
PHYSICAL REVIEW B 101, 174401 (2020)

Extension of the standard Heisenberg Hamiltonian to multispin exchange interactions
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An extension of the Heisenberg Hamiltonian is discussed that allows us to go beyond the standard bilinear
spin Hamiltonian taking into account various contributions due to multispin interactions having both chiral and
nonchiral character. The parameters of the extended Hamiltonian are calculated from first principles within the
framework of the multiple-scattering Green’s function formalism giving access to an explicit representation
of these parameters in real space. The discussions are focused on the chiral interactions, i.e., biquadratic and
three-spin Dzyaloshinskii-Moriya-like vector interactions �Di ji j (BDMI) and �Di jk j (TDMI), respectively, as well
as the three-spin chiral interaction Ji jk . Although all parameters are driven by spin-orbit coupling (SOC), some
differences in their properties are demonstrated by calculations for real materials. In particular it is shown that the
three-spin chiral interactions Ji jk may be topology as well as SOC induced, while the TDMI is associated only
with the SOC. As the magnitude of the chiral interactions can be quite sizable, they can lead to a stabilization of
a noncollinear magnetic texture in some materials that is absent when these interactions are neglected.
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I. INTRODUCTION

The Heisenberg spin Hamiltonian is nowadays a rather
popular tool providing a bridge between the electronic struc-
ture of magnetic materials and their spin-dynamical and finite-
temperature magnetic properties. However, restriction of the
classical model to only isotropic bilinear exchange parameters
is not always able to describe successfully the experimental
findings. In this case an extension of Heisenberg model is
used to take into account specific features of the system
under consideration. This concerns in particular the impact
of spin-orbit coupling (SOC) leading to magnetocrystalline
anisotropy and to the spin-space anisotropy of the exchange
coupling described by an exchange tensor Ji j instead of
scalar parameters. The latter can be reduced to the isotropic
exchange parameters Ji j and chiral Dzyaloshinskii-Moriya
(DM) vector �Di j representing the antisymmetric part of the
exchange tensor Ji j .

Still, this form of the Hamiltonian implies for example
neglecting the dependence of the exchange parameters on the
relative orientation of the magnetic moments in the system.
To go beyond this bilinear approximation for the interatomic
exchange interactions, one can take into account higher-order
contributions to the Heisenberg Hamiltonian, i.e., terms of
biquadratic, fourth-order three-spin, four-spin interactions,
etc. [1–9].

The origin of higher-order interactions was discussed al-
ready many years ago by various authors [10–12], focusing on
those being isotropic in spin space. Obviously, the dominating
mechanism responsible for these terms can be different for
different materials. Kittel [10] discussing the transition from
the antiferromagnetic (AFM) to the ferromagnetic (FM) state
in metamagnetic materials (including metals) suggested an
important role of the biquadratic exchange interaction due
to exchange magnetostriction caused by a dependence of the

exchange interaction on the volume during an AFM/FM tran-
sition. MacDonald et al. [12] discussed the Hubbard model
Hamiltonian, which can be transformed in the limit of large
on-site Coulomb interaction U and assuming half filling of the
electron energy bands implying electron localization around
atomic sites to a form equivalent to the Heisenberg spin
Hamiltonian. An expansion of the Hamiltonian in powers of
the ratio t/U gives access to high-order terms of the spin
Hamiltonian with bilinear and four-spin exchange interactions
∼t2/U and ∼t4/U 3, respectively [12–14]. In the absence
of a magnetic field breaking time-reversal symmetry of the
system the three-spin term should vanish as it is antisymmetric
with respect to time-reversal transformation. Tanaka and Uryu
[11] have derived the four-spin interactions based on the
Heitler-London theory by expanding the ground state energy
in terms of the overlap integrals between the orbitals of elec-
trons located at different lattice sites. Detailed calculations of
bilinear and biquadratic exchange interactions within a real-
space tight-binding framework have been performed for FM
Fe by Spisak and Hafner [15] who demonstrate a significant
contribution of the biquadratic exchange interactions to the
Curie temperature.

During the last decade the interest in skyrmions grew
rapidly because their specific magnetic texture stabilized by
chiral spin interactions makes them attractive for various spin-
tronic applications (see, e.g., [16–18]). Most investigations in
the field were restricted to the bilinear Dzyaloshinskii-Moriya
interaction (DMI) and focused on materials for which a strong
DMI can be expected [18–20].

The DMI is caused by spin-orbit coupling (SOC) and
is nonzero in noncentrosymmetric systems only. Competing
with isotropic FM or AFM interactions it leads to a deviation
from the collinear magnetic state by creating a helimagnetic
structure in the absence of an external magnetic field, charac-
terized by a nonzero vector spin chirality �χi j = ŝi × ŝ j .
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Recently, first-principles investigations have been per-
formed going beyond the bilinear approximation, taking into
account higher-order chiral interactions [21,22] in the ex-
tended Heisenberg model. The calculation of the chiral bi-
quadratic DMI-like interaction (BDMI) for deposited dimers
[21] has demonstrated that its magnitude can be comparable
to that of the conventional bilinear Dzyaloshinskii-Moriya
interaction, implying the non-negligible role of biquadratic
contributions. In addition, the first-principles investigations
on the magnetic properties of Fe monatomic chains on a
Re(0001) substrate have shown [22] that chiral four-spin
interactions can be responsible for the opposite chirality of
the spin spirals when compared to that determined by DMI.

Another type of chiral interaction, the three-spin chiral
interaction (TCI) term, was discussed as a possible source
for the formation of chiral magnetic phases [23,24]. This
three-spin interaction term in the Heisenberg Hamiltonian,∑

i, j,k Ji jk ŝi · (ŝ j × ŝk ), gives a nonzero contribution only for
a noncoplanar magnetic structure, i.e., in the case of nonzero
scalar chirality, defined as a counterclockwise triple scalar
product χi jk = ŝk · (ŝi × ŝ j ). This can lead to the transition to
a chiral spin liquid state, for which the time-reversal symmetry
is broken spontaneously by the appearance of long-range
order of scalar chirality even in the absence of long-range
magnetic order or an external magnetic field [25–28]. Describ-
ing a transition in a frustrated quantum spin system from a
spin liquid to a chiral spin liquid state within the framework
of the Hubbard model, it was shown that expanding the
Hubbard Hamiltonian in powers of t/U leads to a third-
order term which is proportional to the flux �i jk enclosed
by the three-spin loop [29,30], giving rise to the three-spin
interaction [29,30] entering the spin Hamiltonian represented
by Ji jk = (24/U 2)|ti j ||t jk||tki| sin(�i jk/�0) (with �0 = h̄c/e)
[24,26,28,31]. Note that the phase �i jk/�0 is generated by
the external magnetic field breaking time-reversal symmetry
in the system. In the presence of an inhomogeneous magnetic
texture in the system, the finite geometric quantum phase
of the electron wave function can appear due to the s-d
interaction, which can be described in terms of the emergent
effective electromagnetic potential leading to an effective
magnetic field Beff ∼ χi jk [32,33] giving rise to the three-
spin energy contribution ∼χ2

i jk , which can be associated
with the topology-induced three-spin chiral-chiral exchange
interaction [34]. These interactions have been introduced and
evaluated on the basis of first-principles electronic structure
calculations for the B20-type compounds MnGe and FeGe.
The authors report also on another type of three-spin in-
teraction having topological origin, the so-called spin-chiral
interactions, which are however nonzero only if spin-orbit
interaction is taken into account.

Discussing skyrmion-hosting materials, the formation of
skyrmion magnetic texture is usually ascribed to the DMI,
implying the lack of the inversion symmetry in these sys-
tems. However, recently it was suggested that the magnetic
frustration could stabilize skyrmions even in materials with
centrosymmetric lattices. This idea was proposed and dis-
cussed by various authors within theoretical investigations
[14,35,36]. In these works complex superstructures or the
skyrmion-lattice state are characterized by multiple-ordering
wave vectors (multiple Q), allowing one to characterize a

noncoplanar magnetic structure via a double-Q description.
This approach applied to metallic systems allowed one to
demonstrate that the noncoplanar vortex state can be stabilized
having lower energy than the helimagnetic structure expected
due to RKKY interactions [37]. Solenov et al. [37] showed
that such a noncoplanar state can be stabilized even in the ab-
sence of SOC, i.e., without the DMI. The authors attribute this
feature of a double-Q state to the chirality-induced emergent
magnetic field associated with a persistent electric current in
such systems (see, e.g., [38–40]), which is proportional to the
scalar chirality in the system. In terms of the extended spin
Hamiltonian, the above mentioned property can be attributed
to the three-spin interaction term also proportional to the
scalar chirality in the system.

In this contribution we present a coherent computational
scheme that allows us to calculate the parameters of the
extended Heisenberg Hamiltonian to any order. The impact
of higher-order terms going beyond the bilinear level and
their anisotropy is discussed on the basis of corresponding
numerical results for various systems.

II. ELECTRONIC STRUCTURE

Following our previous work [41], we consider the change
of the grand canonical potential caused by the formation
of a modulated spin structure seen as a perturbation. This
quantity is represented in terms of the Green’s function G0(E )
for the FM reference state and its modification due to the
perturbation. Neglecting all temperature effects, and denoting
the corresponding change in the Green’s function �G(E ), one
can write for the change in energy

�E ≈ − 1

π
Im Tr

∫ EF

dE (E − EF ) �G(E ), (1)

with the expansion

�G(E ) = G0�V G0 + G0�V G0�V G0

+ G0�V G0�V G0�V G0

+ G0�V G0�V G0�V G0�V G0 + · · · , (2)

for �G(E ), where �V is the perturbation operator associated
with the modulated spin structure. For the sake of readability
we dropped the energy argument for the unperturbed Green’s
function G0(E ).

Using the FM state as a reference state, the perturbation
connected with the tilting of rigid magnetic moments on
lattice sites i has the real-space representation [41,42]

�V (�r) =
∑

i

β(�σ · ŝi − σz )Bxc(�r), (3)

where �Bxc(�r) is the spin-dependent part of the exchange-
correlation potential, �σ is the vector of 4 × 4 Pauli matrices,
and β is one of the standard Dirac matrices [43,44]. It is as-
sumed here that �Bxc(�r) on site i is aligned along the orientation
of the spin moment ŝi, i.e., �Bxc(�r) = Bxc(�r)ŝi.

