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The effect of the modulation of a high-frequency ac magnetic field parallel to the dc one (longitudinal
pumping) by the lower-frequency ac field acting on quantum spin systems is considered for closed and open
systems. For most magnetically ordered spin systems, the modulation causes the oscillation of the threshold of
the parametric instability of spin waves as a function of the amplitude and the frequency of the modulation.
On the other hand, our results for quantum spin systems with fermionic eigenstates imply that the modulating
field causes the combined resonance and the modulation of the magnitude of time-dependent oscillations of the
magnetization and the absorbed by the system power of the ac field for the closed system and for the open system
in the dynamical and the steady-state regimes.
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I. INTRODUCTION

During recent years the interest in the dynamics of quan-
tum systems has grown considerably. Quantum many-body
systems out of equilibrium usually do not follow the general
principles of equilibrium systems. Standard ensembles of sta-
tistical mechanics use, as a rule, only few conserved values of
the dynamical system and basically describe the behavior after
relaxation. Instead, the time evolution of quantum-mechanical
expectation values depends on time through a large number
of parameters of the considered quantum many-body system.
Studies of nonequilibrium dynamics of quantum many-body
models are necessary for the fundamental understanding of
how statistical physics emerges under the unitary time evolu-
tion. Such studies can inform us about the rates of spreading
of correlations and entanglement in quantum many-body sys-
tems. Fundamental problems related to such time evolution
include (but are not limited to), quantum quenches, equili-
bration, thermalization [1], prethermalization [2] in closed
systems, generalized Gibbs ensemble [3], periodically driven
quantum systems, dynamical quantum phase transitions [4],
and the effect of damping on the quantum coherence in open
systems.

Periodic changes of some parameters of a quantum system
lead to a unitary time evolution, and the final (long time) state
strongly depends on the type of system. Probably, the prime
example of such a time evolution under the periodic driving
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is the use of the Floquet theorem [5] for many-body quantum
systems [6]. Notice that, for studies of quantum condensed-
matter many-body systems, powerful experimental techniques
have been developed recently, including the ultrafast THz
pulse technique [7], and experiments in pulsed fields [8].
On the other hand, studies of the time evolution of many-
body systems out of equilibrium are also very important in
the context of experiments on ultracold atoms, trapped ions,
or superconducting qubits in quantum computers [9]. Such
synthetic quantum many-body systems can serve as a very
good testing ground for the exploration of nonequilibrium
dynamics, because the coherence there is maintained for much
longer times than for usual condensed matter.

Unlike higher-dimensional models, their low-dimensional
quantum spin counterparts permit us to obtain exact (non-
perturbative) results [10]. The necessity of nonperturbative
studies in one-dimensional quantum systems is caused by
the enhanced quantum and thermal fluctuations there, due
to the features in the density of states [11]. It is known
that the one-dimensional quantum spin models can describe
not only real one-dimensional spin systems [12], but also
topological superconductors [13,14] and ultracold atoms in
one-dimensional optical traps [15]. Low-dimensional quan-
tum spin models often reveal properties of quantum spin
liquids. In the latter the magnetic order is suppressed down
to the lowest temperatures due to the frustration of spin-
spin interactions and/or enhanced quantum fluctuations in
low-dimensional systems [16]. In many quantum spin liquids
emergent magnetic excitations are fermions (as a rule they
carry fractionalized spin), instead of magnons (bosons, which
carry spin 1) for ordered magnetic systems. Notice that while
bosons have their classical counterparts, fermions, instead,
have a totally quantum nature.

Modulation of the periodic driving in quantum many-body
systems can provide additional very important information
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about the nature of the time evolution of such a system out
of equilibrium for both closed systems, where only dynamical
processes emerge, and in open systems, where the damping
is caused by the processes, which take the energy from the
considered system. In this paper we study the effect of the
modulation of a high-frequency ac magnetic field parallel to
the dc one (the so-called longitudinal pumping) by the lower-
frequency ac field, acting on quantum systems. We show
that the modulating field produces the combined resonance
at the frequency of the pumping and (several) frequencies
of the modulating field, together with the modulation of
characteristics of the considered systems as a function of the
magnitude and the frequency of the modulating field. For most
of magnetically ordered spin systems, the modulation of the
longitudinal pumping yields the oscillation of the threshold
of the parametric instability of spin waves as a function
of the amplitude and the frequency of the modulation. For
quantum spin systems with fermionic eigenstates, which carry
fractional spin (characteristic for the wide class of quantum
spin liquids), the modulating field causes the modulation of
the time-dependent oscillations of the magnetization and the
absorbtion by the system power of the ac field, unlike the
exponential growth of the number of spin waves for magneti-
cally ordered systems. Two main examples of the considered
quantum spin systems are spin-1/2 chains and the honeycomb
Kitaev spin model (in the ground state). We have shown
that the magnetic moment for the closed system oscillates
in time with the combined frequency of the pumping and
n frequencies of the modulation, and the smaller Rabi-like
frequency. Similar behavior persists in the dynamical regime
of the open system. On the other hand, in the steady-state
regime of the open system, the Rabi-like oscillations are
damped. Magnitudes of all those time-dependent oscillations
are modulated by the modulation ac field. The power of the
ac field, absorbed by the quantum system, also oscillates as a
function of the magnitude and the frequency of the modulating
field.

