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Validity of the Harris criterion for two-dimensional quantum spin systems with quenched disorder
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Inspired by the recent results regarding whether the Harris criterion is valid for quantum spin systems, we
have simulated a two-dimensional spin-1/2 Heisenberg model on the square lattice with a specific kind of
quenched disorder using the quantum Monte Carlo calculations. In particular, the considered quenched disorder
has a tunable parameter 0 � p � 1 which can be considered as a measure of randomness. Interestingly, when
the magnitude of p increases from 0 to 0.95, at the associated quantum phase transitions the numerical value
of the correlation length exponent ν grows from a number compatible with the O(3) result 0.7112(5) to a
number slightly greater than 1. In other words, by varying p, ν can reach an outcome between 0.7112(5) and 1
(or greater). Furthermore, among the studied values of p, all the associated ν violate the Harris criterion except
the ones corresponding to p � 0.9. Considering the form of the employed disorder here, the above described sce-
nario should remain true for other randomness if it is based on an idea similar to the one used in this study. This
is indeed the case according to our preliminary results stemming from investigating another disorder distribution.
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I. INTRODUCTION

Studying the effects resulting from disorder has always
been one of the major topics in both theoretical and experi-
mental physics [1–15]. This is because the presence of dis-
order such as impurities may lead to extraordinary properties
and phases of materials. In particular, the appearance of these
exotic characteristics are due to the mutual influence between
the quantum fluctuations and disorder. Understanding the rel-
evance of disorder at quantum phase transitions also continues
to attract a lot of attention. This is especially true considering
the recent development regarding under what conditions the
celebrated Harris criterion will be valid [16–27]. In other
words, it is not clear at all what specific features of a disorder
distribution lead to a new universality class at the associated
quantum phase transition.

For a phase transition, there are three possible scenarios
when disorder is present. Here we will focus on those related
to the Harris criterion. The Harris criterion was originally
derived for classical systems and its statement is as follows.
For a D-dimensional classical system with disorder, the corre-
lation length exponent ν must satisfy the inequality ν � 2/D.
If the ν of a clean model does not fulfill this inequality, then
when disorder is introduced (into the clean model), a new
universality class should be obtained so that the described
inequality is realized, assuming the phase transition remains
well defined. Later the criterion was generalized to more
generic situations including certain quantum systems. We
would like to emphasize the fact that for a d-dimensional
quantum system with quenched disorder, since the disorder
is employed in the spatial dimension, the dimensionality
D appearing in the inequality is d , not d + 1, despite that
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the quantum system can be mapped to a d + 1-dimensional
classical system.

While the validity of Harris criterion is beyond doubt
for classical models, the case of quantum spin systems is
much more complicated. Particularly, for the dimerization
circumstances, at the moment only the outcome related to
the two-dimensional (2D) spin-1/2 Heisenberg model on a
bilayer square lattice with site (dimer) dilution satisfies the
Harris criterion [19–23]. Other kinds of quenched disorder,
including the configurational disorder considered in Ref. [10]
as well as the one introduced in Ref. [15], the resulting
calculations always indicate the Harris criterion is violated.
Furthermore, the obtained values of the correlation length
exponent ν remain the same as that of their clean counterparts.
To summarize, whether the celebrated Harris criterion is valid
for quantum spin systems is more involved than anticipated.

Inspired by such an indecisive answer regarding the ap-
plicability of Harris criterion for quantum spin systems, in
this study we have carried out large scale quantum Monte
Carlo (QMC) calculations for a two-dimensional spin-1/2
Heisenberg model on the square lattice, starting from the clean
herringbone model and then introducing a specific kind of
quenched disorder into the clean system. In particular, the
employed randomness distribution has a tunable parameter p
(which can take values from 0 to 1 and can be considered as a
measure of randomness) so that one can investigate the impact
of this parameter on the effectiveness of Harris criterion for
the studied model.