A very convenient and flexible way to represent the elec-
tronic Green’s function G0(E ) in Eqs. (1) and (2) is provided
by the so-called KKR (Korringa-Kohn-Rostoker) or multiple-
scattering formalism. Adopting this approach a real-space
expression for G0(�r, �r ′, E ) can be written in a fully relativistic
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way as [44]

G0(�r, �r ′, E ) =
∑
�1�2

Zn
�1

(�r, E )τ nn′
�1�2

(E )Zn′×
�2

(�r ′, E )

−
∑
�1

[
Zn

�1
(�r, E )Jn×

�1
(�r ′, E )
(r′ − r)

+ Jn
�1

(�r, E )Zn×
�1

(�r ′, E )
(r − r′)
]
δnn′ . (4)

Here Zn
�1

(�r, E ) and Jn
�1

(�r, E ) are the regular and irregular
solutions of the single-site Dirac equation and τ nn′

is the
so-called scattering path operator matrix [44]. Substituting the
expression in Eq. (4) into Eq. (2) and using Eq. (1) one obtains
in a straightforward and natural way a real-space expression
for the energy change �E , which will be used below to derive
expressions for the exchange-coupling parameters entering
the extended Heisenberg Hamiltonian.

The dependence of the energy on the magnetic configura-
tion calculated from first principles via Eqs. (1) to (3) will be
mapped onto the extended Heisenberg Hamiltonian

H = −
∑
i, j

Js
i j (ŝi · ŝ j ) −

∑
i, j

�Di j · (ŝi × ŝ j )

− 1

3!

N∑
i, j,k

Ji jk ŝi · (ŝ j × ŝk ) − 2

p!

∑
i, j,k,l

Js
i jkl (ŝi · ŝ j )(ŝk · ŝl )

− 2

p!

∑
i, j,k,l

�Di jkl · (ŝi × ŝ j )(ŝk · ŝl ). (5)

Here the prefactors of the various sums account for multiple
counting contributions occurring upon summation over all
lattice sites, where p specifies the number of interacting
atoms; i.e., p = 2, p = 3, and p = 4 correspond to the bi-
quadratic, three-spin, and four-spin interactions, respectively.
The prefactor 2

p! occurs due to the chosen normalization of the
exchange parameters, which leads to the same prefactor for
the biquadratic term in the Hamiltonian as in the case of the bi-
linear term. Note that we follow the more common convention
[45] for the bilinear exchange interaction parameters, while
also other conventions are used in the literature [46], as was
pointed out previously [20]. However, it should be stressed
that for the sake of simplicity in working out the expressions
for the exchange parameters in the following, the prefactors
are not taken into account, as they appear coherently for the
model as well as for the first-principles representations of
the energy and cancel each other in the final expression for
the exchange parameters.

III. FOUR-SPIN EXCHANGE INTERACTIONS

Extending the spin Hamiltonian to go beyond the classical
Heisenberg model, we discuss first the four-spin exchange
interaction terms Ji jkl and �Di jkl . The isotropic exchange as
well as the z component of the DMI-like four-spin interactions
can be given in terms of the fourth-rank tensor Jαβγ δ

i jkl which
accounts also for pair (k = i, l = j; so-called biquadratic)
and three-spin (l = j) interactions. The tensor elements Jαβγ δ

i jkl
can be calculated using the fourth-order term of the Green’s
function expansion in Eq. (2). Substituting this expression into

Eq. (1) and using the sum rule dG
dE = −GG for the Green’s

function, one obtains after integration by parts the fourth-
order term of the total energy change �E (4) given by

�E (4) = − 1

π
Im Tr

∫ EF

dE

×�V G0�V G0�V G0�V G0. (6)

Using the ferromagnetic state with �M||ẑ as a reference
state, and considering the spin-spiral �si = ( sin θ cos(�q ·
�Ri ), sin θ sin(�q · �Ri ), cos θ ) as the source for the perturbation
�V at small �q values, only the x and y components of the
exchange tensor get involved (see also Ref. [41]). Following
the scheme used to derive an expression for the bilinear
exchange interactions [41], the fourth-order derivative with
respect to the �q vector gives the elements of the exchange
tensor represented via the expression (see Appendix B)

Jαβγ δ

i jkl = 1

2π
Im Tr

∫ EF

dE [T i,α (E ) τ i j (E )T j,β (E ) τ jk (E )

× T k,γ (E ) τ kl (E )T l,δ (E ) τ li(E )], (7)

where the matrix elements of the torque operator T i,α
��′ are

defined as follows [47]:

T i,α
��′ =

∫
�i

d3r Zi×
� (�r, E )

[
βσαBi

xc(�r)
]

Zi
�′ (�r, E ). (8)

A. Nonchiral exchange interactions

The four-spin scalar interaction, and as special cases,
also the fourth-order three-spin term with l = j, and the
biquadratic exchange interaction term with k = i and l = j,
can also be written in a form often used in the literature; i.e.,
they can be represented in terms of scalar products of spin
directions:

H (4)
s = −

∑
i, j,k,l

Js
i jkl (ŝi · ŝ j )(ŝk · ŝl ). (9)

The parameters Js
i jkl (where s means “symmetric”) are rep-

resented by the symmetric part of the exchange tensor of 4th
rank in Eq. (12) and are given by the expression (see Appendix
B)

Js
i jkl = 1

4

(
Jxxxx

i jkl + Jyyyy
i jkl + Jxxyy

i jkl + Jyyxx
i jkl

)
. (10)

The expression for a three-spin or a biquadratic configuration
should have a form which can be seen as being composed of
two closed loops, e.g.,

Jαβγ δ

i jil = 1

2π
Im Tr

∫ EF

dE [T i,α (E ) τ i j (E )T j,β (E ) τ ji(E )]

× [T i,γ (E ) τ il (E )T l,δ (E ) τ li(E )], (11)

such that each can be associated with the pair interaction
of atoms i-j and i-l and has a form similar to the one ap-
pearing in the case of bilinear interactions. This form has
a momentum representation determined by the expression
(τ �k τ �k±�q )(τ �k′ τ �k′±�q), with τ �k standing for the �k-dependent

scattering path matrices, which should ensure the q2 depen-
dence of each expression associated with the scalar product of
spin moments. This form of the expression implies also that
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only the site-off-diagonal terms of the Green’s function are
involved in its calculation.

Considering in addition the case l = j one arrives at an
expression for the biquadratic interactions

Jαβγ δ
i ji j = 1

2π
Im Tr

∫ EF

dE [T i,α (E ) τ i j (E )T j,β (E ) τ ji(E )]

× [T i,γ (E ) τ i j (E )T j,δ (E ) τ ji(E )], (12)

for which the symmetry with respect to permutation of two
spin moments is just a consequence of the invariance of the
trace of a product of matrices with respect to cyclic permu-
tation of the matrices. The biquadratic exchange interaction
terms (with k = i and l = j) can be seen as a linear term of an
expansion of the bilinear exchange parameters in powers of
(ŝi · ŝ j ), in order to take into account the dependence of these
exchange parameters on the relative orientation of the inter-
acting spin magnetic moments on sites i and j. Focusing first
on the scalar-interaction terms, this leads to the expression

Hs = −
∑
i, j

J̃i j (θi j )(ŝi · ŝ j )

= −
∑
i, j

Ji j (ŝi · ŝ j ) −
∑
i, j

Js
i ji j (ŝi · ŝ j )(ŝi · ŝ j ). (13)

Note that both bilinear and biquadratic terms in Eq. (13) have
two contributions from the same pair of atoms, i.e., i = a, j =
b and i = b, j = a, with the interactions Jab = Jba and Jabab =
Jbaba, as has been mentioned above.

B. Chiral multispin DMI-like exchange interactions

Discussing chiral interactions, we start with the exchange
interactions represented by the vector characterizing the DMI-
like interaction between two spin moments, i and j, but
taking into account the magnetic configuration of surrounding
atoms, leading to the extension of the Heisenberg Hamiltonian
written in the following form:

Ha(4) =
∑

i, j,k,l

�Di jkl · (ŝi × ŝ j )(ŝk · ŝl ). (14)

Assuming the magnetization direction of the reference sys-
tem along the z axis, we distinguish between the x and y
components of this chiral interaction on one hand, and its
z component on the other hand as they require different
approaches for their calculation. This is in full analogy to the
DMI discussed recently [41,42].

1. DMI-like interactions: The z component

The z component of the four-spin chiral interaction �Di jkl ,
when all site indices i, j, k, l may be different, is represented
by the antisymmetric part of the exchange tensor characteriz-
ing the interaction between sites i, j, k, and j. In full analogy
to the DMI, Dz

i jk j can be written as follows:

Dz
i jkl = 1

4

(
Jxyxx

i jkl + Jxyyy
i jkl − Jyxxx

i jkl − Jyxyy
i jkl

)
(15)

with the tensor elements Jαβγ δ

i jk j determined via Eq. (12).
In the following, we will focus on the three-spin DMI-like

interactions (TDMIs) (implying l = j) and biquadratic vector

interactions (with l = j, k = i), which were calculated and
discussed recently for some systems with special geometry
[21,22] in comparison with the DMI. Using Eq. (15) for the
special case l = j, k = i one has for the z component of the
biquadratic interaction the expression (see Appendix B)

Dz
i ji j = 1

4

(
Jxyxx

i ji j + Jxyyy
i ji j − Jyxxx

i ji j − Jyxyy
i ji j

)
. (16)

2. DMI-like interactions: The x and y components

To calculate the x and y components of the four-spin and as
a special case the TDMI and BDMI terms in a system magne-
tized along the z direction, we follow the scheme suggested by
the authors for the calculation of the DMI parameters [41,42],
which exploited the DMI-governed behavior of the spin-wave
dispersion having a finite slope at the � point of the Brillouin
zone. However, in the present case a more general form of
perturbation is required, which allows for of the spin moments
entering the scalar product in the four-spin energy terms for a
tilting toward the x and y axes. For this purpose we assume a
2D spin modulation according to the expression

ŝi = (sin(�q1 · �Ri )cos(�q2 · �Ri ), sin(�q2 · �Ri ),

× cos(�q1 · �Ri )cos(�q2 · �Ri )), (17)

which is characterized by two wave vectors, �q1 and �q2, or-
thogonal to each other, as for example �q1 = q1ŷ and �q2 = q2x̂.
The microscopic expression for the x and y components of
�Di jkl describing the most general, four-spin interaction can be

obtained on the basis of the third-order term of the Green’s
function expansion in Eq. (2) leading to a corresponding
third-order energy contribution

�E (3) = − 1

π
Im Tr

∫ EF

dE (E − EF ) G0�V G0�V G0�V G0.