II. MODULATION OF THE LONGITUDINAL PUMPING
BY THE LOWER-FREQUENCY FIELD

Let us start the consideration of the problem with the
Hamiltonian of the quantum spin system,

H0 = −
∑

i j

(
JxSx

i Sx
j + JySy

i Sy
j + JzS

z
i Sz

j

) − gμBH
∑

j

Sz
j,

(1)

where Jx, Jy, and Jz are exchange integrals, and Sx
j , Sy

j , and Sz
j

are operators of x, y, z projectors of the quantum spins situated
at the sites j, g is the g factor, μB is the Bohr magneton,
and H is the external dc magnetic field. Formally we can use
any lattice and any values of i and j; however, in reality the
exchange interaction is often limited by the nearest-neighbor
coupling. Let us act on the considered spin system by the ac
magnetic field polarized linearly, with the polarization parallel
to the direction of the dc field (so-called longitudinal pump-
ing). Suppose also, that the high-frequency ac magnetic field
is modulated by the low-frequency field. The Hamiltonian of

the considered system becomes H = H0 + Ht , where

Ht = −gμBh(t )
∑

j

Sz
j

≡ −gμB[h cos (ωt ) + hm cos (�t )]
∑

j

Sz
j, (2)

where ω and h are the frequency and the magnitude of the
longitudinal pumping with h̄ω ∼ Jx,y,z, gμBH . In the standard
situation in experiments, the magnitude of the pumping is
much smaller than the frequency, gμBh � h̄ω. � and hm are
the frequency and the magnitude of the modulating rf mag-
netic field. For standard spin systems the resonance frequency
of the ac field is usually from several GHz to several THz,
i.e., it is in the radio frequency range, or in the infrared or
far-infrared range. The frequency of the modulating field in
experiments is much smaller than that of the longitudinal
pumping � � ω, i.e., it is the rf field. In our consideration
we do not use such a strong inequality for the value of the
modulation frequency, considering only � < ω.

A. Dynamics and kinetics of quantum closed and open systems

To describe the dynamics of our quantum system we can
find the solution of the nonstationary Schrödinger equation
for the wave function for the pure system (or the Liouville
equation for the density matrix for the mixed system), and
then average the considered operator with the obtained time-
dependent wave function or density matrix. The Liouville
equation for density matrix ρ has the form

ih̄ρ̇ = [H, ρ], (3)

where [.,.] denotes the commutator. In the pure state the
Schrödinger equation for the pure state wave function is used.
Such a behavior is characteristic for a closed system (for the
pure system).

As a rule, however, the spin system is not isolated. There
exist processes, which take the energy from the system, i.e.,
relaxation processes. The reason for the relaxation of the
density matrix is the interaction of the considered system with
some environment; such an interaction takes energy from the
system. In that case the considered system is the open one. For
the studied quantum spin system the lattice (i.e., the elastic
subsystem of the crystal) can serve as such an environment.
The dynamics of the density matrix of the open system for
general Markovian processes is described by the Lindblad
master equation [17] (here we write it in the diagonal form)

ih̄ρ̇ = [H, ρ] + i
N2−1∑

j=1

γ j

(
L jρL†

j + 1

2
{L†

jL j, ρ}
)

, (4)

where N is the dimension of the system, {., .} denotes the
anticommutator, and the orthonormal and traceless operators
L j are the Lindblad (jump) operators. For γ j = 0 the Lindblad
equation is, obviously, the Liouville equation. In the model of
random collisions [18], one can write the Lindblad operators
as L j = √

(ρ0) j j | j〉〈 j′|, and suppose that all γ j are equal,
which yields

ih̄ρ̇ = [H, ρ] + ih̄γ (ρ0 − ρ). (5)
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Such a form of the master equation was first suggested by
Karplus and Schwinger [19]. It was used to describe the
relaxation processes of quantum systems under the action of
the ac electromagnetic field. It describes the interaction of the
considered system with the bath, with the relaxation of the
density matrix to ρ0 in the steady state.

The approximation used implies equal relaxation times
for all eigenmodes of the system. It is equivalent to the
Bloch form of relaxation in the theory of the nuclear mag-
netic resonance [20]. Two relaxation times as in the Bloch
approach can be easily introduced in the above scheme by
using different relaxation rates for diagonal and nondiagonal
components of the density matrix. One can also generalize
the approach using, e.g., Torrey’s phenomenological theory
[21], which adds diffusion processes to the Bloch equations.
It is possible to show that the effect of the linear relaxation
in the Bloch form is similar to the effect of the relaxation in
the Landau-Lifshitz form for magnetic systems [22]. Here we
are interested mostly in the homogeneous response and can
neglect the spatial dependence of relaxation. The substitution
ρ ′ = ρ exp(γ t ) yields

ih̄ρ̇ ′ = [H, ρ ′] + ih̄γ ρ0 exp (γ t ). (6)

Naturally, it is possible to use other forms of the Lindblad
operators. However, the choice of those jump operators is not
very essential for the goal of the present study: the effect of
the modulation of the parametric pumping. Different forms of
those operators can, in principle, yield results different from
the obtained (see below) results. However, we believe that
the Bloch-Karplus-Schwinger-like form of the relaxation is
generic for spin systems under periodic time-dependent per-
turbations, and our results describe the generic situation with
the modulation of the parametric pumping in the considered
systems.

B. Effective Hamiltonian

Then let us transfer the explicit time dependence of the
Hamiltonian to the exchange-caused terms by the unitary
transformation ρ ′ = U1ρ1U

−1
1 with

U1 = exp

⎛
⎝i

gμB

h̄

∫
h(t )dt

∑
j

Sz
j

⎞
⎠,

ih̄ρ̇1 = [H1, ρ1] + ih̄γU −1
1 ρ0U1 exp (γ t ),

H1 = −
∑

i j

[(
Jx + Jy

2
S+

i S−
j

+ Jx − Jy

2
exp

[
i
2gμB

h̄

∫
h(t )dt

]
S+

i S+
j

+ H.c.

)
+ JzS

z
i Sz

j

]
− gμBH

∑
j

sz
j, (7)

where S±
j = Sx

j ± iSy
j . Such a situation is known as the para-

metric pumping (the parameters of the Hamiltonian depend
periodically on time).

