣∣u j
k

〉

− 〈
u j

k

∣∣ v̂k,α

∣∣u j
k

〉 〈
u j

k

∣∣∂kβ
u j1

k

〉 〈
u j1

k

∣∣ v̂z

∣∣u j
k

〉 ]
, (28)

where we have used the fact 〈u j1
k |∂kβ

u j
k〉 = −〈∂kβ

u j1
k |u j

k〉 such
that the j1 = j terms cancel out.

Note that, in the presence of open boundary condition
or for an infinite system, we have the following relation
[47,55,56] standing for j 
= l (p̂ = im[H, r]/h̄):

〈
v̂z

〉 jl

k = 〈
u j

k

∣∣ v̂z

∣∣ul
k

〉 = i� jl
k

〈
u j

k

∣∣ ẑ
∣∣ul

k

〉
,

〈
u j

k

∣∣∂kβ
ul

k

〉 = − 1

�
jl
k

〈
v̂k,β

〉 jl

k = − 1

�
jl
k

〈
u j

k

∣∣ v̂k,β

∣∣ul
k

〉 (29)

with �
jl
k = h̄−1(E j

k − El
k ) and the position operator defined

trivially as in Sec. II A. For a finite system with periodic
boundary conditions, an additional correction term should
be taken into consideration or we need to use the quantum
position operator [56–58], but this is not a case that we
consider in this paper. Substituting Eq. (29) back to Eq. (28)
we have:

MA
αzβ =

∑
j1, j1 
= j

Im
[ − i〈v̂k,α〉 j j

k 〈v̂k,β〉 j j1
k 〈ẑ〉 j1 j

k

− 1

�
j1 j
k

〈v̂k,α〉 j j1
k 〈v̂k,β〉 j1 j

k 〈v̂z〉 j j
k

]
. (30)

Combining Eq. (25), Eq. (30), and Eq. (11), we arrive at
the GME coefficient:

αGME
xx,2D = iωτ

1 − iωτ

∑
k

∑
j

∂ f 0(E j
k )

∂E j
k

〈v̂k,x〉 j j
k

∑
j1, j1 
= j

e2

2
Re

[〈v̂k,y〉 j j1
k 〈ẑ〉 j1 j

k + 〈ẑ〉 j j1
k 〈v̂k,y〉 j1 j

k

]

= iωτ

1 − iωτ

e2

2

∑
k

∑
j

∂ f 0(E j
k )

∂E j
k

〈v̂k,x〉 j j
k Re

[〈v̂k,yẑ + ẑv̂k,y〉 j j
k − 2〈ẑ〉 j j

k 〈v̂k,y〉 j j
k

]
, (31)

which is the main result of this paper. Note that, due to the
orthogonality of eigenstates, the final results do not depend
on the chosen zero point of the ẑ coordinate. One can shift
the origin of ẑ coordinates by z0, such that under new coordi-
nate we have: 〈ui

k| ẑ + z0I4Nz×4Nz |u j
k〉 = 〈ui

k| ẑ |u j
k〉 + z0δi j =

〈ui
k| ẑ |u j

k〉, with i = j cases have already been excluded in
Eq. (31). Note that the simple form of position operator relies
on Eq. (29), which requires no band touching at the Fermi
surface.

It may not be obvious at first glance what this result means
physically, or how it can be connected to known formulas for
the 3D response in terms of the orbital magnetic moment.
Hence we next give a diagrammatic explanation for the result,
then apply it to slabs of increasing size to see how the 3D limit
emerges quantitatively.

IV. DIAGRAMMATIC INTERPRETATION

In this section, similar to recent work on electric dipole
responses [45,46], we would like to assign a diagrammatic
interpretation for formula Eq. (31). Note that the Hamiltonian

can be written perturbatively as:

H (h̄k + e �A)

=
∫

[dk]c†kH0(h̄k)ck +
∫

[dk]c†k

(
e

∂H

∂ h̄k
· A

)
ck + · · ·

=
∫

[dk]c†kH0(h̄k)ck +
∫

[dk]c†k(ev̂ · A)ck + · · · . (32)