(18)

This is achieved by taking the first derivative with respect
to the wave vectors �q1(2), the second-order derivative with
respect to the wave vector �q2, and considering finally the limit
q1(2) → 0. The components Dy

i jk j and Dx
i jk j are determined

this way by the first-order derivative with respect to the wave
vectors �q1 and �q2, respectively. The nonzero elements of the
first-order derivative in the limit q1(2) → 0 imply an anti-
symmetric character of the interactions between the magnetic
moments on sites i and j in Eq. (14), similarly to the case
of the conventional DMI. At the same time, the nonzero
second-order derivative with respect to �q2 corresponds to a
scalar interaction between the magnetic moments on sites k
and l , which is symmetric with respect to a sign change of
the wave vector. The same properties should apply to the
corresponding contribution to the model spin Hamiltonian in
Eq. (14). Equating for the ab initio and model approaches the
corresponding terms proportional to ( �Ri − �Rj )y( �Rk − �Rl )2

x and
( �Ri − �Rj )x( �Rk − �Rl )2

x (we keep a similar form in both cases for
the sake of convenience) gives access to the elements Dy,x

i jkl and
Dy,y

i jkl , as well as Dx,x
i jkl and Dx,y

i jkl , respectively, of the four-spin
chiral interaction. As we focus here on TDMI and BDMI, they
can be obtained as the special cases l = j and l = j, k = i,
respectively. With this, the elements of the TDMI vector can
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be written as follows:

Dα,β

i jk j = εαγ

1

8π
Im Tr

∫ EF

dE (E − EF )

[Oi τ i jT j,γ τ jkT k,β τ k jT j,β τ ji

− T i,γ τ i jO jτ jkT k,β τ k jT j,β τ ji]

+ [Oi τ i jT j,β τ jkT k,β τ k jT j,γ τ ji

− T i,γ τ i jT j,βτ jkT k,β τ k jO j τ ji] (19)

with α, β = x, y, and εαγ the elements of the transverse Levi-

Civita tensor ε = [ 0 1
−1 0]. The matrix elements of the torque

operator T i,α
��′ occurring in Eq. (19) are given by Eq. (8), and

the overlap integrals O j
��′ are defined in an analogous way

[47]:

O j
��′ =

∫
� j

d3r Z j×
� (�r, E ) Z j

�′ (�r, E ). (20)

The expression in Eq. (19) gives access to the x and y com-
ponents of the DMI-like three-spin interactions in Eq. (14):

Dα
i jk j = Dα,x

i jk j + Dα,y
i jk j . (21)

An expression for the BDMI also follows directly from
Eq. (19) using the restriction k = i. This leads to the elements
Dα,β

i ji j determining chiral biquadratic exchange interactions
(similarly to the case of four-spin interactions), which can be
written in the following form:

Dα,β
i ji j = εαγ

1

8π
Im Tr

∫ EF

dE (E − EF )

[(Oi τ i jT j,γ τ jiT i,β τ i jT j,β τ ji

− T i,γ τ i jO jτ jiT i,β τ i jT j,β τ ji )

+ (Oi τ i jT j,β τ jiT i,β τ i jT j,γ τ ji

− T i,γ τ i jT j,βτ jiT i,β τ i jO j τ ji )]. (22)

C. Chiral exchange: Three-spin exchange interactions

Here we discuss the three-spin chiral exchange interaction
entering a corresponding extension term to the Heisenberg
Hamiltonian:

H (3) = −
N∑

i �= j �=k

Ji jk ŝi · (ŝ j × ŝk ). (23)

As follows from this expression, the contribution due to the
three-spin interaction is nonzero only in case of a noncopla-
nar and noncollinear magnetic structure characterized by the
triple product ŝi · (ŝ j × ŝk ) involving the spin moments on
three different lattice sites.

Considering the torque acting in a FM system on the
magnetic moment of any atom i, which is associated with
the three-spin interactions, one can evaluate its projection
onto an arbitrary direction û, T (3)

i jk,û = −(∂H (3)/∂ ŝi ) · (û × ŝi ),
which is equal to Ji jk (êk · û). This value is nonzero only in
the case of a nonzero scalar product (ŝk · û), implying that a
nonvanishing torque on spin ŝi created by the spin ŝ j coupled
via the three-spin interaction requires a tilting of the third
spin moment êk to have a nonzero projection on the torque

direction. In contrast to that, the torque T DM
i j,û = �Di j · û [48]

acting due to the spin of atom j on the spin moment of atom i
via the DMI is nonvanishing even in the system with all spin
moments being collinear. This makes clear that in order to
work out the expression for the Ji jk interaction term, a more
complicated multi-Q modulation [14,35,37] of the magnetic
structure is required when compared to a helimagnetic struc-
ture characterized by a wave vector �q, which was used to
derive expressions for the x and y components of the DMI
[41,42]. In addition, similarly to the DMI that gives a nonzero
contribution to the energy due to its antisymmetry with respect
to permutation, the energy due to the TCI, for a fixed spin
configuration of all three atoms involved, is nonzero only if
Ji jk �= Jik j , etc. Otherwise, the terms i jk and ik j cancel each
other due to the relation ŝi · (ŝ j × ŝk ) = −ŝi · (ŝk × ŝ j ).

Thus, to derive an expression for the TCI, we use the 2D
noncollinear spin texture described by Eq. (17), which is char-
acterized by two wave vectors oriented along two mutually
perpendicular directions, as for example �q1 = (0, qy, 0) and
�q2 = (qx, 0, 0) (for more details see Appendix B).

In this case the spin chirality driven by the three-spin inter-
action should lead to the asymmetry of the energy E (�q1, �q2)
with respect to a sign change of any of the vectors �q1 and
�q2, as a consequence of full antisymmetry of the scalar spin
chirality. As a result, the three-spin interactions can be derived
assuming a nonzero slope of the energy dispersion E (�q1, �q2)
as a function of the two wave vectors, in the limit �q1(2) = 0.

Substituting the spin modulation in Eq. (17) into the spin
Hamiltonian in Eq. (23) associated with the three-spin inter-
action, the second-order derivative of the energy E (3)(�q1, �q2)
with respect to the q1 and q2 wave vectors in the limit q1 → 0,
q2 → 0 is given by the expression

∂2

∂ �q1∂ �q2
E (3)

H = −
∑

i �= j �=k

Ji jk{ẑ · [( �Ri − �Rj ) × ( �Rk − �Rj )]}.

(24)

The microscopic energy term of the electron system, giving
access to the chiral three-spin interaction in the spin Hamil-
tonian, is determined by the second-order term of the free
energy expansion given by the expression

�E (2) = − 1

π
Im Tr

∫ EF

dE (E − EF ) G0�V G0�V G0.

(25)

To make a connection between the two approaches associated
with the ab initio and model spin Hamiltonians, we consider
a second-order term with respect to the perturbation �V
induced by the spin modulation in Eq. (17). Taking the first-
order derivative with respect to q1 and q2 in the limit q1 → 0,
q2 → 0, and equating the terms proportional to {ẑ · [( �Ri −
�Rj ) × ( �Rk − �Rj )]} with the corresponding terms in the spin
Hamiltonian, one obtains the following expression for the
three-spin interaction:

Ji jk = 1

8π
Im Tr

∫ EF

dE (E − EF )

[T i,x τ i jT j,y τ jkOk τ ki − T i,y τ i jT j,x τ jkOk τ ki

174401-5
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FIG. 1. The four-spin interaction exchange parameters Js
i jkl ac-

cording to Eq. (10) calculated for the FM hcp Co (a), bcc Fe (b), and
fcc Ni (c) with the magnetization along the ẑ axis.

− T i,x τ i jO j τ jkT k,y τ ki + T i,y τ i jO j τ jkT k,x τ ki

+ Oi τ i jT i,x τ jkT k,y τ ki − O j τ i jT i,y τ jkT k,x τ ki].

(26)

IV. NUMERICAL RESULTS

In order to illustrate the expressions developed above by
their application to realistic systems, corresponding calcula-
tions on various representative systems have been performed.
Some numerical details of these calculations are described in
Appendix A.

A. Four-spin and biquadratic exchange interactions

Figure 1 represents an example for the four-spin exchange
parameters Js

i jkl calculated on the basis of Eq. (10) for the
three 3d bulk ferromagnetic systems bcc Fe, hcp Co, and fcc
Ni. The results are plotted as a function of the distance Ri j +
Rjk + Rkl + Rli, including only the interactions corresponding
to i �= j �= k �= l; i.e., all sites are different. For these systems
the exchange parameters are about two orders of magnitude

smaller than the first-neighbor bilinear exchange interactions.
However, in general their contribution can be non-negligible
due to the large number of such four-spin loops. Therefore, in
some particular cases they should be taken into account.

Examples for the scalar biquadratic exchange interaction
parameters Js

i ji j are shown in Fig. 2 for bcc Fe, hcp Co,
and fcc Ni, and in Fig. 3 for the compounds FePt and FePd
having CuAu crystal structure. For comparison, the insets give
the corresponding bilinear isotropic exchange interactions.
One can see rather strong first-neighbor interactions in bcc
Fe and in the compounds FePt and FePd. This confirms the
previous theoretical results for bcc Fe [15], and demonstrates
the non-negligible character of biquadratic interactions. This
is of course a material-specific property.

B. DMI-like multispin exchange interactions

The properties of the chiral multispin exchange interaction
parameters in Eq. (14) can be compared with the DM inter-
actions as both are vector quantities. Similarly to the DMI,
these parameters are caused by SOC; i.e., they vanish in the
case of SOC = 0. This feature is indeed demonstrated by our
test calculations. The calculations have been performed for
bulk bcc Fe, for (Pt/X/Cu)n multilayers with X = Mn, Fe,
and Co, and for an Fe overlayer deposited on TMDC (transi-
tion metal dichalcogenide) monolayers, e.g., 1H − TaTe2 and
1H − WTe2. The model multilayer system is composed of
Pt, X , and Cu on subsequent (111) layers of the fcc lattice,
without structural relaxation. In the case of the Fe/TMDC
systems the structural relaxation has been performed both
within the layers as well as in the z direction perpendicular
to the layer plane.

The calculations demonstrate similar symmetry properties
of the BDMI when compared with the conventional DMI,
as was already pointed out recently [21]. In bcc Fe having
inversion symmetry, the BDMI is equal to zero, while it is
finite in the multilayer and the Fe/TMDC systems, following
the properties of the DMI interactions. Figure 4 gives results
for the z component of the chiral biquadratic exchange in-
teractions, Dz

i ji j , calculated for a Fe overlayer deposited on
TaTe2 and WTe2 single layers, respectively, on the basis of
Eq. (21). As one can see, Dz

i ji j has a significant magnitude
when compared to the bilinear DMI parameters. Interestingly,
the x and y components in these two materials are much
smaller than the corresponding components of the bilinear
DMI.

In the case of the multilayer systems (Pt/Fe/Cu)n,
(Pt/Mn/Cu)n, and (Pt/Co/Cu)n, all three components, x, y, z,
have the same order of magnitude as is seen in Fig. 5. The ori-
entation of these interactions between first-nearest-neighbor
sites is shown in Fig. 6. As can be seen from Table I, in
contrast to the Fe/TMDC system, all components are more
than one order of magnitude smaller than the corresponding
DMI components.