Then we can use the standard series

exp [iz sin (ωt )] =
∞∑

n=−∞
Jn(z) exp (inωt ), (8)

where Jn(z) is the Bessel function. For gμBh � h̄ω we
can approximate J0(2gμBh/h̄ω) ≈ 1 and J1(2gμBh/h̄ω) ≈
(2gμBh/h̄ω). Then the time dependence can be approximated
as

exp

[
i
2gμB

h̄

∫
h(t )dt

]
≈

[
1 + i

2gμBh

h̄ω
sin (ωt )

]

×
∞∑

n=−∞
Jn(z) exp (in�t ), (9)

where z = 2gμBhm/h̄�. Now taking into account that
gμBh � h̄ω we keep in H1 only the terms which do not
depend on h and the linear in gμBh/h̄ω terms, see below.
Notice that all above procedures can be applied to the spin
system of any space dimension and of any value of the site
spin S. These results can be obviously generalized to spin-spin
interactions of any radius.

C. Quantum systems with bosonic excitations

Now our aim is to diagonalize the part of H1 which does
not depend on h. It is impossible in general to study the
modulated parametric pumping for the general quantum spin
system. The standard way to study its low-energy dynamics is
the spin-wave approximation. We can use, e.g., the Holstein-
Primakoff representation of spin operators via bosonic ones
[23]. The operators of spin projections can be approximately
presented as

Sz
j = S − b†jb j, S+

j ≈
√

2Sb j, S−
j ≈

√
2Sb†j, (10)

with b j and b†j being bosonic operators of destruction and
creation. After the Fourier and Bogolyubov transformations,
the Hamiltonian H1 (up to a constant term) takes the form

H1 ≈
∑

k

(
εkc†kck + gμBh

h̄ω

∞∑
n=−∞

Jn(z)

×[Bke[i(ω+n�)t]ckc−k + H.c.]

)
, (11)

where εk = {[gμBH + 2SJz − S(Jx + Jy) cos(k)]2 −
|BkJ0(z)|2}1/2 is the energy of a magnon, ck and c†k destroys
or creates the magnon, and Bk = −iS(Jx − Jy) sin k [here the
intersite distances are supposed to be unity, and we use the
shorthand notation f (k) = f (kx, ky, kz )]. The condition of the
resonance 2εk = h̄(ω + n�) is determined by the smallness
of the magnitude h, gμBh � h̄ω. We drop the terms like
{exp[−iω + n�)t]ckc−k + H.c.}, using so-called resonance
approximation [24]. It means that we consider exactly terms,
explicitly dependent on time, which produce the nonzero
contribution to the linear response. The remaining terms
with an explicit time dependence can be omitted due to the
smallness of the magnitude of the ac magnetic field h (their
contribution can be, in principle, calculated in the framework
of the perturbation theory).

174408-3



A. A. ZVYAGIN PHYSICAL REVIEW B 101, 174408 (2020)

The same result, i.e., Eq. (11), can be obtained within the
macroscopic approach for the magnetically ordered system
by using the spin-wave approximation [25]. Namely, suppose
that the considered spin system is magnetically ordered. For
the magnetically ordered system we can approximately re-
place the operators of spin projections in Eq. (25) by their
average values. It means that the quantum spins are replaced
by the classical vectors of the site magnetic moments (due
to the magnetic ordering), and the quantum Hamiltonian is
replaced by the classical density of energy. Then, dynamics
of the classical vectors of the magnetic moments (i.e., of
the order parameters of the magnetically ordered system) is
described by the Landau-Lifshitz equation of motion. There,
magnetic moments move in the effective field, which is the
variation of the density of the energy with respect to related
magnetic moments. This approach is equivalent to the use
of the mean-field approximation in quantum mechanics [26].
Suppose that, due to gμBH > SJx, SJy, SJz the site mag-
netic moments of the considered ordered magnetic system
are directed mostly along the z axis. Then we can consider
small deviations of magnetic moments (i.e., spin waves) and
linearize the obtained equations of motion for those small
deviations. The density of the energy, bilinear in such small
deviations, can be diagonalized by the Fourier transform and
the unitary transformation. Spin waves behave like bosons.
They are often considered to be equivalent to magnons in
magnetically ordered systems. For classical vectors of mag-
netic moments in magnetically ordered systems the number of
states of their projections is infinite, unlike the finite number
for a quantum spin. It is the reason why magnons in the
magnetically ordered systems behave as bosons. Finally, using
the resonance approximation, we get the density of the energy
of spin waves in the same form as Eq. (11).

Now we use the unitary transformation U2 = exp{[−i(ω +
n�)t/2]

∑
k c†kck}, with ρ1 = U2ρ2U

−1
2 , which yields

ih̄ρ̇2 = [H2, ρ2] + ih̄γU −1
2 U −1

1 ρ0U1U2 exp (γ t ),

H2 =
∑

k

[(
εk − h̄(ω + n�)

2

)
c†kck

+ gμBh

h̄ω

∑
n

Jn(z)(Bkckc−k + H.c.)

