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Due to the exponential increase in the numerical effort with the number of degrees of freedom, moving basis
functions have a long history in quantum dynamics. In addition, spawning of new basis functions is routinely
applied. Here, we advocate the opposite process: the programed removal of motional freedom of selected basis
functions. This is a necessity for converged numerical results with respect to the size of a nonorthogonal basis
because generically two or more states approach each other too closely early on, rendering unstable the matrix
inversion, required to make the equations of motion explicit. Applications to the sub-Ohmic spin-boson model
as well as to polaron dynamics in a Holstein molecular-crystal model demonstrate the power of the proposed

methodology.
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I. INTRODUCTION

The numerical effort for solving the time-independent
Schrddinger equation (TISE) as well as the time-dependent
Schrodinger equation (TDSE) scales exponentially with the
number of degrees of freedom. This is the reason why, up to
the present date, one of the largest molecular quantum systems
whose dynamics can be solved in an ab initio way in its full
dimensionality, i.e., treating fully quantum mechanically all
the degrees of freedom by a suitable choice of fixed basis
functions, is the rather small laser-driven hydrogen molecule
H,, consisting of just four particles [1]. Therefore, a lot of
effort is devoted to the meticulous choice of those fixed
basis functions with recent progress being made by using
a small von Neumann basis of phase-space Gaussians with
periodic boundary conditions and biorthogonal exchange for
the solution of the TISE for molecular problems [2].

In the TDSE case, much more flexible, however, are time-
dependent basis functions, that move to and/or are created
at positions where the support of the wave function is. As
reviewed below, they can be dealt with in a variational ap-
proach to the quantum dynamics as, e.g., in methods using
coherent states, such as Gaussian-based multiconfiguration
time-dependent Hartree (G-MCTDH) methods [3,4] as well
as the Davydov-Ansatz [5,6] and standard multiconfiguration
methods [7,8]. An in-depth review of the variational multi-
configurational Gaussian (vMCG) method with a discussion
of numerical bottlenecks is given in Ref. [9]. Furthermore,
also moving position space grids have been considered, e.g.,
in the context of laser-driven dynamics of molecules [10].
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An intriguing possibility that has been explored for the basis
function case is the creation of new such functions, for elec-
tronically nonadiabatic dynamics whenever the wave packet
explores a new potential-energy surface. If the forces for the
classical dynamics of the parameters of the Gaussians are
calculated on the fly, this approach is called ab initio multiple
spawning [11,12]. In general, all methods using Gaussian
basis functions due to their locality are well suited for on the
fly dynamics as well as for treating finite-temperature initial
conditions. In the latter case, the P-function representation
of the canonical density operator may serve as a sampling
density [13].

In the present paper, we elaborate on an option that seems
counterintuitive at first sight. This is the programed removal
of a basis function’s freedom, which we call apoptosis of basis
functions, in contrast to the spawning alluded to above. Why
would one want to do so? The reason is that the numerical
stability of schemes that use nonorthogonal time-dependent
basis functions to a large extent hinges on the possibility to
render the equations to be discussed below explicit. To this
end, some form of matrix inversion has to be applied [9].
The matrix to be inverted becomes singular, however, in case
two (or more) basis functions approach each other too closely,
which generically happens close to convergence [14] and is
referred to as the linear dependency problem.

We will define a suitable measure for closeness and show
that the removal of basis function freedom if that measure un-
dershoots a certain threshold leads to well-behaved numerics.
Surprisingly, then already a small number of basis functions
is enough to obtain converged results for the full quantum
dynamics of system and environment in an open systems
context. In the following, the open system is mimicked by
discretizing the continuous spectral density of environmental
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oscillators using a suitable density of frequencies [13]. The
method that we will employ to solve the TDSE of the
composite system is the multi Davydov-Ansatz of type D2,
developed in the Zhao Group [15].

The paper is structured as follows: First, in Sec. 1I, we
introduce the methodological foundation for a generic many
particle Hamiltonian and derive the equations of motion for
the coefficients as well as the basis function parameters
from a variational principle. In Sec. III, the Hamiltonian
is specified to be of system-bath type whereby the system
of interest is treated using orthogonal basis functions. The
treatment of the harmonic bath using coherent states in the
present context then leads to the multi Davydov-Ansatz. After
introducing our apoptosis strategy to circumvent the linear
dependency problem close to convergence, this ansatz serves
as our workhorse for the solution of the dynamics of two
different model systems in Sec. IV: the spin-boson model
as well as the Holstein molecular-crystal model. Conclusions
and an outlook are given in Sec. V. In the Appendix, remarks
on the gauge freedom of the wave-function ansatz and details
of the regularization procedure as well as a convergence study
for the spin-boson model can be found.