Figure 6 shows schematically the in-plane components of
the DMI and BDMI, which have the same orientation for
(Pt/Fe/Cu)n and (Pt/Mn/Cu)n, but not for (Pt/Co/Cu)n. The
y components of Dy

i ji j representing the interaction between

atoms with �Ri j = a(0.707, 0, 0) are given in Table I. These
values give the total in-plane interaction as for the taken pair

174401-6
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FIG. 2. Scalar biquadratic exchange interactions in bcc Fe (a),
hcp Co (b), and fcc Ni (c). The insets show the bilinear exchange
interaction parameters calculated for the FM state with the magneti-
zation along the ẑ axis.

of atoms Dx
i j = 0 and Dx

i j = 0. Note also that in (Pt/Mn/Cu)n

the Dz
i ji j component has an opposite sign when compared to

Dz
i j .

Similarly to the DMI and BDMI, the TDMI �Di jk j is a SOC-
induced interaction between atoms i and j which depends on
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Rij/a
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J iji
j

s    
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eV
)

FePt
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FIG. 3. Scalar biquadratic Fe-Fe exchange interactions in the
FM-ordered FePt and FePd with the magnetization along the ẑ axis.

the relative orientation of the spin moments of the atoms j
and k. In contrast to the biquadratic interaction, it does not
vanish for centrosymmetric systems, as is demonstrated by the
calculations for bcc Fe represented in Fig. 7. Let us consider
the TDMI as the DMI-like interaction between atoms i and j
which depends on the relative orientation of the spin moment
of the atoms j and k. Figure 7(a) displays the dependence of
the components Dx

i jk j and Dy
i jk j of the DMI-like interaction

between the first nearest neighbors (distance | �Ri j |) in bcc Fe
as a function of the position of the third atom k. One finds
obviously a different sign for the various interactions for the
same value of | �Ri j | + | �Rjk| + | �Rki| implying a dependence of
the �Di jk j interaction on the relative position of the third atom
[see Fig. 7(b)]. In the case of a collinear magnetic structure
this property results in a compensation when summing over
all surrounding atoms k, i.e.,

∑
k

�Di jk j = 0, despite the finite
magnitude of the individual interactions | �Di jk j | �= 0 for each
triple of atoms. In other words, the TDMI is canceled out
in centrosymmetric collinear magnetic systems, giving no
contribution to the energy as the DMI and BDMI. In the
case of a noncollinear magnetic texture, however, the sum
can be nonzero leading to a nonvanishing contribution of the
TDMI term to the energy that may stabilize the noncollinear
magnetic structure.

To understand this behavior, one can consider once more
the DMI between two spin moments �si and �s j , caused by SOC
seen as a perturbation (see, e.g., [21]). Within a real-space

TABLE I. The y and z components of the DMI and chiral
biquadratic exchange interaction (in meV) between 3d metals in
(Pt/X/Cu)n multilayers (X = Mn, Fe, Co). The y component cor-
responds to the interactions between atoms 1 and 2 (see Fig. 6) with
�R12 = a(0.707, 0, 0). For this geometry Dy

1212 and Dy
12 represent the

magnitude of the in-plane projection of corresponding interactions
with the first nearest neighbors, as in this case Dx

1212 = 0 and Dx
12 = 0.

Dy
i j Dz

i j Dy
i ji j Dz

i ji j

(Pt/Mn/Cu)n −1.14 −1.22 −0.039 0.031
(Pt/Fe/Cu)n 0.17 0.35 0.024 0.034
(Pt/Co/Cu)n 0.63 0.40 −0.003 0.008
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FIG. 4. The z component of the BDMI (squares, top) and bi-
quadratic scalar interactions (squares, bottom) as a function of the
site distance Ri j (in multiples of the lattice parameter a). Results are
shown for a Fe overlayer deposited on a single layer of TaTe2 (a) and
WTe2 (b), in comparison with the DMI and bilinear interaction
parameters shown by circles.

consideration the origin of the DMI can be associated with the
SOC of the electrons on a third atom arranged in the vicinity
of the atoms i and j. Following the work by Brinker et al. [21]
this will be called the “SOC carrying” atom. The anisotropy
of the exchange interaction of two spin moments associated
with a single “SOC carrying” atom in this case is nonzero,
while the DMI and its symmetry properties are determined by
all surrounding “SOC carrying” atoms and by the crystal sym-
metry. In particular for a centrosymmetric system, this leads to
a cancellation when summing all individual contributions. In
the case of the TDMI one has to make an explicit summation
over the “third” atom k involved in the interaction, which can
be seen as the “SOC carrying” one. As a result, for any triple
of atoms in a centrosymmetric system the TDMI is nonzero.
For the case of a collinear magnetic structure, however, the
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FIG. 5. The x, y, and z components of chiral biquadratic ex-
change interaction, �Di ji j , between the magnetic 3d metals X in
(Pt/X/Cu)n multilayers with X = Mn (a), Fe (b), and Co (c), plotted
as a function of the interatomic distance Ri j . The orientation of the
interaction vectors between first nearest neighbors is shown in Fig. 6.

summation over all atoms k leads to a canceling of the TDMI.
In the case of a noncollinear magnetic structure, on the other
hand, this does not have to apply.

Note that these conclusions based on the results obtained
for a frame of reference with the ẑ axis oriented along the
crystallographic [001] direction should hold for any other
frame of reference. Nevertheless, it is more convenient to
discuss the interactions using a frame of reference with the
z axis, as well as the magnetization, oriented along the [111]
crystallographic direction, as shown in Fig. 7(b). The arrows
represent the direction of the TDMI in the (x, y) plane be-
tween the gray atom 1 at the center and the red atom 2
behind, induced by tilting of the moment of the third atom (3;
connected in the picture by dashed lines with the atoms 1 and
2). One can see that the direction of this interaction depends
on the position of atom 3.

However, in the case of systems without inversion sym-
metry, the TDMIs do not cancel each other and can play a
certain role in the formation of the magnetic ground state
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FIG. 6. Orientation of the DMI vector �Di j (a) and the vector
of the BDMI �Di ji j (b) corresponding to the interaction of the first-
neighbor 3d atoms X in (Pt/X/Cu)n multilayers: for X = Mn (left),
Fe (middle), and Co (right). The magnitudes of the interactions are
given in Table I.

configuration. This is demonstrated by calculations for
(Pt/X/Cu)n multilayer systems. Figure 8 shows correspond-
ing results for the (Pt/Mn/Cu)n multilayer system where,
using a similar representation to the one before, the arrows
represent the “vector” interactions [i.e., ∼(ŝ1 × ŝ2)] between
atoms 1 and 2, controlled by the third atom 3. Obviously, the
direction of this interaction depends on the position of the
third atom as one can see in Figs. 8(a) and 8(b). Moreover,
the magnitude of this interaction follows the 3-fold in-plane
symmetry of the system, and is comparable to that of the
biquadratic interactions and is smaller by more than one order
of magnitude when compared to the DMI interactions.

C. Chiral exchange: Three-spin exchange interactions

1. First-principles calculations

Equation (26) was used to calculate the three-spin inter-
action parameters for a couple of representative 3D and 2D
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FIG. 7. (a) x and y components of the TDM interactions for bcc
Fe as a function of the sum of interatomic distances for every three
atoms; (b) TDMI with “vector coupling” between the gray atom
in the center (atom 1) and the red atom behind (atom 2) with the
third atom (atom 3) coupled with atom 2 via “scalar coupling”. The
magnitude of this three-spin interaction energy is 0.004 meV for all
three cases shown in the figure.

1
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FIG. 8. The plane-projected three-spin DMI-like interactions
(TDMI) between atoms 1 (in the center) and 2 (on the hexagon) in the
presence of atom 3 (relative position shown by a bent arrow) in the
(Pt/Mn/Cu)n multilayer. (a) represents the vectors when the third
atom follows site 2 (2′) on the hexagon in the clockwise direction
and (b) when the third atom follows site 2 (2′) in the anticlockwise
direction. The long vectors represent the interactions with magnitude
0.068 meV, while the short ones correspond to the interactions with
0.032 meV. The z component of the interactions is −0.006 meV
between atoms 1 and 2 (2′) in (a) and 0.006 between atoms 1 and
2 (2′) in (b). The triangles show the position of Pt atoms on the
neighboring layer.

systems. Figure 9(a) represents the results on the TCI for
one-monolayer (1ML) bcc Fe(110). The DMI and BDMI
for this system vanish due to inversion symmetry. The TCIs
calculated without SOC (closed symbols) included for various
triangles of different size do not change upon permutation of
any two atoms, i.e., J123 = J132. As discussed above, this leads
to a cancellation of the energy contribution due to these two
terms. However, switching SOC on breaks the symmetry of
the TCI with respect to permutations, implying J123 �= J132.
Corresponding data are shown in Fig. 9(a) by open symbols.
As a consequence, the contribution due to the TCI to the
magnetic energy of the system should in general be finite.

For further discussions it is convenient to introduce re-
duced TCI parameters defined as J̃i jk = Ji jk − Jik j for coun-
terclockwise sequences of atoms i, j, k. Corresponding results
for J̃i jk for 1ML Fe(110) are shown in Fig. 9(b). In this case
the energy term H (3) given in Eq. (23) associated with J̃i jk can
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FIG. 9. (a) Three-spin chiral exchange interaction parameters Ji jk

calculated for bcc Fe(110) with SOC = 0 (closed squares) and SOC
= 1 (open circles). (b) The reduced TCI J̃i jk for bcc Fe(110). Inset in
(b) shows two triangles in Fe(110) system, having the smallest size
�1 and �2.
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be written as follows:

H (3) = −
∑

i �= j �=k

J̃i jkχi jk (27)

with the scalar spin chirality χi jk , accounting for only the
contributions due to the counterclockwise sequence of atoms
i, j, k. As one can see in Fig. 9(b), the magnitude of the TCI
decreases quickly with an increasing perimeter of a triangle.
As a consequence one may restrict the sum in Eq. (27) to
the two smallest triangles. In this case, making use of the
symmetry of J̃i jk with respect to cyclic permutation, i.e.,
accounting for J̃123 = J̃312 = J̃231 = J̃�, the expression for
H (3) can be further simplified to

H (3) = −J̃�1

∑
(i, j,k)∈�1

χi jk − J̃�2

∑
(i, j,k)∈�2

χi jk . (28)

The TCI parameters calculated for 1ML Fe(110) can be
compared to the TDMI parameters, as both are nonvanishing
in centrosymmetric systems. Considering the smallest trian-
gle �1, we have for the TCI J̃�1 = 0.21 meV, while the z
component of the TDMI (the only nonvanishing one) between
spin moments 1 and 2 is found to be Dz

1213 = 0.0014 meV and
Dz

1214 = −0.039 (the positions of the third atoms are shown
in Fig. 9) demonstrating that the TDMI is much weaker when
compared to the TCI.