]
. (12)

There can be several values of n = 0,±1,±2, . . . for which
the value h̄(ω + n�)/2 is inside the band of magnons εk . H2

is the quadratic form of Bose operators. It follows from the
equations of motion for ck and c†−k that the increment (decre-

ment) of the time dependence of the ck and c†−k (and, hence,
of the average with the density matrix or with the ground-state
wave function at T = 0 of the number of magnons 〈c†kck〉)
depends on whether the value −{εk − [h̄(ω + n�)/2]}2 +
|gμBhBkJn(z)/h̄ω|2 is larger (smaller) than (h̄γ )2. In reso-
nance we can neglect the term {εk − [h̄(ω + n�)/2]}2. Then
for any γ there exists the threshold value of the magnitude of
the ac field hc: For the magnitude of the ac field larger than that
threshold value, h > hc, the number of magnons in the system
grows with time exponentially (and the linear relaxation cannot
limit such a growth). Such a parametric instability [25] is
observed in many magnetic systems [27]. The threshold value

of the field is [28]

hc = hc0
εk

εk|z→0
[maxn|Jn(z)|]−1, (13)

where hc0 is the threshold value in the absence of the modulat-
ing field, at hm = 0. We see that the threshold value oscillates
as a function of hm/�. The maximum values of hc as a
function of the modulation frequency and/or magnitude are
determined by |Jn(z)| = |Jn+1(z)|, and the condition for min-
imum values is Jn(z) = 0. Such oscillations of the threshold
of the parametric instability under the modulated longitudinal
pumping were observed in magnetically ordered systems [29].

D. Quantum spin systems with fermionic eigenstates

From now on we limit our consideration by the low-
dimensional quantum spin systems with site spins S = 1/2,
for which we can use the fermionic representation of spin
operators, unlike the bosonic one in the Holstein-Primakoff
or quasiclassical approximation used above. For example,
for the spin-1/2 chain with nearest-neighbor interactions af-
ter the well-known Jordan-Wigner transformation [30], and
the Fourier transformation, the time-independent part of the
Hamiltonian H1 can be written as

H1ind = −N (Jz + 2gμBH )

4

+
∑

k

[(
gμBH − Jx + Jy

2
cos (k) + Jz

)
d†

k dk

+ i
Jx − Jy

4
sin (k)J0(z)(d−kdk − H.c.)

]

− Jz

N

∑
k1+k2=k3+k4

cos (k1 − k4)d†
k1

d†
k2

dk3 dk4 , (14)

where the fermion operators dk (d†
k ) destroy (create) the

spinless fermion with the quasimomentum k, and N is the
number of sites in the chain (the interspace distance is taken
to be unity). Remember that we consider the magnitude of
the pumping field to be much smaller than the exchange con-
stants, gμBh � Jx, Jy, Jz. Hence we can take into account the
interaction between fermions in the dynamical mean-field-like
approximation; see, e.g., Ref. [31]. Notice that for Jz = 0 the
fermion form of the Hamiltonian (14) is exact. It corresponds
to the XY spin chain or, in our particular case, to the transverse
field Ising chain.

In the main approximation with respect to the small param-
eter gμBh/h̄ω we will not take into account the pumping field
h in the self-consistency equations. Our answers, see below,
imply that the results (the change of the magnetic moment
due to the ac field and the absorbed power of the ac field)
even in the main (zero) approximation in the self-consistency
equations, are already proportional to that small parameter, or
the square of it. Hence, the next order in gμB/h̄ω in the self-
consistency equations will produce only small in gμBh/h̄ω

corrections to the obtained results.
Let us introduce the parameters

s = 〈
Sz

j

〉
, r = 2

〈
Sx

j S
x
j+1 + Sy

j S
y
j+1

〉
,

q = 2
〈
Sx

j S
x
j+1 − Sy

j S
y
j+1

〉
, (15)
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which satisfy the self-consistency equations

s = 1

2N

∑
k

Ak

εk
tanh

(
εk

2kBT

)
,

r = − 1

N

∑
k

Ak cos (k)

εk
tanh

(
εk

2kBT

)
,

q = − i

N

∑
k

Bk sin (k)J0(z)

εk
tanh

(
εk

2kBT

)
, (16)

where

Ak = gμBH + 2sJz −
(

Jx + Jy

2
− rJz

)
cos (k),

Bk = −i

(
Jx − Jy

2
+ qJz

)
sin (k),

εk =
√

A2
k + |Bk|2J2

0 (z). (17)

In Eq. (17), T is the temperature, kB is the Boltzmann
constant, and brackets denote the Gibbs averaging with the
Hamiltonian H1ind ≈ ∑

k εka†
k ak + C, where the fermion op-

erators ak (a†
k ) are destruction (creation) operators, in which

H1ind is diagonal in the dynamical mean-field-like approxima-
tion, and C is the operator-independent value. Then the Hamil-
tonian H1 can be written in the resonance approximation as

H1 ≈
∑

k

[
εka†

k ak + i
gμBh

h̄ω

∞∑
n=−∞

Jn(z)

× (Bka−kak exp [i(ω + n�)t] − H.c.)

]
. (18)

Here Ak , Bk , and εk are determined from Eqs. (17) via the
solution of self-consistency equations (16). In the general case
of nonzero Jx, Jy, Jz we can solve Eqs. (16) analytically, e.g.,
for high temperatures kBT � max(εk ). The solution is

s = gμBH

4kBT − 2Jz
,

r ≈ Jx + Jy

4kBT + Jz
, q ≈ (Jx − Jy)J0(z)

4kBT − Jz
,

Ak ≈ gμBH

(
1 + Jz

2kBT

)

− (Jx + Jy) cos (k)

2

(
1 − Jz

kBT

)
,

Bk ≈ −i
(Jx − Jy) sin (k)J0(z)

2

(
1 + Jz

4kBT

)
, (19)

where Jz � kBT . However, more interesting is to study
the low-temperature regime, in which correlations of the
one-dimensional spin system can manifest themselves.
Unfortunately, even in the ground state the solution of
Eqs. (16) is complicated (it can be presented as the com-
bination of elliptic integrals). However, the simple solution,
as we will show below, reveals some main features of exact
results for spin-1/2 chains, at least in the ground state. We can
consider the case H = 0 (with s = 0), in which the following

relation holds
(Jx − Jy)J0(z)

2
+ qJz = ±Jx + Jy

2
∓ rJz. (20)