Remarkably, our QMC data indicate that as the magnitude
of p increases gradually from 0 to 0.95, the numerical value
of ν grows from its O(3) value 0.7112(5) [28–35] to a result
slightly greater than 1. In other words, by varying p, the
corresponding ν for the disordered systems studied in this
investigation can reach outcomes that lie between 0.7112(5)
and 1. Moreover, the ν resulting from the considered values
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FIG. 1. The 2D herringbone (left) and plaquette (right) spin-1/2
Heisenberg models on the square lattice investigated here. The anti-
ferromagnetic coupling strengths for the thick and thin bonds are J ′

and J , respectively. Quenched disorder is introduced into the systems
by considering certain kinds of distribution in antiferromagnetic
strengths for the thick bonds; see the main text for the details.

of p all violate the Harris criterion except the ones related to
p � 0.9. This result implies that there exists a pc so that the ν,
which corresponds to p greater (smaller) than pc, will fulfill
(violate) the Harris criterion.

Our preliminary study of another disorder distribution
following the similar idea as that introduced above leads to
the same conclusion, particularly ν can take a value between
0.7112(5) and 1. The outcomes demonstrated here indicate
that a better understanding of the Harris criterion from a
theoretical point of view is on request.

The rest of the paper is organized as follows. After the In-
troduction, the model, the employed disorder distribution, and
the observables are described. Then the numerical outcomes
are demonstrated. In particular, convincing evidence which
supports the exotic scenario introduced above is provided.
Finally, a section is devoted to conclude the works presented
here. The Appendix contains more data as well as the analysis
procedures employed in this study.

II. MICROSCOPIC MODELS AND OBSERVABLES

The left panel of Fig. 1 demonstrates the herringbone
model on the square lattice. In addition, the corresponding
Hamiltonian is given by

H =
∑
〈i j〉

J �Si · �S j +
∑
〈i′ j′〉

J ′ �Si′ · �S j′ , (1)

where in Eq. (1) J (which is set to 1) and J ′ are the anti-
ferromagnetic couplings (bonds) connecting nearest-neighbor
spins 〈i j〉 and 〈i′ j′〉 located at sites of the considered underly-
ing square lattice, respectively, and �Si is the spin-1/2 operator
at site i. The quenched disorder introduced into the system is
based on the one employed in Ref. [15]. Specifically, for every
bold bond in the left panel of Fig. 1, its antiferromagnetic
strength J ′ takes the value of 1 + (g−1)(1 + p) or 1 + (g−1)
(1 − p) with equal probability. Here g > 1 and 0 � p � 1. As
pointed out in Ref. [15], the average and difference of J ′ for
these two types of bold bonds are given by g and 2p(g − 1),
respectively. Moreover, p can be considered as a measure of
disorder of the studied system. In our study, several values of
p are chosen and for each of them, the corresponding phase
transition is induced by tuning g.

To carry out the proposed investigation, particularly to
examine the validity of Harris criterion for the considered
disordered model, the observables first Binder ratio Q1 and
second Binder ratio Q2 [36], which are defined by

Q1 =
〈∣∣mz

s

∣∣〉2
〈(

mz
s

)2〉 (2)

and

Q2 =
〈(

mz
s

)2〉2
〈(

mz
s

)4〉 , (3)

respectively, are measured in our calculations. The staggered
magnetization density mz

s on a square lattice with linear box
size L appearing above is given by mz

s = 1
L2

∑
i(−1)i1+i2 Sz

i
with Sz

i being the third component of the spin-1/2 operator
�Si at site i.

Q1 and Q2 are chosen as the relevant physical quantities
for our investigation because their expected finite-size scaling
formulas [31],

Qi = (1 + biL
−ω ) fi(tL1/ν ), i ∈ {1, 2},

t = g − gc

gc
, (4)

do not contain the dynamic critical exponent z. Such a strat-
egy, namely using Q1 and Q2 in our study, dramatically
eliminates the computational complexity.

III. NUMERICAL RESULTS

For each of the studied p, to investigate the g dependence
of the correlation length exponent ν associated with it, we
have carried out a large scale QMC simulation using the
stochastic series expansion (SSE) algorithm with very effi-
cient operator-loop update [37,38]. Furthermore, to obtain
ground-state properties in an efficient manner, the β-doubling
scheme described in Ref. [3] is used in our simulations.
Several hundred disordered configurations, each with its own
random seed, are generated for every considered set of param-
eters. It is also important to notice that potentially there are
two kinds of uncertainties for the used observables, namely
the one from Monte Carlo (MC) simulations and the one
from disorder averaging. We have carried out many trial
simulations and have reached the conclusion that with the
MC sweeps employed in this study, the resulting errors of the
considered quantities are indeed dominated by the disordered
sample-to-sample fluctuation.