On the other hand, the origin of the TCI can be discussed
in more detail on the basis of the spin-chiral interaction
introduced by Grytsiuk et al. [34]. According to this approach,
the TCI can be associated with a topological orbital moment
�LT O

i jk induced on the atoms of each triangle [39] due to
the noncoplanar orientation of the spin magnetic moments.
According to Refs. [34,49,50], one has �LT O

i jk = κT O
i jk χi jk �ni jk ,

where κT O
i jk is the topological orbital susceptibility, and �ni jk

is the normal to the triangle �i, j,k . Accounting for the SOC,
the interaction energy between spin moments on the atoms
with corresponding topologically induced orbital moments
can be written as ∼ ∑

i ξ �LT O
i · �s1, where ξ is the spin-orbit

interaction parameter for atom i having the spin moment
�si. In the case of all atoms being equivalent, the sum can
be written as ∼ ξκT O

i jk χi jk (�ni jk · 〈�s〉), with 〈�s〉 = �si + �s j + �sk .
This expression shows that the dependence of the three-spin
interactions on the orientation of spin magnetic moments is
given by their projection on the normal vector of a triangle that
is proportional to the flux of local spin magnetization through
the triangle area.

The dependence of the TCI on the orientation of the mag-
netization has been investigated also for 1ML bcc Fe(110).
The parameters calculated for the smallest triangle, J̃�1(θ ),
are plotted in Fig. 10(a) as a function of the angle θ between
the magnetization and the triangle normal. As one can see,
the results given by circles are in perfect agreement with the
function J̃�1(0) cos θ , in line with the discussion above.

An increase in temperature results in general in an increase
of magnetic disorder in the system leading to a corresponding
decrease of the net magnetization that finally vanishes at the
critical temperature TC . In order to investigate the dependence
of the TCI parameter J̃i jk on the normalized magnetization
seen as the order parameter, calculations have been performed
for the partially ordered state described by means of the

FIG. 10. Three-spin chiral exchange interaction parameters J̃�

calculated for the smallest triangle �1 in 1ML of Fe(110): (a) as
a function of the orientation of magnetization with respect to normal
vector of triangle, and (b) as a function of average reduced magneti-
zation |〈 �m〉|/m0.

relativistic disorder local moment approach [51,52]. In these
calculations the exchange parameters J̃i jk are associated with
the energy change due to a tilting of the spin magnetic
moments of a triple of atoms with respect to the magne-
tization direction of the reference system, accounting for
partial (as well as full) magnetic disorder of all surrounding
atoms. Figure 10(b) represents the results for the smallest
triangle, showing a decrease of J̃�1 by about twice approach-
ing |〈 �m〉|/m0 ≈ 0.5, and staying nearly unchanged for larger
disorder, i.e., higher temperature. The nonvanishing behavior
of the TCI parameters can be understood by keeping in mind
their dependence on the local magnetic order.

In Fig. 11 one can see in addition a strong dependence
of the TCI on the occupation of the valence states, with
the magnitude reaching its maximum below the true Fermi
energy.

Figure 12(a) shows the TCI parameters calculated for
centrosymmetric bcc Fe, as a function of the perimeter of
the considered triangles for three different orientations of the
magnetic moment: [001] (circles), [111] (squares), and [110]
(diamonds). The results given in Fig. 12(a) (top panel) have
been obtained without including the SOC. As one can see,
the TCI parameters do not depend on the orientation of the
magnetization. However, according to the discussions above,
this leads to a cancellation of their contribution to the energy
upon summation over all sites in the lattice. In the presence of
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FIG. 11. The reduced three-spin chiral interactions J̃i jk (E ) for
the smallest triangle �1 in 1ML of Fe(110) as a function of
occupation.
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FIG. 12. (a) Three-spin chiral exchange interaction parameters
calculated for bcc Fe without (top panel) and with SOC (bottom
panel), respectively, for three different magnetization directions:
[001] circles, [111] (squares), and [110] (diamonds). (b) The reduced
TCI calculated for the triangles 1, 2, 3, 4, assuming magnetiza-
tion along the z direction: J̃1

� = 0.07 meV, J̃2
� = 0.0 meV, J̃3

� =
0.005 meV, J̃4

� = 0.0 meV.

SOC, on the other hand, the interactions shown in Fig. 12(a)
(bottom panel) change their magnitude upon permutation, i.e.,
J123 �= J132. The corresponding dependence on the relative
orientation of the magnetization and the triangle normal is
also given in Fig. 12(b) for four different triangles, assuming
the magnetization oriented along the z axis. In the case of
triangles 1 and 3 the TCI parameters J̃i jk are nonzero. This
is not the case for the triangles 2 and 4 as the flux of the
magnetization through their area is equal to zero. This changes
however due to change of the magnetization toward the [111]
and [110] crystallographic directions [see Fig. 12(a), bottom
panel].

Figure 13 shows the three-spin chiral interaction between
3d atoms in the (Pt/X/Cu)n multilayer system, with X = Mn
(a), Fe (c), and Co (e), calculated without (closed squares) and
with SOC (open circles), respectively. The reduced parame-
ters J̃i jk are plotted in Figs. 13(b), 13(d) and 13(f) for Mn, Fe,
and Co, respectively. As one can see, the dominating exchange
parameters J̃�1 are associated with the smallest triangle. Their
magnitude is rather close for all three systems, while the sign
of J̃�1 in the case of (Pt/Fe/Cu)n is opposite to that for the two
other systems. In addition, one can see a weak dependence of
the TCI on the arrangement, as they are slightly different for
the triangles with neighboring Pt atoms, J̃Pt

�1, and Cu atoms
J̃Cu
�1.
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FIG. 13. (a), (c), (e) Three-spin exchange interaction parameters
Ji jk between the 3d atoms X in (Pt/X/Cu)n multilayer, calculated us-
ing Eq. (26) without (closed symbols) and with SOC (open symbols)
included, respectively, plotted as a function of the total length for
a 3-atomic cluster, Ri j + Rjk + Rki, created by the coupling atoms.
(b), (d), and (f) represent the corresponding reduced three-spin
interaction parameters J̃i jk = Ji jk − Jik j .

Figures 14 and 15 represent the TCI (a) in comparison with
BDMI (b), DMI (c), and isotropic exchange interactions (d),
plotted as a function of energy characterizing the occupation
of the valence band (i.e., an artificial Fermi energy position).
One can see an oscillating behavior for all parameters when
the occupation increases, with their sign changing at different
energies because of different origin of these interactions.
Note, however, that all quantities shown in Figs. 14 and 15
have a maximum at approximately half occupation of the Mn
(Co) d band [see Figs. 14(e) and 15(e)], that correlates also
with the maximum of the spin magnetic moment [Figs. 14(a)
and 15(a)] and maximum of antiferromagnetic exchange in-
teractions [Figs. 14(d) and 15(d)].

Comparing the y and z components of the BDMI and DMI
shown in Figs. 14(a) and 14(b), respectively, one can see a
more narrow energy region, in which the former quantity has
a significant magnitude. Note, however, that the biquadratic
interaction is a higher-order term in the energy expansion and
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FIG. 14. Three-spin interaction parameters J̃i jk (E ) for the small-
est Mn triangles in (Pt/Mn/Cu)n multilayer, centered at Cu (J̃Cu

� )
and Pt (J̃Pt

� ); the dotted line represents the Mn spin magnetic moment
m(E ) = M(E )/MMn (MMn = 3.7μB) as a function of the occupation
(a); y, z components of the chiral biquadratic exchange interaction
�D1212 (b) and DM interactions �Di j (c) between Mn atoms as a

function of the occupation; (d) the isotropic exchange Ji j (E ); (e) the
element-projected DOS n(E).

should represent simultaneously the features of vector and
scalar interactions of two spin moments. Thus, plotting in
Fig. 14(a) (thin lines) the function Dα

i j (E )Ji j (E )/ max[Ji j (E )]
for the nearest-neighbor interactions, one can see a localiza-
tion in energy of this function similar to the one seen for the
BDMI.

2. Monte Carlo simulations

In order to demonstrate a possible impact of the higher-
order chiral interactions on the magnetic structure, Monte
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FIG. 15. Three-spin interaction parameters J̃i jk (E ) for the small-
est Co triangles in (Pt/Co/Cu)n multilayer, centered at Cu (J̃Cu

� ) and
Pt (J̃Pt

� ); the dotted line represents the Co spin magnetic moment
m(E ) = M(E )/MCo (MCo = 1.9μB) as a function of the occupation
(a); y, z components of the chiral biquadratic exchange interaction
�D1212 (b) and the DM interactions �Di j (c) between Co atoms as a

function of the occupation; (d) the isotropic exchange Ji j (E ); (e) the
element-projected DOS, n(E ).

Carlo simulations have been performed for model systems.
We focus here on the effect of the three-spin chiral inter-
actions having rather different properties when compared to
the DMI-like interactions. In particular, they depend on the
orientation of the coupling spin moments. The calculations
have illustrative character; therefore we present only a few
results showing a nonvanishing impact of such interactions,
seen here as free parameter, in the formation of the magnetic
texture.

Monte Carlo (MC) simulations are performed for 2D lat-
tices having a triangular structure, on the basis of the model
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(a) (b) (c)

FIG. 16. Snapshot (30 × 30 atoms) of the magnetic structure
obtained by MC simulations for T = 0.1 K, accounting for first-
neighbor J1 and second-neighbor J2 and three spin J�1 interac-
tions (J�1/J1 = 1.0) only: (a) J2 = 0.0, (b) J2/J1 = −0.25, and
(c) J2/J1 = −0.5.

Hamiltonian

H = −J1

∑
(i, j)1

ŝi · ŝ j − J2

∑
(i, j)2

ŝi · ŝ j

− 1

3
J̃�1

∑
(i, j,k)∈�1

ŝi · (ŝ j × ŝk ). (29)

Dealing with this expression, the three-spin contribution is
evaluated accounting for the counterclockwise sequence of
atoms i, j, and k with ŝi, ŝ j , and ŝk the orientation of
the corresponding spin moments, respectively. In the model
Hamiltonian only the first- (positive) and second-neighbor
(negative) isotropic exchange interactions, J1 and J2, respec-
tively, are taken into account, while the three-spin chiral
interactions J̃�1 account for the smallest possible triangles. To
take into account the dependence of the 3-spin interactions
on the magnetic configuration we use an algorithm similar
to that used to calculate the exchange interactions mediated
by nonmagnetic components in alloys (e.g., FePd, FeRh,
etc.), which also depends on the local magnetic configuration
[53,54]. As J̃�1 depends on the magnetization flux through the
triangle, at each MC step they have been calculated according
to the discussions above, using the expression J̃�1 = J̃0

�1n̂ ·
(ŝi + ŝ j + ŝk ), where n̂ is the normal to the film. Here J̃0

is the maximal value of three-spin interaction corresponding
to a small deviation of the spin magnetic moments from the
collinear direction.