These relations mean that (r + q)Jz = Jx[1 − J0(z)]/2 +
Jy[1 + J0(z)]/2 for the plus sign, and (r − q)Jz = Jx[1 +
J0(z)]/2 + Jy[1 − J0(z)]/2 for the minus sign. The self-
consistency equations are simplified to

r = ±q = 1

2
tanh

(
Jx + Jy ∓ 2rJz

4kBT

)
, s = 0, (21)

with q = r for the plus sign, and q = −r for the minus sign.
The transcendental equations (21) can be solved graphically,
and the solution exists for any temperature range. It is easy
to show that the solution leads to the onset of a critical tem-
perature, below which the magnetic ordering can take place.
It is, of course, the artifact of the mean-field nature of the
dynamical mean-field-like consideration. The critical nonzero
temperature must not exist for a one-dimensional spin system
with the nearest-neighbor interactions with gapless excitations
[11]. Here, on the other hand, excitations are gapped. We
know that the Ising chain and the XY chain reveal ordering
in the ground state [32]. For T = 0 the simple solution of the
self-consistency equation (21) corresponds to r = q = 1/2,
or r = −q = 1/2, related to Jz = Jx[1 − J0(z)]/2 + Jy[1 +
J0(z)]/2, or Jz = Jx[1 + J0(z)]/2 + Jy[1 − J0(z)]/2. The so-
lution manifests the spin ordering for x (y), components of
spins at T = 0, expected [32] for Jy �= Jx. Such an ordering
is similar to those of the Ising or XY chains [32]. Notice,
however, that mean field features of the used dynamical
approximation imply mean-field values of correlation expo-
nents. The renormalization of those exponents can be taken
into account, e.g., in the bosonization approach [33]. The main
features of the above shown results will be kept, though.

We can also consider the S = 1/2 honeycomb Kitaev
model [34] for the case H = 0. We rewrite the time-
independent part of the Hamiltonian H1 exactly by using
the transformation to fermion operators of creation and de-
struction d† and d (for our purpose it is convenient to use
the Dirac representation for fermion operators). It is the
two-dimensional generalization [35,36] of the Jordan-Wigner
transformation [30]. To represent spin operators with spinless
fermion operators we can use [35]

S+
j,l = d†

j,l exp

⎡
⎣∑

i,k< j

d†
i,kdi,k +

∑
i<l

d†
i,l di,l

⎤
⎦,

Sz
j,l = d†

j,l d j,l − 1/2,

S−
j,l = (S+

j,l )
†. (22)

Here the indexes j, l denote the column and row of the brick
lattice equivalent to the honeycomb lattice [35]. For each pair
of Dirac fermion operators d and d† two Majorana fermion
operators a and f can be defined as a j,l = i(d†

j,l − d†
j,l ) and

f j,l = d†
j,l + d j,l when j + l is even, and aj,l = d†

j,l + d j,l

and f j,l = i(d†
j,l − d j,l ) when j + l is odd. It turns out that

the values α j = i f j,l f j,l+1 defined on each vertical bond are
conserved [34,35]. The Hamiltonian H0 can be written (using
more convenient enumeration of bonds instead of columns
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and rows) as the Hamiltonian of the Fermi gas on the brick
lattice with the site-dependent chemical potential

H0 =
∑

j

[Jx(d†
j + d j )(d

†
j+x̂ − d j+x̂ ) + Jy

× (d†
j + d j )(d

†
j+ŷ − d j+ŷ) + 2Jzα j (2d†

j d j − 1)],

(23)

where j stands for the position of the z bond, ŷ connects two
z bonds, and crosses a y bond (similar definition holds for
x̂), α j = ±1 (α j commutes with d j′ and d†

j′ for any j and
j′). Notice that similar result (with different notations) was
obtained in the original paper [34], i.e., the result does not
depend on the numeration, as must be. This transformation is
exact, and it is valid for any Jx, Jy, Jz. In the sectors with fixed
α j the diagonal form of the Kitaev model can be obtained
after the Fourier and Bogolyubov transformations. Performing
similar calculations for the time-independent part of H1, we
see that it has the BCS-like form with the energy

εk =
√

A2
k + |Bk|2J2

0 (z), (24)

where Ak = ±Jz + Jx cos kx + Jy cos ky and Bk = i[Jx sin kx +
Jy sin ky]. The spectrum is gapless for |Jx − Jy| � Jz � Jx +
Jy, and gapped otherwise.

We see that, formally (up to the definition of the wave
vector; from now on we denote k → k for simplicity), the
Hamiltonian H0 is written in the same form for the quantum
spin chain and for the Kitaev honeycomb spin model (notice
the Z2 field α j present in the latter). Then the Hamiltonian H1

can be written in terms of normal modes of the Hamiltonian
H1ind, cf. [37],

H1 ≈
∑

k

(
εka†

k ak + i
gμBh

h̄ω

∑
n

Jn(z)

×{Bka−kak exp [i(ω + n�)t] − H.c.}
)

. (25)

Notice that the pumping term related to the operator
∑

j Sz
j

can change homogeneously the sign of α j of the original
Hamiltonian [37].

Here we have also used the resonance approximation, i.e.,
we have considered exactly only terms explicitly dependent
on time and which produce the nonzero contribution to the
linear response (25). When doing so we fixed the value of n by
the resonance condition 2εk = h̄(ω + n�). We have dropped
the terms like a−kak exp[−i(ω + n�)t], because their con-
tribution is smaller than the kept ones. We see that the
modulation of the longitudinal pumping yields the combined
resonance, in each elementary process of which two energies
of the elementary excitation of the quantum spin model are
equal to the energy of the photon of the pumping plus the
energy of n photons of the modulating rf field.