The method used for the determination of ν (and gc as well)
is the Bayesian analysis which is a rigorous mathematical
approach. It is demonstrated in Refs. [39,40] that the critical
exponents calculated using the Bayesian analysis agree quan-
titatively with those determined by the conventional fits using
the idea of finite-size scaling. Here we follow the methods
outlined in Ref. [41]. Moreover, We have carried out many
trial computations and have arrived at the same conclusion as
those in Refs. [39,40], namely the results obtained from the
Bayesian analysis and the conventional finite-size scaling fits
are consistent with each other quantitatively. Such compar-
isons between the results obtained by two different methods
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FIG. 2. Q2 (top panel) of p = 0.3 and the corresponding data
collapse (bottom panel) of the considered herringbone model studied
here. Dashed lines are added to guide the eye. The gc, ν, a0, and
ω shown in the bottom figure, which are used to produce the
demonstrated results, are obtained from one of the many associated
analyses

for p = 0.5 and p = 0.9 are listed in Tables II and III of the
Appendix.

The model considered for the Bayesian analysis is the ex-
pected finite-size scaling equations for Q1 and Q2 at a second-
order phase transition. Specifically, the explicit expression of
the model for the Bayesian analysis is given by

(1 + a0L−ω )(a1 + a2tL1/ν + a3(tL1/ν )2 + · · · ). (5)

Here ai for i = 0, 1, 2, . . . are some constants and t = g−gc

gc
.

Moreover, this Ansatz with up to third, fourth, and fifth order
in tL1/ν are employed in the calculations of estimating the
desired physical quantities ν and gc with the data of Q1 and
Q2. Some constraints, such as the range of g considered and
the values of ω obtained, are taken in account in the procedure
of analysis as well. Q2 of p = 0.3 as well as Q1 of p = 0.9 and
the corresponding data collapse are shown in Figs. 2 and 3.

Table I summarizes the final quoted values of ν and gc

for all the considered p. This table is based on the results of

FIG. 3. Q1 (top) of p = 0.9 and the corresponding data collapse
(bottom) for the considered disordered herringbone model studied
here. Dashed lines are added to guide the eye. The gc, ν, a0, and
ω shown in the bottom figure, which are used to produce the
demonstrated result, are obtained from one of the many associated
analyses

each individual p obtained from the Bayesian analysis. The
bootstrap resampling method has been applied to calculate the
outcomes presented in Table I as well. In particular, the

TABLE I. Results of ν and gc obtained from the Bayesian
analysis and bootstrap resampling procedures.

p ν gc

0.0 0.702(9) 2.4981(2)
0.1 0.702(6) 2.5056(2)
0.2 0.724(6) 2.5308(4)
0.3 0.745(10) 2.5732(7)
0.4 0.776(11) 2.6383(11)
0.5 0.804(12) 2.7397(13)
0.6 0.841(13) 2.8939(20)
0.7 0.890(15) 3.1466(38)
0.8 0.940(19) 3.605(15)
0.9 1.02(3) 4.767(40)
0.95 1.12(4) 6.853(77)
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FIG. 4. ν (top) and gc (bottom) as functions of p. The horizontal
dashed line in the top panel represents the threshold for which the
Harris criterion is fulfilled for the considered models.

means and errors shown in the table are related to the means
and standard deviations of the distributions resulting from
the weighted bootstrap resampling procedures. The details of
the Bayesian analysis, as well as the resampling procedures
are outlined in the Appendix.

ν and gc as functions of p are presented in Fig. 4 for
visualizing the trend of these two obtained quantities with
respect to p. In particular, the horizontal dashed line shown
in the top panel of Fig. 4 represents the threshold for which
the Harris criterion is fulfilled for the considered models.

For the clean model, the averaged gc and ν are given by
2.4981(2) and 0.702(9), respectively. The calculated gc is in
nice agreement with the known results in the literature [42].
The determined ν for p = 0 is slightly smaller in magnitude
than the expected O(3) value 0.7112(5). The largest L used
in the simulations conducted here is L = 48. As a result, the
small deviation between 0.702(9) found here and 0.7112(5)
can be easily accounted for by the cubic term introduced
in Ref. [42] which will lead to anomalous large finite-size
correction.