Periodic boundary conditions have been used with the MC
cell having 60 × 60 atomic sites. For the sequential update
the Metropolis algorithm has been used. Up to 5000 MC steps
have been used to reach the equilibrium. The results repre-
sented in Fig. 16 correspond to the temperature T = 0.1 K.
In all cases we used the first-neighbor parameter J1 = 3 meV
and a rather large value for three-spin interaction parameter
J�1/J1 = 1.0. Figure 16 shows the magnetic structures for
J2/J1 = 0 (a), J2/J1 = −0.25 (b), and J2/J1 = −0.5 (c). One
can see no impact of three-spin interactions on the magnetic
structure when the negative second-neighbor interactions are
not taken into account. But for systems having competing FM
and AFM interactions, the three-spin interactions results in the
formation of a vortex structure with the size of the vortices
dependent on relative magnitude of the exchange parameters.

V. SUMMARY

To summarize, in the present work we present a general
approach to calculate the multispin exchange interactions in

order to extend the classical Heisenberg Hamiltonian. This
approach allows first-principles calculations of multispin in-
teractions in real space within the framework of the multiple-
scattering Green’s function formalism. We discussed some
properties of different types of chiral interactions, with the
main focus on the three-spin exchange interactions. A specific
feature of the TCI is its topological origin in contrast to the
three-spin DMI-like interactions. We demonstrated by means
of MC simulations that this term can lead to a stabilization of
vortex-like magnetic texture.
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APPENDIX A: COMPUTATIONAL DETAILS

The numerical results for the coupling parameters are
based on first-principles electronic structure calculations per-
formed using the spin-polarized relativistic KKR (SPR-KKR)
Green’s function method [55,56]. The calculations were done
in a fully relativistic mode, except for some special cases
pointed out in the paper, where scaling of the spin-orbit
interaction was applied. All calculations have been performed
using the atomic-sphere approximation within the framework
of the local spin density approximation to spin density func-
tional theory, using a parametrization for the exchange and
correlation potential as given by Vosko et al. [57]. For the
angular momentum expansion of the Green’s function the
angular momentum cutoff lmax = 3 was used.

To demonstrate the properties of multispin interactions,
several reference systems have been considered. These are the
3d metals bcc Fe (lattice parameters a = 5.40 a.u.), fcc Ni
(a = 6.65 a.u.), and hcp Co (a = 4.72 a.u., c/a = 1.62), L10

compounds FePt (a = 7.36 a.u., c/a = 0.95) and FePd (a =
7.28 a.u., c/a = 0.96), as well as the multilayer model sys-
tems (Cu/Fe/Pt)n, (Cu/Co/Pt)n, and (Cu/Mn/Pt)n having
fcc structure with (111) orientation of the layers. The lattice
parameter a = 7.407 a.u. was used for all systems. The k
mesh 98 × 98 × 98 was used for the integration over the Bril-
louin zone of the considered 3d metals, while 41 × 41 × 41
was used for the (Cu/X/Pt)n multilayers, and 38 × 38 × 11
for 1ML Fe(110).

The calculations for 1ML of bcc Fe (a = 5.40 a.u.) have
been performed in the supercell geometry with Fe layers
separated by three vacuum layers. This decoupling was suffi-
cient to demonstrate the properties of the exchange interaction
parameters for the 2D system.

Another system dealt with is an Fe overlayer on the top
of a TMDC compound Fe/1H − TaTe2 and Fe/1H − WTe2,
with space group P63/mmc for the bulk TMDC compounds.
These calculations have been performed in supercell geom-
etry with the Fe/TMDC films separated by vacuum layers.
The lattice parameters are a = 6.82 a.u. and c = 26.29 a.u.
for 1H − TaTe2 and a = 6.69 a.u. and c = 25.71 a.u. for
1H − WTe2. More structure information about TMDC mono-
layers can be found for example in Ref. [58].
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APPENDIX B

In the following we present some more details concern-
ing the mapping of the ab initio magnetic energy to the
Heisenberg Hamiltonian. The main idea is demonstrated first
dealing with the bilinear interatomic exchange interactions.
In order to derive higher-order interactions, rather lengthy
transformations are required, which follow a scheme similar
to that outlined to get the expressions for bilinear interactions.

The expressions for the exchange interaction parameters
can be obtained by comparing the energy change due to
spin modulations characterized by a wave vector �q, described
either in the first-principles formulation or based on the
extended Heisenberg model. Obviously, one has to identify
the terms having the same dependence on the interatomic
distance, in particular by comparing the derivatives with re-
spect to the �q vector in the limit of q = 0. It may be useful
also to select the elements giving zero contributions to the
corresponding energy derivatives.

1. Bilinear terms

a. Spin modulation 1

Let us start with the bilinear terns in the Heisenberg
Hamiltonian:

H (2) = −
∑
i, j

Ji j (ŝi · ŝ j ) −
∑
i, j

�Di j · (ŝi × ŝ j ). (B1)

Depending on the considered interaction parameters different
types of spin modulation are used to simplify the derivation. In
the present case we use the geometry with the magnetization
along the z axis, and the spin spiral having the form

ŝi = (sin θ cos(�q · �R), sin θ sin(�q · �R), cos θ ). (B2)

This leads to the the following energy change for the Heisen-
berg model:

�E (2)(�q) = −
∑
i, j

Ji j[sin2 θ cos �q · ( �Rj − �Ri ) + cos2 θ − 1]

−
∑
i, j

Dz
i j sin2 θ sin �q · ( �Rj − �Ri )

−
∑
i, j

Dx
i j sin θ cos θ [sin(�q · �Ri ) − sin(�q · �Rj )]

−
∑
i, j

Dy
i j sin θ cos θ [cos(�q · �Rj ) − cos(�q · �Ri )].

(B3)

Using the relation for the sum over the lattice sites �Ri,

1

N

N∑
i

e−i �q· �Ri = δ�q,0, (B4)

one can show that the terms due to Dx
i j and Dy

i j in the present
case do not give contributions to the derivatives with respect

to the �q vector:

N∑
i, j

Dy
i j{cos(�q · �Rj ) − cos(�q · �Ri )}

=
N∑
j

[
N∑
i

Dy
i j

]
cos(�q · �Rj ) −

N∑
i

⎡
⎣ N∑

j

Dy
i j

⎤
⎦ cos(�q · �Ri )

= NDy
0(δ�q,0 − δ�q,0) = 0 (B5)

and

N∑
i, j

Dx
i j{sin(�q · �Rj ) − sin(�q · �Ri )}

=
N∑
j

[
N∑
i

Dx
i j

]
sin(�q · �Rj ) −

N∑
i

⎡
⎣ N∑

j

Dx
i j

⎤
⎦ sin(�q · �Ri )

= 0; (B6)

taking into account that the sum over i ( j) in square brackets
in these expressions gives the same value for each site j (i).

Taking the first- and second-order derivatives of the energy
change �E (�q) [Eq. (B3)] with respect to �q, one obtains the
expressions contributed either by the DMI interactions

∂

∂ �q�E (�q)

∣∣∣∣
q→0

= − sin2 θ

N∑
i �= j

Dz
i j q̂ · ( �Ri − �Rj ) (B7)

or by the isotropic exchange interaction

∂2

∂ �q2
�E (�q)

∣∣∣∣
q→0

= sin2 θ
∑
i, j

Ji j[q̂ · ( �Ri − �Rj )]
2 (B8)

with q̂ = �q/| �q| the unit vector giving the direction of the wave
vector �q.

Now let us consider the first-principles energy change due
to a spin spiral, evaluated in terms of the Green’s function

�E (2) = − 1

π
Im Tr

∫ EF

dE �V G0�V G0. (B9)

Substituting the multiple-scattering representation for the
Green’s function into this equation together with the pertur-
bation

�V (�r) =
∑

i

β(�σ · ŝi − σz )Bxc(�r), (B10)

for a spin spiral according to Eq. (B2), and introducing the
definition

J αβ
i j = 1

2π
Im Tr

∫ EF

dE T α
i τi jT

β
j τ ji, (B11)
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we obtain the following symmetrized expressions for the energy change:

�E (2) =
∑
i, j

sin2 θ

[
1

2

(
J xx

i j + J yy
i j

)
cos �q · ( �Ri − �Rj ) + J zz

i j (cos θ − 1)2

]
+ sin2 θ

1

2

(
J xx

i j − J yy
i j

)
cos �q · ( �Ri + �Rj )

+ sin2 θ
1

2

(
J xy

i j + J yx
i j

)
sin �q · ( �Ri + �Rj ) + sin2 θ

1

2

(
J xy

i j − J yx
i j

)
sin �q · ( �Rj − �Ri )

+ sin θ (cos θ − 1)
[
J xz

i j cos(�q · �Ri ) + J zx
i j cos(�q · �Rj )

] + sin θ (cos θ − 1)
[
J yz

i j sin(�q · �Ri ) + J zy
i j sin(�q · �Rj )

]
.

(B12)

In Eq. (B11) we use T α
i = 〈Zi|βσαBxc,i|Zi〉 and the prefactor 1/2 prevents a double counting of contribution to the energy

associated with a pair of atoms.
Using again Eq. (B4) for the sum over the lattice sites �Ri one can show that the derivatives with respect to �q of the off-diagonal

terms associated with the Jαz
i j and Jzα

i j parameters vanish. For instance, one finds

N∑
i, j

J yz
i j sin(�q · �Ri ) = − i

2

N∑
i

⎡
⎣∑

j

J yz
i j

⎤
⎦(ei(�q· �Ri ) − e−i(�q· �Ri ) )

= − i

2
J yz

0

N∑
i

(ei(�q· �Ri ) − e−i(�q· �Ri ) ) = − i

2
NJyz

0 (δ�q,0 − δ�q,0) = 0 (B13)

since the sum
∑

j Jαβ
i j = Jαβ

0 is the same for all sites i. For the other term one finds

N∑
i, j

J xz
i j cos(�q · �Ri ) = N

2
J xz

0 δ�q,0. (B14)

This value does not depend on q. As a result, its derivative with respect to �q, used to derive the expression for the exchange
parameters, vanishes. The same concerns also the exchange parameters J zy and J zx.