Now we can use the unitary transformation ρ1 =
U2ρ2U

−1
2 with U2 = exp{−i[(ω + n�)t/2]

∑
k a†

k ak}, which

yields

ih̄ρ̇2 = [H2, ρ2] + ih̄γU −1
2 U −1

1 ρ0U1U2 exp (γ t ),

H2 =
∑

k

([
εk − h̄(ω + n�)

2

]
a†

k ak

+ i
∑

n

gμBhBkJn(z)

h̄ω
[a−kak − H.c.]

)
. (26)

The unitary transformation U2 is used to remove the ex-
plicit time dependence from the Hamiltonian: It is equivalent
to the transfer to the rotating frame and standard for the
consideration of the time-dependent periodic permutations
in spin systems, analogous to the Floquet case. There can
be several values of n = 0,±1,±2, . . . for which the value
h̄(ω + n�)/2 is inside the band of εk . The choice of n
is, therefore, determined by that resonance condition in the
framework of the resonance approximation used.

Finally, we can diagonalize the Hamiltonian H2 by using
the Bogolyubov transformation, and then use the unitary
transformation ρ2 = U3ρ0U

−1
3 , where U3 = exp(− i

h̄H2t ).
The solution for the time dependence of the density matrix
can be presented in the form

ρ = V (t )ρ0V
−1(t ) exp (−γ t ), t � γ −1,

ρ = γV (t )
∫ 0

−∞
dt ′V −1(t ′)ρ0V (t ′)eγ (t ′−t )V −1(t ),

t � γ −1, (27)

where V (x) = U1(x)U2(x)U3(x). The dynamics of the closed
system for γ = 0, or the open system in the dynamical regime
t � γ −1 is determined by the first line of Eq. (27), while
the second line defines the steady-state regime (for the open
system) at t � γ −1.

III. RESULTS FOR SPIN SYSTEMS WITH
FERMIONIC EIGENSTATES

Let us calculate the magnetization per site of the system
caused by the modulated ac magnetic field. For the Kitaev
model we limit ourselves to the ground state, which is fixed
by the sector with all α j = −1 [34,36,38]. It is related to the
positive sign in front of Jz in Ak . The homogeneous change of
the sign of α j due to the pumping can produce the negative
sign of Jz (homogeneously). In the following we consider
the response of the system to the pumping for the fixed sign
of Jz. Obviously, in the zero-temperature limit the density
matrix ρ0 is reduced to the ground-state wave function. To
calculate the ac field-induced magnetization of the Kitaev
system, we use the following relation [37]: For spin operators
in the neighboring sites j and j′ of the lattice it is easy
to show that (1/2)(Sz

j + Sz
j′ ) = 2(

√
2 + 2α j + 2(

√
2 − 2α j −√

2 + 2α j )d
†
j d j . The proof of the relation uses the definition

of spin operators and properties of the fermionic Majorana
and Dirac operators.

Assume that the density matrix relaxes to the state
ρ0, which is the Gibbs distribution with H1ind [19].
Let us define 	Mz ≡ Mz − Mz

0, where Mz
0 = (1/2N )∑

k tanh(εk/2kBT )(Ak/εk ) is the value of the magnetization
per site for h = hm = 0, N is the number of sites,
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	Mz = ∑
n M (n)

d exp(−γ t ) in the dynamical regime, and
	Mz = ∑

n M (n)
s in the steady-state regime, where the sum

is over all possible n, for which the resonance condition
h̄(ω + n�) = 2εk holds.

We get

M (n)
d = g2μ2

BhJn(z)J2
0 (z)

Nh̄ω

∑
k

tanh

(
εk

2kBT

)

× |Bk|2
εk h̄2�2

k

{
[1 − cos (2�kt )]

[
−2gμBhAkJn(z)

h̄ω

+
(

εk − h̄(ω + n�)

2

)
cos [(ω + n�)t]

]

+ h̄�k sin (2�kt ) sin [(ω + n�)t]

}
. (28)

We use the notation h̄�k = {[εk − h̄(ω + n�)/2]2 +
(2gμBh/h̄ω)2|Bk|2J2

n (z)}1/2. In the steady-state regime
we obtain

M (n)
s = 4g2μ2

BhJn(z)J2
0 (z)

Nh̄ω

∑
k

tanh

(
εk

2kBT

)

× |Bk|2
εk h̄2

[
�2

k + (γ /2)2
]{[−2gμBhJ0(z)Ak

h̄ω

+
(

εk − h̄(ω + n�)

2

)
cos [(ω + n�)t]

]

+ h̄γ

2
sin [(ω + n�)t]

}
. (29)

In both Eqs. (28) and (29) for the Kitaev honeycomb model
we limit ourselves with the ground state, thus we replace

tanh

(
εk

2kBT

)
→ εk

|εk| . (30)

In the thermodynamic limit N → ∞ we replace N−1 ∑
k →

π−1
∫ π

0 dk in the case of the spin chain, and N−1 ∑
k →

(2π2)−1
∫ π

0 dkx
∫ π

−π
dky for the two-dimensional Kitaev

model. For the closed case we can use the expression for the
dynamical regime, with γ = 0.

We see that, in the dynamical regime t � γ −1, the mag-
netization of the quantum spin system oscillates with the fre-
quency ω + n�, modulated by the Rabi-like low frequencies
�k . The latter in resonance are determined by the magnitude
of the pumping, i.e., they are much smaller than ω + n�.
Generically, closed interacting periodically driven quantum
systems heat up to an infinite temperature state at long times
(both for bosonic and fermionic systems). In our approach the
density matrix of the system without external time-dependent
perturbation was used as the initial condition (it is standard
for similar problems). Namely, that procedure prevents the
system from the heating to the infinite temperature state. On
the other hand, in the steady-state regime t � γ −1, relax-
ation “smears out” the Rabi-like oscillations, with only high
frequency (with ω + n�) remaining. The magnitude of the
oscillations for n �= 0 is smaller than the main resonance (in
the absence of modulation) for n = 0.