Table I also implies that gc grows with p. The most
remarkable outcome shown in Table I is that, as the magnitude

of p rises, the corresponding ν calculated increases in size
gradually from that of p = 0 as well. Particularly for p � 0.3
and p � 0.8, the obtained ν’s from Bayesian analysis are
all statistically larger than 0.7112(5), but smaller than 1.0.
In addition, for p = 0.9 and p = 0.95, the associated ν’s
are around 1.0 with which the Harris criterion ν � 2/d is
satisfied. Here we would like to point out that in Table I,
the quoted errors can be interpreted as generalized standard
deviations. The standard deviations directly calculated from
the associated distributions are the errors of means and have
much smaller magnitude than those shown in Table I. As a
result, it is beyond doubt that the ν of p = 0.9 and p = 0.95
fulfill the Harris criterion.

To summarize, the outcomes of our investigation, as shown
in Table I, indicate that for each employed p such that 0.3 �
p � 0.8, the resulting associated correlation length exponent
neither stays as the O(3) value ν = 0.7112(5) nor satisfies
the Harris criterion ν � 2/d = 1. Moreover, for p � 0.9, the
Harris criterion is fulfilled. The results concluded here implies
it is highly plausible that there exists a pc so that the ν,
which corresponds to p greater (smaller) than pc, will fulfill
(violate) the Harris criterion. From the considered quantum
spin system, we arrive at a scenario regarding the connection
between ν and quenched disorder with a tunable randomness
strength.

It should be pointed out that the ν determined from Q1

differs from that related to Q2 slightly. We attribute this to
corrections not taken into account in the analysis. Despite this,
it is without doubt that both Q1 and Q2 will lead to the scenario
described above.

Based on the explicit expression of the disorder taken into
account here, one expects that the obtained scenario should
still be valid for other randomness distributions using a similar
idea as the one investigated above. Motivated by this intuitive
thought, apart from simulating the disordered system intro-
duced previously, we have considered a quenched disorder for
the plaquette model (the right-hand panel of Fig. 1). Specif-
ically, each of the bold bonds takes the antiferromagnetic
strength of (1 + K )Jc and (1 − K )Jc with probability P and
1 − P, respectively. Here 0 < P < 1 and we have used K =
0.5. In addition, the Jc appearing above is given by 1.8230
which is the critical point of the clean plaquette model. With
such a setup, P is the tunable variable for this model.

The resulting Q1 and Q2 of this model with this type of
quenched disorder are shown in Fig. 5. Moreover, by applying
typical fits with the conventional finite-size scaling equations
to Q1 and Q2, we arrive at ν = 0.79(2) [and the critical point
Pc = 0.5520(16)]. This number ν = 0.79(2) is without doubt
statistically different from both 0.7112(5) and 1. By changing
K continuously, it is anticipated that the corresponding ν will
vary in a gradual manner. This is of high similarity to the
scenario associated with the herringbone model found earlier
in this study.

IV. DISCUSSION AND CONCLUSIONS

According to Ref. [43], based on the procedure of scaling
employed in this study, the Harris criterion should be νFS �
2/d , where the subscript FS stands for finite size. In particular,
Ref. [43] also demonstrates that the bulk correlation length
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FIG. 5. Q1 (top) and Q2 (bottom) as functions of P for the
considered disordered plaquette model studied here. Dashed lines are
added to guide the eye.

ν can be obtained by a modified procedure and may violate
the Harris criterion. Considering the facts that most of the
outcomes obtained in this study violate νFS � 2/d and the
variation among all the gc(p) determined here is not small,
the observed scenario cannot be easily accounted for by the
arguments in Ref. [43]. Results of some studies such as
Refs. [10,44] imply that the values of ν (or νFS) calculated
do not depend on the disorder strength. The scenario found in
this study clearly is different from this and other established
ones in the literature [10,44,45].