Transforming the term proportional to (J xy
i j + J yx

i j ) and using again Eq. (B4), one obtains

N∑
i, j

(
J xy

i j + J yx
i j

)
sin �q · ( �Ri + �Rj ) =

N∑
i, j

(
J xy

i j + J yx
i j

){cos[�q · ( �Ri − �Rj )] sin(2�q · �Rj ) + sin[�q · ( �Ri − �Rj )] cos(2�q · �Rj )}

=
N∑
i

⎧⎨
⎩

N∑
j

(
J xy

i j + J yx
i j

)
cos[�q · ( �Ri − �Rj )]

⎫⎬
⎭ sin(2�q · �Ri )

+
N∑
i

⎧⎨
⎩

N∑
j

(
J xy

i j + J yx
i j

)
sin[�q · ( �Ri − �Rj )]

⎫⎬
⎭ cos(2�q · �Ri ) = const., (B15)

where the first sum vanishes due to the summation over i; the sum does not depend on q. The same behavior is shown by the
term proportional to (J xx

i j − J yy
i j ).

Taking the first- and second-order derivatives of the energy change �E (2)(�q) with respect to �q, Eq. (B12) leads to the
expressions contributed either by the DMI interactions

∂

∂ �q�E (2)(�q)

∣∣∣∣
q→0

= − sin2 θ

N∑
i �= j

1

2

(
J xy

i j − J yx
i j

)
q̂ · ( �Ri − �Rj ) (B16)

or the isotropic exchange

∂2

∂ �q2
�E (2)(�q)

∣∣∣∣
q→0

= sin2 θ

N∑
i �= j

1

2

(
J xx

i j + J yy
i j

)
[q̂ · ( �Ri − �Rj )]

2. (B17)

Comparing these equations with the Eqs. (B7) and (B8), one obtains for the DMI

Dz
i j = 1

2

(
J xy

i j − J yx
i j

)
(B18)

and for the isotropic exchange

Ji j = 1
2

(
J xx

i j + J yy
i j

)
. (B19)
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The two others DMI components are discussed in detail in previous works [41,42].

b. Spin modulation 2

For comparison, we use here also the spin modulation within the xy plane, characterized by two q vectors:

ŝi = (sin(�q1 · �Ri )cos(�q2 · �Ri ), sin(�q2 · �Ri ), cos(�q1 · �Ri )cos(�q2 · �Ri )). (B20)

The corresponding results can be used later to derive the three-spin and biquadratic DMI-like interactions.
Within the Heisenberg model the second-order terms associated with the isotropic exchange interaction are given by

�E (2) = −
∑
i, j

Ji j[(ŝi · ŝ j ) − 1] = −
∑
i, j

Ji j[cos �q1 · ( �Rj − �Rj ) cos(�q2 · �Ri ) cos(�q2 · �Rj ) + sin(�q2 · �Ri ) sin(�q2 · �Rj ) − 1].

(B21)

Taking q1 = 0, the second-order derivative of the energy with respect to q2 is given by

∂2

∂ �q2
2

�E (2) =
∑
i, j

Ji j[q̂ · ( �Rj − �Ri )]
2. (B22)

On the other hand, taking q2 = 0, the second-order derivative of the energy with respect to q1 has the form

∂2

∂ �q2
1

�E (2) =
∑
i, j

Ji j[q̂ · ( �Rj − �Ri )]
2. (B23)

In the first-principles approach, substituting the perturbation due to the spin modulation according to Eq. (B20) and using the
definition in Eq. (B11), one obtains

�E (2) = −
∑
i, j

J xx
i j sin(�q1 · �Ri ) cos(�q2 · �Ri ) sin(�q1 · �Rj ) cos(�q2 · �Rj ) + J yy

i j sin(�q2 · �Ri ) sin(�q2 · �Rj )

+J zz
i j [cos(�q1 · �Ri ) cos(�q2 · �Ri ) − 1][cos( �q1 · �Ri ) cos(�q2 · �Ri ) − 1]

+J xy
i j sin(�q1 · �Ri ) cos(�q2 · �Ri ) sin(�q2 · �Rj ) + J yx

i j sin(�q2 · �Ri ) sin(�q2 · �Rj ) cos(�q2 · �Rj )

+J xz
i j sin(�q1 · �Ri ) cos(�q2 · �Ri )[cos(�q1 · �Rj ) cos(�q2 · �Rj ) − 1]

+J zx
i j [cos(�q1 · �Ri ) cos(�q2 · �Ri ) − 1] sin( �q1 · �Rj ) cos(�q2 · �Rj )

+J yz
i j sin(�q2 · �Ri )[cos(�q1 · �Rj ) cos(�q2 · �Rj ) − 1] + J zy

i j [cos(�q1 · �Ri ) cos(�q2 · �Ri ) − 1] sin( �q2 · �Rj ). (B24)

One can show that all off-diagonal terms with respect to the spatial directions (x, y, z) in this expression do not contribute to the
derivatives with respect to the wave vector.

Omitting the terms giving no contribution to the second-order derivatives with respect to �q, one obtains after some
transformations the expression

�E (2) = 1

2

∑
i, j

({
J xx

i j cos[�q1 · ( �Ri − �Rj )] + J yy
i j

}
cos[�q2 · ( �Ri − �Rj )] + {

J xx
i j cos[�q1 · ( �Ri − �Rj )]

−J yy
i j

}
cos[�q2 · ( �Ri + �Rj )] + · · · ). (B25)

The second term does not contribute to the q dependence of the energy (see discussion above). Taking q1 = 0 and evaluating the
second-order derivative of the energy with respect to �q2 one obtains

∂2

∂q2
2

�E (2) = 1

2

∑
i, j

[q̂ · ( �Rj − �Ri )]
2
(
J xx

i j + J yy
i j

)
. (B26)

Comparing this expression with the corresponding expression obtained for the Heisenberg model leads to the expression for
isotropic exchange parameter given by Eq. (B19), showing that both modulations lead to the same result.
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2. Fourth-order interactions

a. Four-spin isotropic interactions and z component of DMI-like exchange interactions

Next, we consider four-spin terms. First, we will deal with the isotropic exchange interaction and DMI-like terms in the
extended Heisenberg Hamiltonian

H (4) = −
∑

i, j,k,l

[
Js

i jkl (ŝi · ŝ j )(ŝk · ŝl ) + �Di jkl · (ŝi × ŝ j )(ŝk · ŝl )
]
. (B27)

For the sake of convenience we keep only the terms required to derive the expressions for the isotropic and DMI-like (only z
component) exchange-coupling parameters, following the same idea as used to derive the bilinear exchange parameters. The FM
state with the magnetization along the z axis is used as a reference state for a spin-spiral characterized by the vector �q leading
to a q-dependent energy change. The terms associated with the isotropic exchange interactions Js

i jkl are proportional to q4. On
the other hand, the terms proportional to q3 are associated with the DMI-like interactions Dz

i jkl ; i.e., they depend on vector
product and scalar product of two pairs of spin moments. We focus here on these terms, for which we can find a one-to-one
correspondence between the model and first-principles energy terms. Following the idea used to derive the bilinear terms, for
the sake of simplicity we consider now only the terms giving raise to a q dependence of the energy. In this case, the Hamiltonian
can be written as follows:

H (4) = −
∑

i, j,k,l

[
Js

i jkl

(
sx

i sx
j + sy

i sy
j

)(
sx

ksx
l + sy

ksy
l

) + Dz
i jkl

(
sx

i sy
j − sy

i sx
j

)(
sx

ksx
l + sy

ksy
l

) + · · · ], (B28)

with the summation over all sites in the lattice with i �= j and k �= l . A similar summation occurs also for the first-principles
approach, leading to a one-to-one correspondence between various terms in the two approaches. In the following, however, we
will focus at the end on the three-spin and biquadratic interactions.

Using the spin modulation in the following form,

ŝi = (sinθ cos(�q · �Ri ), sinθ sin(�q · �Ri ), cosθ ), (B29)

the corresponding energy change within the Heisenberg model is given by

�E (4) = −
∑

i, j,k,l

[
Js

i jkl sin4θ cos�q · ( �Ri − �Rj ) cos�q · ( �Rk − �Rl ) + Dz
i jkl sin4θ sin�q · ( �Ri − �Rj ) cos�q · ( �Rk − �Rl ) + · · · ].

(B30)

In order to derive the expressions for the isotropic and DMI-like interaction parameters, we consider the energy derivatives
∂2

∂q2
∂2

∂q2 �E (4) and ∂
∂q

∂2

∂q2 �E (4) in the limit of q = 0. These derivatives are applied to the terms corresponding to different pairs of
spin moments. As a results, one obtains

∂

∂q

∂2

∂q2

∣∣∣∣
q→0

�E (4) =
∑

i, j,k,l

Dz
i jkl sin4θ ( �Ri − �Rj )( �Rk − �Rl )

2 (B31)

and the fourth-order derivative terms

∂2

∂q2

∂2

∂q2

∣∣∣∣
q→0

�E (4) = −
∑

i, j,k,l

Js
i jkl sin4θ ( �Ri − �Rj )

2( �Rk − �Rl )
2. (B32)

Note that we do not consider in the last expression the terms ∼( �Rk − �Rl )4 or ∼( �Ri − �Rj )4, which do not contribute to the q
dependence of the energy which is associated with the second pair of spin moments.

Next, we evaluate the first-principles energy change due to the same spin spiral. For this purpose we use the fourth-order
energy term with respect to the perturbation:

�E (4) = − 1

π

∑
i, j,k,l

Im Tr
∫ EF

dE �V G�V G�V G�V G

= − 1

π

∑
i, j,k,l

Im Tr
∫ EF

dE 〈Zi|�V |Zi〉τi j〈Zj |�V |Zj〉τ jk〈Zk|�V |Zk〉τkl〈Zl |�V |Zl〉τli. (B33)
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Using the spin-spiral according to Eq. (B29) and keeping only terms leading to derivatives in the form of Eqs. (B31) and (B32),
we obtain

�E (4) = − 1

π

∑
i, j,k,l

Im Tr
∫ EF

dE sin4θ
[
T x

i τi jT
x
j τ jkT x

k τklT
x

l τli cos(�q · �Ri ) cos(�q · �Rj ) cos(�q · �Rk ) cos(�q · �Rl )

+ T x
i τi jT

x
j τ jkT y

k τklT
y

l τli cos(�q · �Ri ) cos(�q · �Rj ) sin(�q · �Rk ) sin(�q · �Rl )

+ T y
i τi jT

y
j τ jkT x

k τkl T
x

l τli sin(�q · �Ri ) sin(�q · �Rj ) cos(�q · �Rk ) cos(�q · �Rl )

+ T y
i τi jT

y
j τ jkT y

k τkl T
y

l τli sin(�q · �Ri ) sin(�q · �Rj ) sin(�q · �Rk ) sin(�q · �Rl )

+ T x
i τi jT

y
j τ jkT x

k τklT
x

l τli cos(�q · �Ri ) sin(�q · �Rj ) cos(�q · �Rk ) cos(�q · �Rl )

+ T y
i τi jT

x
j τ jkT y

k τkl T
y

l τli sin(�q · �Ri ) cos(�q · �Rj ) sin(�q · �Rk ) sin(�q · �Rl )