Here c†k (ck) stands for the creation (annihilation) operator
for a Bloch electron. (Since the speed of light c is much
larger than the Fermi velocity v̂F , we only ensure the energy
conservation at each vertex [45].) Here [dk] = dkxdky/ABZ,
where ABZ stands for the area of the 2D first Brillouin zone
in which the integral is conducted. The first term is the unper-
turbed Hamiltonian, and the rest of the terms are perturbations
from the external electromagnetic field. The amplitude of the
diagram tells the response of one vertex (measurement) to
the other vertex (perturbation). Let us imagine that we inject
the light perpendicular to the x-y plane (along z direction).
The magnetic field is in-plane. In Landau gauge Bx = ∇ × A,
where A = (0, zB, 0). Thus the contribution is from ev̂ · A,
and we can write this vertex in the canonical form of position
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FIG. 2. Two diagrams for Hamiltonian Eq. (32) to the leading
order. The solid line and wavy line, denotes, respectively, the electron
and photon propagator [45]. (a) The diamagnetic current. (b) The
diagram for Eq. (35). The Dy stands for the vertex for perturbation as
defined in Eq. (33) and vx stands for the vertex for the measurement.

operator as:

Dy = ev̂ · A = eB

2
(v̂k,yẑ + ẑv̂k,y). (33)

With the above we can figure out the Feynman diagram for
a Bloch electron coupled to external electrical magnetic field,
as shown in Fig. 2. The Green’s function or the propagator of
the electron is defined as [45]:

G(ω) = (ω − H (k))−1 =
∑

i

|ui
k〉 〈ui

k|
h̄ω − Ei

k

. (34)

The first diagram is the diamagnetic current, same as in
Eq. (13). The contribution from the second diagram reads:

jtotal
x = e

[∑
j′ j

∫
[dk]

∫
d�〈v̂k,x〉 j′ j

k Gj (�)〈Dy〉 j j′
k Gj′ (� + ω)

]
.

(35)

Note that [45]:

I2 =
∫

d�Gj (�)Gj′ (� + ω) = f 0(E j′
k ) − f 0(E j

k )

h̄(ω + i/τ ) − (E j′
k − E j

k )
.

(36)

By using the same trick mentioned in Sec. III, part of
I2 will cancel with the diamagnetic current, while the re-
maining part contributes to the GME current. In the low-
frequency limit, the part we are interested in for I2 is
δ j′ j∂ f 0(E j

k )/∂E j
k [(iωτ )/(1 − iωτ )]. We further have the cur-

rent:

jtotal
x = iωτe

1 − iωτ

∑
j

∫
[dk]

∂ f 0(E j
k )

∂E j
k

〈v̂k,x〉 j j
k 〈Dy〉 j j

k , (37)

from which we can subtract the αGME
xx,2D as:

αGME
xx,2D = iωτ

1 − ωτ

∑
j

∫
[dk]

∂ f 0(E j
k )

∂E j
k

〈v̂k,x〉 j j
k

×
∑

j1

e2

2

[〈v̂k,y〉 j j1
k 〈ẑ〉 j1 j

k + 〈ẑ〉 j j1
k 〈v̂k,y〉 j1 j

k

]
, (38)

which is equivalent to Eq. (31), aside from containing the j =
j1 term. Note that the terms within the brackets are already
real. The result above corresponds to the total current, but
the GME is related to its antisymmetric part, so we need to
drop the j = j1 since it is invariant under vx ↔ vy. This is a

straightforward way to understand the result from the Kubo
formula without going through a rigorous calculation.

V. CONNECTION WITH 3D BULK RESULTS IN
THERMODYNAMIC LIMIT

Let us consider a stack of Nz layers of the quasi-2D chiral
structure along the êz direction, as shown in Fig. 1(b). In the
thermodynamic limit, i.e., Nz → ∞, we should have Eq. (31)
converging to 3D bulk results [3,8]:

αGME
xx,3D = iωτe

(1 − iωτ )

∑
n

∫
[dk]

∂ f 0(En
k )

∂En
k

v̂k,xm̂kn,x, (39a)

m̂kn = e

2h̄
Im

〈
∂kun

k

∣∣ × (Hk − En
k )