We would like to re-emphasize the following points. First
of all, the νFS obtained here for p � 0.3 all violate the Harris
criterion νFS � 2/d except for p = 0.9 and 0.95. Second,
for any given p, the phase transition is due to dimerization,
namely two nearest-neighboring spins (on the lattice) form a
singlet. Hence, theoretically it is anticipated that for two close-
by values of p, say p = 0.3 and p = 0.4, the calculated results
of ν should be close to each other or even consistent within
statistical error. As can be seen from Table I, this is not the
case. In particular, the difference of the gc between p = 0.0
and p = 0.3 is only around 3%, yet a new critical exponent
ν emerges for p = 0.3. It is interesting as well to notice that

while in [10] the gc of the configurational random plaquette
model varies from that of its clean counterpart by 4%, both
models have the same O(3) exponent ν = 0.7112(5). There-
fore, the closeness of the critical point of a disordered system
to that of its clean analog, which may be interpreted as the
statement “remains well defined” in the Harris criterion, is not
crucial for the appearance of a new universality class.

Interestingly, based on the outcomes found here, it is likely
that for the considered model with the designed quenched
disorder, the largest value of ν one can obtain should be
around 1.1–1.2. This number agrees with the results calculated
by simulating quantum spin models on the bilayer lattice
with site and bond dilution [19,20]. It is plausible that for a
disordered spin-1/2 system, whenever the associated ν fulfills
the Harris criterion, its value is in the range of 1–1.2. Finally,
it will be intriguing as well to examine whether there is a
connection between the scenario found here and the long
crossover observed in Ref. [46].

In conclusion, in order to obtain a theoretical explanation
for the exotic scenario observed in this study, a detailed
exploration of the relevant theory other than what has been
accomplished for the Harris criterion is required.
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APPENDIX: DETAILS OF THE BAYESIAN ANALYSIS

In this Appendix, we brief describe how the outcomes
shown in the main text are obtained from the relevant data.
The method used in obtaining the corresponding results of ν

and gc from the data of Q1 and Q2 is the Bayesian analysis.
The models considered for the Bayesian analysis are the
expected finite-size scaling Ansätze for Q1 and Q2:

y = (1 + a0L−ω )[a1 + a2(tL1/ν ) + a3(tL1/ν )2

+ a4(tL1/ν )3 + · · · ], (A1)

where ai for i = 0, 1, 2, 3, . . . are some constants. Moreover,
in Bayesian frameworks the posterior probability distribution
is used to evaluate the statistical uncertainties of parameters
in Eq. (A1). For a given data set (x, y) and a model, let θ =
(a0, a1, a2, a3, . . .), then the posterior in Bayesian statistics is
the conditional probability function of the model’s parameters
and has the following expression:

P(θ |x) = L(x|θ )π (θ )

M(x)
, (A2)

where x is assumed to be sampled from the distribution
of X(θ ), L(x|θ ) is the likelihood, π (θ ) is the prior, and
M(x) is the evidence. In this study X(θ ) is assumed to be
independent Gaussian distributions, whose mean and standard
deviation are yi(θ ) and σi. Therefore, the likelihood can be
written as

L(x|θ ) =
∏

i

1√
2πσi

exp
[

−
(yi(θ ) − xi

σi

)2]
. (A3)
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TABLE II. Results of gc and ν for p = 0.5. The outcomes
shown in the second (third) and fourth (fifth) columns are calculated
using the conventional fits and Bayesian analysis, respectively. The
numbers associated with Lm and tL1/ν appearing in the first column
are the minimum box size and the order of polynomials in tL1/ν

(including subleading correction) considered in the analysis.

(Qi, Lm, tL1/ν ) gc ν gc ν

(Q1, 8, 3) 2.7381(11) 0.813(5) 2.7378(11) 0.812(4)
(Q1, 8, 4) 2.7385(11) 0.813(5) 2.7384(11) 0.812(4)
(Q1, 8, 5) 2.7395(13) 0.806(5) 2.7392(12) 0.805(4)
(Q1, 12, 3) 2.7379(12) 0.807(5) 2.7377(11) 0.807(5)
(Q1, 12, 4) 2.7383(13) 0.807(5) 2.7383(12) 0.805(5)
(Q1, 12, 5) 2.7392(14) 0.803(5) 2.7388(14) 0.803(5)
(Q1, 16, 3) 2.7382(12) 0.805(6) 2.7378(10) 0.805(5)
(Q1, 16, 4) 2.7384(12) 0.804(6) 2.7381(10) 0.804(5)
(Q1, 16, 5) 2.7390(13) 0.804(6) 2.7385(11) 0.804(5)
(Q2, 8, 3) 2.7393(12) 0.796(5) 2.7391(11) 0.794(4)
(Q2, 8, 4) 2.7398(12) 0.795(5) 2.7396(11) 0.795(4)
(Q2, 8, 5) 2.7402(13) 0.791(5) 2.7404(12) 0.792(4)
(Q2, 12, 3) 2.7392(13) 0.792(5) 2.7388(12) 0.793(5)
(Q2, 12, 4) 2.7398(13) 0.792(5) 2.7397(13) 0.793(5)
(Q2, 12, 5) 2.7405(15) 0.790(5) 2.7405(14) 0.790(5)
(Q2, 16, 3) 2.7395(12) 0.792(6) 2.7390(10) 0.792(5)
(Q2, 16, 4) 2.7399(12) 0.792(6) 2.7394(11) 0.792(5)
(Q2, 16, 5) 2.7404(15) 0.793(5) 2.7398(12) 0.793(5)