+ T y
i τi jT

x
j τ jkT x

k τklT
x

l τli sin(�q · �Ri ) cos(�q · �Rj ) cos(�q · �Rk ) cos(�q · �Rl )

+ T x
i τi jT

y
j τ jkT y

k τkl T
y

l τli cos(�q · �Ri ) sin(�q · �Rj ) sin(�q · �Rk ) sin(�q · �Rl ) + · · · ]. (B34)

By using the definition

J αβγ δ

i jkl = 1

2π
Im Tr

∫ EF

dE T α
i τi jT

β
j τ jkT γ

k τklT
δ

l τli (B35)

with a factor 1
2 to have the same form for the biquadratic term in the Hamiltonian that the bilinear term has, one gets after some

transformations the expression

�E (4) = −1

4

∑
i, j,k,l

sin4θ
{(
J xxxx

i jkl + J xxyy
i jkl + J yyxx

i jkl + J yyyy
i jkl

)
cos[�q · ( �Ri − �Rj )]cos[�q · ( �Rk − �Rl )]

+ (
J xxxx

i jkl + J xxyy
i jkl − J yyxx

i jkl − J yyyy
i jkl

)
cos[�q · ( �Ri + �Rj )]cos[�q · ( �Rk − �Rl )]

+ (
J xxxx

i jkl − J xxyy
i jkl + J yyxx

i jkl − J yyyy
i jkl

)
cos[�q · ( �Ri − �Rj )]cos[�q · ( �Rk + �Rl )]

+ (
J xxxx

i jkl − J xxyy
i jkl − J yyxx

i jkl + J yyyy
i jkl

)
cos[�q · ( �Ri + �Rj )]cos[�q · ( �Rk + �Rl )]

+ (
J xyxx

i jkl + J xyyy
i jkl − J yxxx

i jkl − J yxyy
i jkl

)
sin[�q · ( �Ri − �Rj )]cos[�q · ( �Rk − �Rl )]

+ (
J xyxx

i jkl + J xyyy
i jkl + J yxxx

i jkl + J yxyy
i jkl

)
sin[�q · ( �Ri + �Rj )]cos[�q · ( �Rk − �Rl )]

+ (
J xyxx

i jkl − J xyyy
i jkl + J yxxx

i jkl − J yxyy
i jkl

)
sin[�q · ( �Ri − �Rj )]cos[�q · ( �Rk + �Rl )]

+ (
J xyxx

i jkl − J xyyy
i jkl − J yxxx

i jkl + J yxyy
i jkl

)
sin[�q · ( �Ri + �Rj )]cos[�q · ( �Rk + �Rl )] + · · · }. (B36)

Evaluating the derivatives ∂
∂q

∂2

∂q2 �E (4) and ∂2

∂q2
∂2

∂q2 �E (4) in the limit q = 0, and equating to corresponding terms in Eqs. (B31)
and (B32), one obtains

Js
i jkl = 1

4

[(
J xxxx

i jkl + J xxyy
i jkl + J yyxx

i jkl + J yyyy
i jkl

)]
, (B37)

Dz
i jkl = 1

4

[(
J xyxx

i jkl + J xyyy
i jkl − J yxxx

i jkl − J yxyy
i jkl

)]
. (B38)

b. Biquadratic and 3-spin DMI-like interactions: The x and y components

To obtain the x and y components of the 4-spin DMI-like interactions we will follow the scheme used to derive the
corresponding components of the bilinear DMI. The corresponding term in the Heisenberg Hamiltonian has the form

Ha(4) = −
∑

i, j,k,l

�Di jkl · (ŝi × ŝ j )(ŝk · ŝl ). (B39)

Here we use the spin modulation characterized by two �q vectors, which allows the simultaneous tilting of spin moments toward
the x and y axes:

ŝi = (sin(�q1 · �Ri ) cos(�q2 · �Ri ), sin(�q2 · �Ri ), cos(�q1 · �Ri )cos(�q2 · �Ri )). (B40)
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The corresponding contribution to the energy in the model approach is now

�Ea(4) = −
∑

i, j,k,l

{
Dx

i jkl [sin(�q2 · �Ri ) cos(�q1 · �Rj )cos(�q2 · �Rj ) − sin(�q2 · �Rj ) cos(�q1 · �Ri ) cos(�q2 · �Ri )]

+Dy
i jkl sin[�q1 · ( �Rj − �Ri )]cos(�q2 · �Ri ) cos(�q2 · �Rj )

+Dz
i jkl [sin(�q1 · �Ri ) cos(�q2 · �Ri ) sin(�q2 · �Rj ) − sin(�q1 · �Rj ) cos(�q2 · �Rj ) sin(�q2 · �Ri )]

}
×{cos[�q1 · ( �Rk − �Rl )]cos(�q2 · �Rk ) cos(�q2 · �Rl ) + sin(�q2 · �Rk ) sin(�q2 · �Rl )}. (B41)

The 4-spin DMI-like terms involve a cross product of the spin moments on sites i and j and a scalar product of the spin
moments on sites k and l . Therefore, to derive the expression for the exchange parameters, one has to consider the first-order
derivative with respect to the wave vector of the part associated with the atoms i and j and the second-order derivative of the
part associated with the atoms k and l . Taking first q1 = 0, one obtains

∂

∂q2

∂2

∂q2
2

∣∣∣∣
q2=0

�Ea(4) =
∑

i, j,k,l

Dx
i jkl [q̂2 · ( �Rj − �Ri )][q̂2 · ( �Rk − �Rl )]

2. (B42)

Calculating alternatively first derivatives ∂
∂q1

|q1=0�Ea(4) and then ∂2

∂q2
2
|q2=0�Ea(4), one obtains

∂

∂q1

∣∣∣∣
q1=0

∂2

∂q2
2

∣∣∣∣
q2=0

�Ea(4) =
∑

i, j,k,l

Dy
i jkl [q̂1 · ( �Rj − �Ri )][q̂2 · ( �Rk − �Rl )]

2. (B43)

In the case l = j we obtain the three-spin interactions, while in the case l = j, k = i we will get the DMI-like biquadratic
interactions.

Let us focus on the three-spin DMI-like interaction Dx(y)
i jk j . In the first-principles approach, let us consider the perturbation as

follows:

�V =
∑

m

δvm, (B44)

with δvm = β(�σ · ŝm − σz )Bxc(�r) and m running over all lattice sites, implying a spatial spin modulation in the form as given by
Eq. (B40). We use the third-order term of the energy expansion

�E (3) = − 1

π

∑
i, j,k,l

Im Tr
∫ EF

dE (E − EF )G�V G�V G�V G (B45)

= − 1

π

∑
i, j,k,l

Im Tr
∫ EF

dE (E − EF )〈Zi|Zi〉τi j〈Zj |�V |Zj〉τ jk〈Zk|�V |Zk〉τk j〈Zj |�V |Zj〉τ ji (B46)

with the summation over all indexes i �= j and k �= j.
Assuming that the coupling of the spin moments i and j has the form of a cross product and that of the spin moments k and

j has the form of a scalar product, this expression can be written in the symmetrized form (in analogy to the DMI) taking into
account that the perturbation �vm can be applied either to site i or to site j. Using the trace invariance with respect to circular
permutations, this leads to the expression

�E (3) = − 1

π

1

4

∑
i, j,k, j

Im Tr
∫ EF

dE (E − EF )[τ ji〈Zi|Zi〉τi j〈Zj |δv j |Zj〉(τ jk〈Zk|δvk|Zk〉τk j〈Zj |δv j |Zj〉)

+ τ ji〈Zi|δvi|Zi〉τi j〈Zj |Zj〉(τ jk〈Zk|δvk|Zk〉τk j〈Zj |δv j |Zj〉) + 〈Zj |Zj〉τ ji〈Zi|δv j |Zi〉τi j (〈Zj |δv j |Zj〉τ jk〈Zk|δvk|Zk〉τk j )

+〈Zj |δv j |Zj〉τ ji〈Zi|Zi〉τi j (〈Zj |δv j |Zj〉τ jk〈Zk|δvk|Zk〉τk j )], (B47)

where the terms in the parentheses are interpreted as those
corresponding to the scalar product of the spin moments k and
j. Using the spin modulation according to Eq. (B40), this part
has to be reduced in the analogy to the bilinear case leading to
Eq. (B26).

Taking the derivatives for this energy term with respect to
�q1 and �q2, as in the case of Eqs. (B42) and (B43), one obtains
the expressions for three-spin DMI-like interaction parameter,
as given in Eqs. (19) and (22).

3. Three-spin chiral interactions

To derive the tree-spin chiral interactions, we follow the
idea used to derive the x and y components of the DMI-like
interactions discussed above. In this case also one has to use
the spin modulation given by Eq. (B40) and characterized by
two wave vectors to allow spin moment tiltings toward the x
and y axes simultaneously. The term associated with the three-
spin chiral exchange interaction in the extended Heisenberg
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Hamiltonian is given by

H (3) = −
∑

i �= j �=k

Ji jk ŝi · (ŝ j × ŝk ). (B48)

The three-spin energy term in both approaches has to have the
same properties with respect to permutation. The Heisenberg
term Eq. (B48) can be written in the form

H (3) = −1

3

∑
i �= j �=k

Ji jk[ŝi · (ŝ j × ŝk ) + ŝk · (ŝ j × ŝ j )

+ ŝ j · (ŝk × ŝi)]. (B49)

On the first-principles level, we use also the second-order
term of the energy expansion given by the expression

�E (2) = − 1

π
Im Tr

∫ EF

dE (E − EF ) G0�V G0�V G0.

(B50)

To cover different forms of the triple scalar product in
Eq. (B49), the first-principles energy Eq. (B50) (in analogy
to the case of 4-spin DMI-like expression) should be written
as follows:

�E (3) = − 1

π

1

3

∑
i �= j �=k

Im Tr
∫ EF

dE (E − EF )

× [〈Zi|Zi〉τi j〈Zj |δv j |Zj〉τ jk〈Zk|δvk|Zk〉τki

+〈Zi|δvi|Zi〉τi j〈Zj |Zj〉τ jk〈Zk|δvk|Zk〉τki

+〈Zi|δvi|Zi〉τi j〈Zj |δv j |Zj〉τ jk〈Zk|Zk〉τki].

(B51)

Using the spin modulation according to Eq. (B40) the
model and first-principles energy expressions have to be re-
duced to a form having a corresponding q dependence of
the terms giving nonvanishing second-order derivatives with
respect to �q1 and �q2 in the limits q1 → 0, q2 → 0, which are
proportional to {ẑ · [( �Ri − �Rj ) × ( �Rk − �Rj )]}. Equating these
expressions gives access to the three-spin chiral interactions
as given by Eq. (26).
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