∣∣∂kun
k

〉
, (39b)

with k = (k, kz ) = (kx, ky, kz ), [dk] = dkxdkydkz/VBZ, where
VBZ stands for the volume of the 3D first Brillouin zone in
which the integral is conducted. We write |un

k〉 for the 3D cell-
periodic part of Bloch states, which are the eigenstates of the
Bloch Hamiltonian Hk |un

k〉 = En
k |un

k〉. By applying Eq. (29)
to Eq. (39b) we obtain the orbital magnetic moment written in
terms of velocity operators:

m̂kn,x = eh̄
∑

m,m 
=n

Im

[ 〈un
k | v̂k,y |um

k 〉 〈um
k | v̂k,z |un

k〉
Em

k − En
k

]
. (40)

Before going to realistic models, we provide a
straightforward way to understand the connection
between the 2D result Eq. (31) and the 3D result
Eq. (39a). Applying Eq. (29) along êz direction, we
have: h̄〈v̂k,y〉mn

k ≡ 〈um
k | h̄v̂k,y |un

k〉Cell = 〈um
k | ∂kz Hk |un

k〉Cell =
i(Em

k − En
k ) 〈um

k | ẑ |un
k〉INV ≡ i(Em

k − En
k )〈ẑ〉mn

k , with the
subscript INV standing for 3D bulk material with infinite
volume. Note that such a replacement is only valid for a 3D
bulk material where an infinite integral is conducted [56].
Substituting this to Eq. (40) we have:

m̂kn,x = e

2

∑
m,m 
=n

Re
[〈v̂k,y〉nm

k 〈ẑ〉mn
k + 〈ẑ〉nm

k 〈v̂k,y〉mn
k

]
, (41)

with Eq. (41) back to the αGME
xx,3D in Eq. (39a). Finally we arrive

at the 3D bulk formula in terms of position operator:

αINV
xx,3D = iωτ

1 − iωτ

∑
n

∫
[dk]

∂ f 0(En
k )

∂En
k

〈v̂k,x〉nn
k

e2

2

×
∑

m,m 
=n

Re
[〈v̂k,y〉nm

k 〈ẑ〉mn
k + 〈ẑ〉nm

k 〈v̂k,y〉mn
k

]
, (42)

which looks similar to Eq. (31).
From Eq. (31) one can define two relevant variables:

αOBC
xx,2D(Nz ) = 1

Nz
αGME

xx,2D(Nz ), (43a)

α
Slope
xx,2D(Nz + �/2) = 1

�

[
αGME

xx,2D(Nz + �) − αGME
xx,2D(Nz )

]
.

(43b)

The αOBC
xx,2D is just the layer averaged GME coefficient.

When � = 1, we have α
Slope
xx,2D ≈ ∂αGME

xx,2D/∂Nz, which stands
for the increasing of GME coefficient for an additional layer
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FIG. 3. Sketch for the 16-band model and numerical results. (a) Left: the sketch for layer stacking; right: the configuration for each unit cell.
Note that each layer itself has some structure along êz direction. (b) The 2D band structure of a 15 layers slab for the lowest 7 sub-bands. Note
that the 2D band structure should be understood as following: we assign each k point (kx, ky ) with a unique label, such that all k points form a
one-dimensional array. The y axis stands for the energy, while the x axis stands for the label for k points. The red lines in the figure from the
bottom to the top stand for Fermi level in (c)–(e), respectively. The red circles highlight the band touching points. (c)–(e) The GME coefficient
for the 16 bands model Eq. [(45)], with t = 1.0, tz = 3.0t , δt = ε = 0.4t , and kBT = 0.03t . The blue, red, and black line denotes, respectively,
the slope/averaged value for αxx based on Eq. [(43)], and 3D infinite volume results for Bloch electron based on Eq. [(39)]. The subfigures
(c) μ = −9.3t , the difference compared with 3D result is |(α∞

xx,2D − αGME
xx,3D )/αGME

xx,3D| ≈ 0.5%, (d) μ = −9.0t , the difference compared with 3D
result is |(α∞

xx,2D − αGME
xx,3D)/αGME

xx,3D| ≈ 0.4%, (e) μ = −8.5t , and the difference compared with the 3D result is |(α∞
xx,2D − αGME

xx,3D )/αGME
xx,3D| ≈ 7.4%.