The Bayesian frameworks requires certain prior to begin
with and here we consider flat prior in a certain range,
namely −10 < a0 < 10, 0 < ω < 5, 0.5 < ν < 1.5, and zero
otherwise, where a0 is the coefficient in front of the term L−ω.

TABLE III. Results of gc and ν for p = 0.9. The outcomes
shown in the second (third) and fourth (fifth) columns are calculated
using the conventional fits and Bayesian analysis, respectively. The
numbers associated with Lm and tL1/ν appearing in the first column
are the minimum box size and the order of polynomials in tL1/ν

(including subleading correction) considered in the analysis.

(Qi, Lm, tL1/ν ) gc ν gc ν

(Q1, 8, 3) 4.815(9) 1.080(9) 4.826(18) 1.084(10)
(Q1, 8, 4) 4.816(10) 1.084(9) 4.827(14) 1.089(10)
(Q1, 8, 5) 4.815(10) 1.081(9) 4.831(14) 1.086(10)
(Q1, 12, 3) 4.807(12) 1.051(10) 4.812(13) 1.052(10)
(Q1, 12, 4) 4.810(12) 1.053(9) 4.816(15) 1.051(10)
(Q1, 12, 5) 4.810(12) 1.052(9) 4.814(15) 1.052(10)
(Q1, 16, 3) 4.798(13) 1.037(10) 4.807(15) 1.040(10)
(Q1, 16, 4) 4.803(14) 1.035(10) 4.821(16) 1.038(10)
(Q1, 16, 5) 4.801(14) 1.034(10) 4.820(16) 1.039(10)
(Q2, 8, 3) 4.817(13) 1.044(8) 4.817(13) 1.045(8)
(Q2, 8, 4) 4.812(14) 1.045(8) 4.812(13) 1.044(8)
(Q2, 8, 5) 4.813(14) 1.045(8) 4.814(13) 1.044(8)
(Q2, 12, 3) 4.828(15) 1.030(9) 4.833(17) 1.031(9)
(Q2, 12, 4) 4.825(17) 1.029(9) 4.829(17) 1.030(9)
(Q2, 12, 5) 4.826(17) 1.029(9) 4.831(18) 1.030(9)
(Q2, 16, 3) 4.820(14) 1.021(9) 4.839(18) 1.023(10)
(Q2, 16, 4) 4.821(14) 1.017(9) 4.842(18) 1.022(10)
(Q2, 16, 5) 4.818(15) 1.017(9) 4.838(19) 1.023(10)

FIG. 6. Distributions of ν for p = 0.9 (top) and p = 0.95 (bot-
tom ) obtained from the weighted bootstrap resampling procedure.

By taking into account the fact that b and ω are the subleading
corrections to scaling, it is legitimate to put such constraints
on b and ω. To make sure that the prior chosen would not
affect the results of gc and ν, we have shifted the range of
the prior to be narrower (−5 < a0 < 5 and 0 < ω < 3), and
have seen no significant changes of gc and ν from the statistics
perspective. Finally, since M(x) in Eq. (A2) is not a function
of θ , it can be ignored.

It should be pointed out that it is not easy to construct
the distribution of the posterior due to lots of dimension in
the parameter space. Conventionally, Markov chain Monte
Carlo (MCMC), which is a sampling technique in continuous
parameter space, can solve this problem efficiently. Details of
the full Bayesian analysis procedure and the relevant codes
used here can be found in Refs. [41,47].