The power of the ac magnetic field, absorbed by the quan-
tum spin system is Q = 〈Ḣ〉av , where we use the definition
of the time average Aav (t ) = limτ→∞ τ−1

∫ τ

0 dtA(t ). In the
resonance approximation we obtain that, in the dynamical
regime and for the closed system Q → 0, and in the steady-
state regime for the open system, we get Q = ∑

n Q(n) with

Q(n) = 2γ (gμBh)2J2
n (z)J2

0 (z)(ω + n�)

Nω

×
∑

k

tanh

(
εk

2kBT

) |Bk|2
εk h̄2

[
�2

k + (γ /2)2
] . (31)

On the other hand, if we use the value ρ0, determined by
the Hamiltonian H0, then one has to replace the following in
Eqs. (28)–(31):

tanh

(
εk

2kBT

)
→ tanh

(
ε0

k

2kBT

)[
1 − 2|Bk|2Ak

[
J0(z) − J2

0 (z)
]

ε2
kε

0
k

sin2 (εkt )

]
,

(32)

where ε0
k = (A2

k + |Bk|2)1/2. Obviously for hm = 0, i.e., for z = 0 we obtain εk = ε0
k , hence 	Mz = M (0)

d in the closed regime,
and 	Mz = M (0)

s with Q = Q(0) in the steady-state open regime, as it must be.

Several important particular cases

We present here several results for two most important cases of quantum spin systems with fermionic eigenstates, namely,
the one-dimensional Ising chain and the Kitaev honeycomb model. For the latter we limit ourselves with the ground state, with
the fixed values of α j , see above. Below we consider the situation, in which ρ0 is determined by the Hamiltonian H0.

For the Ising chain (i.e., Jy = Jz = 0) we obtain for the case 2gμBH � Jx (i.e., the Ising chain is in the disordered state) in
the steady-state regime (i.e., for the open case) for the steady-state value of the magnetic moment, caused by the pumping

	
(
M (n)

s

)
av

≈ − 2gμBV 2J2
0 (z)

(�+ − �−)2 − 4V 2

⎡
⎣ [(�2

+ + γ 2) + (�2
− + γ 2)]1/2

[2
√

(�2+ + γ 2)(�2− + γ 2) + 2�+�− + 2γ 2 + 4V 2]1/2
− 1

⎤
⎦, (33)
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where V = 2gμBhJn(z)Jx/h̄ω and h̄�± = h̄(ω + n�) − 2gμBH ± Jx. The expression for the absorbed power of the pumping in
this case can be written as

Q(n) ≈ γ h̄2(ω + n�)2V 2J2
0 (z)

4gμBH[(�+ − �−)2 − 4V 2]

⎡
⎣ [(�2

+ + γ 2) + (�2
− + γ 2)]1/2

[2
√

(�2+ + γ 2)(�2− + γ 2) + 2�+�− + 2γ 2 + 4V 2]1/2
− 1

⎤
⎦. (34)

For the opposite case 2gμBH � Jx, i.e., the Ising chain is
in the ordered state, the results for the steady-state magnetic
moment, caused by the pumping, and the absorbed power
of the pumping can be written in the form of Eqs. (33)
and (34), respectively, with the replacements h̄�± → h̄(ω +
n�) − Jx ± 2gμBH , and 4gμBH → 2Jx in the expression for
the absorbed power. Notice that, at high temperatures kBT �
maxk (ε0

k ), the expression for the absorbed power can be ob-
tained for both limiting cases 2gμBH � Jx and 2gμBH � Jx

by the replacements 4gμBH or 2Jx by 8kBT , respectively.
Figure 1 shows the behavior of the addition to the ground

state magnetic moment of the Ising chain with Jx = 1 at H =
0 as a function of gμBhM and time for the case of the closed
system. For that situation, naturally only one value of n is
related to the resonance situation. We see that the oscillations
in time with the frequency ω + n� are modulated by the small
Rabi frequency. Also, the magnitude of the time-dependent
oscillations is modulated by the amplitude of the modulating
field hm.

On the other hand, Fig. 2 shows the behavior of the steady-
state addition to the ground-state magnetic moment of the
same Ising chain as a function of gμBhm and time for the
case of the open system. It is clearly seen that the modulation
of oscillations with small Rabi-like frequency is smeared
out. However the modulations, related to the interference of
oscillations with frequencies ω and 2� are more pronounced,
comparing with the closed system. Notice also smaller scale

FIG. 1. The addition to the ground-state magnetic moment per
site of the Ising chain in the case of the closed system with Jx = 1,
caused by the ac magnetic field. The used parameters are gμBh =
0.01, h̄ω = 0.8, h̄� = 0.1, n = 2.

of oscillations of the magnetic moment, comparing with the
open case. It turns out that, unlike the closed-system situation,
the growth of the modulating amplitude hm does not cause
such a strong decrease of the magnitude of the oscillations.
Figures 3 and 4 present results of calculation of the absorbed
power of the modulated ac magnetic field for the Kitaev
honeycomb spin model at T = 0 in the gapped regime (Jx =
1, Jy = 0.5, Jz = 2) and in the gapless regime (Jx = 1, Jy =
0.1, Jz = 0.5), respectively. For the Kitaev model we used the
summation over all k belonging to the subset of the Brillouin
zone such that −k is out of that subset [36]. We used the
small value of the modulation frequency h̄� = 0.01, so that
the resonance conditions are satisfied for several values of n.
In both figures one can clearly see oscillations of the absorbed
power as a function of hm. The values of additional peaks with
respect to the case hm = 0, cf. [37] (corresponding to larger
values of n) decay with n. Figure 3 manifests absorption for
the frequency larger than the gap value, while in Fig. 4 the
absorption exists for small values of ω, including zero.