(f) The α∞
xx,2D and αGME

xx,3D with respect to different Fermi levels. The relevant difference between 2D and 3D results is increased as more bands
become close in energy, as shown in the subfigure.

based on a Nz-layer slab. In large Nz limit, αOBC
xx,2D and α

Slope
xx,2D

will converge to the same value by their definition, and we
denote that as α∞

xx,2D, i.e.:

α∞
xx,2D = lim

Nz→∞
αOBC

xx,2D(Nz ) = lim
Nz→∞

α
Slope
xx,2D(Nz ). (44)

In this section, we use a tight-binding model to verify that
α∞

xx,2D converges to αGME
xx,3D if the Fermi level is away from band

touchings, which are inevitable in a time-reversal symmetric
system.

Consider the following tight-binding Hamiltonian [2]:

H0 = −t
∑
〈i j〉

(c†i c j + c†j ci )

− δt
∑
b∈B

(c†b1cb2 + c†b2cb1) + ε
∑
s∈S

c†s cs. (45)

Each unit cell contains 16 sites dispersed on four separated
sheets along êz direction, as shown in Fig. 3(a). The subscripts
i and j label sites of a nearest-neighbor bond with the nearest-
neighbor hopping t . The nonzero on-site potential ε and thick
bonds are added to make the model chiral and break the
inversion symmetry. The thick bonds are labeled by B, the
sites at two ends of a bond b ∈ B are labeled by b1 and b2,

and the set of solid-circle sites S. There is a screw axis parallel
to êz and passing through the upper-left sites in Fig 3(a).
Here, the distance between one site and its nearest neighbor
is denoted as a.

In the quasi-2D formula Eq. (31), the position op-
erator used in open boundary calculation reads: ẑ =
{a, a, a, a, 2a, 2a, 2a, 2a, · · · , 4Nza, 4Nza, 4Nza, 4Nza}. One
can make this kind of unit cell periodic extensively in the
x-y plane, as in the blue layer shown in the left part of
Fig. 3(a), and stack Nz identical layers, which share the same
screw axis along the êz direction. The interlayer coupling
is just the nearest-neighbor hopping t . For the open (free)
boundary condition, the uppermost layer and lowest layer are
decoupled, from which we can get αOBC

xx,2D(Nz ) and α
Slope
xx,2D(Nz )

from Eq. [(31)]. The results of αOBC
xx,2D, α

Slope
xx,2D, and αGME

xx,3D are
presented in Figs. 3(c)–3(e) for different Fermi levels.

One thing that we would like to point out is that Eq. (29)
[thus Eq. (31)] does not apply if there is any degeneracy for
2D bands at certain k̃. On the other hand, at these k̃ there must
be a value for Eq. (28) from using velocity operator v̂z, which
may be different from the result if we directly use Eq. (31).
One can see that as the Fermi level is tuned to the band bottom
of lowest sub-band (away from the band touching points), the
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difference between the 2D results and 3D results is very small,
in Figs. 3(c)–3(d), 3(f).

VI. CONCLUSION

In conclusion, based on standard perturbation theory, we
derived a formula that evaluates the GME coefficient (i.e.,
optical rotation) for 2D thin chiral/twisted materials in the
low-frequency limit. The formula is associated with the ẑ
position operator but extended states in the x and y directions,
and can be easily applied in any 2D tight-binding model.
We further provided a Feynman diagrammatic interpretation
for our formula, which helps to give it a straightforward
physical meaning. Finally, we showed the convergence of the
2D formula in the thermodynamic limit to 3D bulk results.

The prediction of optical rotation based on this formula
will be useful in current and future experiments, such as for
determining the chiralities of materials with different handed-

ness and the size of the twist angle or, conversely, the rotation
angle produced for a given twist. Two possible extensions
are to combine the results with tight-binding parametrizations
produced by modern electronic-structure calculations and to
generalize the results to the case of band touchings at the
Fermi level and to Moiré systems without a unit cell.
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