The outcomes of ν and gc determined from the Bayesian
analysis are the maximum a posterior estimations (which is
defined as the result of having the least value of χ2/DOF
in this study due to the flat prior used here). In addition,
the associated uncertainties are the standard deviations of the
posterior distributions. For each p and a fixed Lm (Lm is the
smallest box size used in the analysis), several examinations
with various range of g are performed using the Bayesian
method. When estimating the means and uncertainties of gc
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FIG. 7. Distribution of ν for p = 0.95. The result is calculated
using the standard bootstrap resampling method.

FIG. 8. Q2 (top) of p = 0.5 and the corresponding data collapse
(bottom) for the considered disordered herringbone model studied
here. Dashed lines are added to guide the eye. The gc, ν, a0, and
ω shown in the bottom figure, which are used to produce the
demonstrated results, are obtained from one of the many associated
analyses.

FIG. 9. Q1 (top, p = 0.95) and Q2 (bottom, p = 0.7) as functions
of g for the considered disordered herringbone model studied here.
Dashed lines are added to guide the eye.

and ν for a given p, one has to pay attention to the fact that
results determined using various conditions such as Lm and
the order of the finite-size scaling ansatz are correlated.

Tables II and III list the comparison between the results
obtained by the conventional fits and the Bayesian analysis
for p = 0.5 and p = 0.9. In addition, most available data are
considered when carrying out the calculations. The consis-
tency shown in these two tables suggests that the the outcomes
determined by the Bayesian analysis are reliable.

Empirically, one can check the convergence of the obtained
results by eliminating data of small L gradually. Indeed,
for large p the ν we calculate has a trend of becoming
smaller as one deletes more and more small L data in the
analysis. While such a strategy is adopted in most numerical
studies, it does not seem to be based on any rigorous argu-
ments. Particularly, with such a procedure, results are more
and more correlated since fewer and fewer data are consid-
ered in the analysis. In addition, disregarding the outcomes
which have good χ2/degree of freedom and are obtained
by considering data containing those of small L may lead
to biased conclusions. To avoid biased results arising from
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using only data of larger L as well as other factors that may
lead to systematic uncertainties, we employ the following
procedures when analyzing the data. Specifically, to calculate
the means and errors of the desired quantities appropriately,
for each considered p the weighted bootstrap resampling
method is applied to all the results associated with it. In other
words, for every randomly generated data set {(gc,i, σgc,i )}
obtained using the bootstrap procedure (σgc, j is the stan-
dard deviation associated with gc, j), the resulting mean is
given by

∑
i

1
σ 2

gc,i

gc,i

∑
i

1
σ 2

gc,i

. (A4)

Such an idea of using weighted mean is based on the fact that
data with large standard deviations are less accurately deter-
mined than those with small standard deviations. Hence when
carrying out every bootstrap resampling step, the data that
come with large standard deviations should take less weight in
calculating the associated mean. A similar procedure applies
to the determination of ν as well.

After carrying out the ten (or twenty) thousand bootstrap
resampling steps described above, the final outcomes of gc

and ν for each of the employed p, which are presented in
Table 1 of the main text, are the mean and the standard

deviation times
√

Np of the obtained distribution [48]. Here
Np is the number of data points (associated with p) used in
the resampling procedure. The standard deviations calculated
directly from the distributions are the errors for means, and
have much smaller magnitude than those calculated using the
one defined above.

Figure 6 shows the resulting distributions of ν for 0.9
and 0.95 (top and bottom panels, respectively) obtained from
the weighted bootstrap resampling procedure. Based on the
results demonstrated in that figure, there are very high proba-
bilities that the ν associated with p = 0.9 and 0.95 satisfy the
Harris criterion.

We have also performed the standard bootstrap resampling
procedure and have arrived at the same conclusions as those
associated with the weighted one; see Fig. 7.

Finally, it should be pointed out that for large p, es-
pecially for p = 0.9 and 0.95, the calculated gc and ν

do slightly depend on several factors such as the range
of g and L considered in the analysis. For instance, the
magnitude of ν is diminished a bit when data of small
L are excluded in the analysis. In spite of this, it is be-
yond doubt that the ν’s corresponding to p � 0.9 fulfill the
Harris criterion.

For convenience, some data of p = 0.5, p = 0.7, and p =
0.95 are presented in Figs. 8 and 9.
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