We see that, in the general situation the modulation of the
pumping field results in the oscillating of the magnetic mo-
ment in time with the combined frequencies ω + n� instead
of ω for hm = 0. Also we see that the amplitude of the modu-
lation of oscillations in time, as well as the renormalization of
the steady-state value, about which oscillations in time persist,
	Mz

av oscillate with the value 2gμBhm/h̄�, decaying with n,
as determined by the Bessel functions J0(z) and Jn(z) [for
all possible values of n, defined by the resonance condition
h̄(ω + n�) = 2εk]. For 	Mz both in the open and closed

FIG. 2. The steady-state addition to the ground-state magnetic
moment per site of the Ising chain for the case of the open system.
The same parameters as in Fig. 1 are used with h̄γ = 0.01.
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FIG. 3. Absorbed power of the modulated magnetic pumping
field by the Kitaev honeycomb spin model at T = 0 in the gapped
regime (Jx = 1, Jy = 0.5, Jz = 2). The frequency of the modulated
field is h̄� = 0.01.

regimes we have for the case of the density matrix determined
by the Hamiltonian H1ind,

	Mz
av

	Mz
av (hm = 0)

≈ J2
0 (z)

∑
n

Jn(z), (35)

and for the absorbed power in the open regime,

Q

Q(hm = 0)
≈ J2

0 (z)
∑

n

J2
n (z), (36)

where the summations are over all possible values of n,
determined by the resonance condition. Notice that J−n(z) =
−Jn(z), so the contributions of the combined resonances
with equal positive and negative values of n are less pro-
nounced for the magnetization, but not for the absorbed
power, proportional to the square of the Bessel function.
In addition, in resonance the magnitude of oscillations
with the frequencies ω + n� oscillates with gμBhm/h̄� in

FIG. 4. The same as in Fig. 3 but for the Kitaev model in the
gapless regime (Jx = 1, Jy = 0.1, Jz = 0.5).

FIG. 5. The relative values of the averaged-in-time addi-
tion to the magnetic moment caused by the parallel pumping
	Mz

av/	Mz
av (hm = 0) (the dashed black curve) and the absorbed

power Q/Q(hm = 0) (the solid red curve) of the quantum spin
system with fermionic eigenstates as a function of 2gμBhm/h̄� for
n = 0, 1, 2.

both closed and open regimes. Also, in the closed regime
the frequencies of the Rabi-like oscillations in resonance
are (2gμBh/h̄ω)|Bk||Jn(z)| � ω + n�, and the magnitudes
of those time-dependent oscillations also oscillate with
gμBhm/h̄�. For example, if only n = 0, 1, 2 satisfy the res-
onance condition, the behavior of 	Mz

av/	Mz
av (hm = 0) and

Q/Q(hm = 0) is shown in Fig. 5.
Notice that if 	Mz

av or Q are equal to zero for some
values of gμBhm/h̄�, those values are determined by the
small nonresonance terms ≈gμBh/h̄ω, which can be taken
into account within the perturbation theory.

We stress that the modulation of the ac pumping field for
quantum spin systems with fermionic eigenstates (which carry
fractional spin 1/2, unlike magnons or spin waves, which
carry spin 1) yields modulation of the magnitudes and fre-
quencies (in the closed regime) of infinitely many oscillations
in time of all possible modes, interference of which produces
a complicated picture, with possible decay of oscillations even
for the closed system and in the dynamical regime for the open
system, see below. Such a behavior is, probably, characteristic
for quantum spin liquids with fermionic eigenstates. On the
other hand, for magnetically ordered spin systems (or for
disordered ones) with bosonic eigenstates, the modulation of
the pumping field results in the oscillation of the threshold of
the parametric instability of spin waves or magnons, above
which the number of magnons or spin waves grows exponen-
tially with time (for the noninteracting magnons such a growth
cannot be limited by the linear relaxation).
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IV. SUMMARY

In summary, we have shown that the modulation of a
high-frequency ac magnetic field parallel to the dc one by
the lower-frequency ac field, acting on quantum systems,
produces combined resonances with the resonance condition
h̄(ω + n�) = εk , where εk is the energy of fermion eigen-
states, and the modulation of their characteristics as a func-
tion of the ratio of the magnitude and the frequency of the
modulating field. When obtaining the results, the condition
gμBh � h̄ω was used. For most of magnetically ordered spin
systems, the modulation of the longitudinal pumping yields
the oscillation of the threshold of the parametric instability of
spin waves as a function of the amplitude and the frequency
of the modulation. For quantum spin systems with fermionic
eigenstates the modulating field causes only modulation of
the time-dependent oscillations of the magnetization and the
absorbtion of the system power of the ac field, unlike the expo-
nential growth of the number of spin waves for magnetically
ordered systems. Two main examples of such quantum spin
systems are spin-1/2 chains (notice that interaction between
fermions in our study was taken into account at the mean-
field level), and honeycomb Kitaev spin model (in the ground
state). We have shown that the magnetic moment for the

closed system oscillates in time with the combined frequency
of the pumping and n frequencies of the modulation, and
the smaller Rabi-like frequency. Similar behavior is shown
to persist for the dynamical regime of the open system. On
the other hand, in the steady-state regime of the open system,
the Rabi-like oscillations are damped. We predict that the
magnitudes of all mentioned time-dependent oscillations have
to be modulated by the modulation rf field. We have also
shown that the power of the ac field, absorbed by the quantum
spin system, also oscillates as a function of the magnitude
and the frequency of the modulating field. The oscillation of
the magnetic moment and absorbed power for the combined
resonances can help to clarify the characteristics of quantum
spin systems. Fermionic eigenstates, which carry fractional
spin, are characteristic for many quantum spin liquids, and
we suppose that the effect of modulation of the longitudinal
pumping in quantum spin liquids with fermionic excitations
will be similar to the one considered in our study.
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