II. VARIATIONAL COHERENT-STATE ANSATZ

We set the stage by first considering an N-particle Hilbert
space and a dynamics being governed by the generic Hamil-
tonian,

N
A= Hi+ ) Wy, M
=1

i<j

with one-particle Hamiltonians A ; and two-particle interac-
tions W; i

An ansatz for the solution of the TDSE is given in terms of
multimode coherent states (CSs) of multiplicity M by

M
(W) = > Al (1)), @)

k=1

with time-dependent complex coefficients Ax(¢#) and time-
dependent N-dimensional complex displacements o (1). N-
mode CSs are given by an N-fold tensor product,

N

k) = Q) lew ) 3)

j=1
of normalized single-mode CSs,
| ;) = exp [—5lewj|*] expla;a’110,), @)

where El; is the creation operator and |0;) is the ground state of
a suitably chosen jth harmonic oscillator and the CSs form an
overcomplete and nonorthogonal basis set [16]. The generic
Hamiltonian in (1) is then to be expressed in terms of the
creation and annihilation operators of the harmonic oscillator
underlying the CSs. In the cases to be considered below, the
bath part of the Hamiltonian is harmonic, and this task is
trivial.

The time evolution of the coefficients and the displace-
ments is governed by the Dirac-Frenkel variational principle
[17,18],

(8Wslio, — H|ws) =0, Q)
with 7 = 1 throughout the paper and where the variation reads

M

N

1 ~ *

(S| = > | 5A7+A;*Z[<—Ea,j+aj)aalj
=1

=1

1
_ §a7j8a11:| . (6)

All appearing variations are mutually independent. Thus, the
equations of motion read

(o lid, — W) =0, @)
Af(oyla;(id, — H)| W) = 0, ®)

where the first equation was used to simplify the second one.
These equations are similar to the vMCG ones [9], but we use
a novel solution strategy, detailed below.

By insertion of the explicit expression for the time-
derivative of the ansatz wave function,

)=

M
k=1

N
. 1 ko ok
Ay + A E |: - E(akjakj + ajor;)
j=1

ta jaj} ), ©)

Egs. (7) and (8) can be solved in three steps. First, to make
progress, we introduce the combination of the time deriva-
tives,

: N
X = A+ ALY — 5w +aje) | (10)

j=1

appearing in Eq. (9) as auxiliary variables, which is motivated
by the gauge freedom inherent in the variational principle, as
explained in more detail in Appendix A. Second, the linear
system of equations for X; as well as dy; is solved. To this
end, we bring it into the form shown in Appendix B without
splitting real and imaginary parts. The inversion problem
is favorably tackled by using lower-upper factorization with
partial pivoting [19]. Third, the obtained right-hand sides of
the equations for A, and dy ; are then used in the final step to
integrate the highly nonlinear system of differential equations,
favorably by using an adaptive Runge-Kutta method [19].

Obviously, the second step above is problematic if the
system matrix is (close to) singular, which is the case if either

(i) one of the coefficients A; = 0 or if

(ii) two CSs approach each other too closely (e; ~ a; for
some k # 1).
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This can most easily be seen by looking at the case of N =
1 for which Eqgs. (7) and (8) take the form, see also Ref. [3],

M

i) (el Xe + Averfon] = (| H|W), (1)
k=1

AT " (eulon)lenXe + Ac(1 + of )] = Aj (o aHl | W),
k=1 (12)

While for A, = 0, one of the Eqgs. (12) turns into 0~ 0
for oy ~ «;, two of the Eqs. (11) and two of the Egs. (12)
become approximately linearly dependent. We note in passing
that canceling A} in the last equation is not appropriate for
several reasons. First, in the case of A; = 0, the time evolu-
tion of the corresponding CS |oy) cannot be determined in
terms of a first-order differential equation [20]. Second, the in-
verse of the coefficient matrix corresponding to (11) and (12)
would not be unitary anymore, and norm conservation and sta-
bility would be lost. More details can be found in Appendix B.
While the less severe first case (i) mentioned above may
be treated by a regularization well known from MCTDH
[21] and discussed in detail in Appendix B, the second case
(ii) is the more severe one known as the CS convergence
issue [9]. To put it pictorially: whereas the birth of a CS—
accomplished by its equipment with an e-sized coefficient—is
well behaved, it is not known how the death of a CS—
desirable if two CSs approach each other too closely, which
generically happens close to convergence with respect to
M [14]—may be implemented. In order to circumvent this
problem, various approaches, such as reexpansion schemes
[4,9], multiplication of the CSs with orthogonal polynomials
[22,23], orthogonalizing momentum-symmetrized Gaussians
[24,25], and projector splitting [26] have been applied.

M

III. THE MULTI-DAVYDOV ANSATZ AND APOPTOSIS

Before we show how issue (ii) may be overcome, let
us outline briefly how to apply the ansatz (2) in a more
general context. If a “system of interest” of finite Hilbert space
dimension Ng, e.g., a spin system is coupled to an environment
of N uncoupled harmonic oscillators,

Wi =0, (13)

the description of the environment by CSs seems well jus-
tified. Equations (5)—(8) above may easily be extended to
such a setting if an orthonormal basis {|¢,) |[n =1, ..., Ng}
of the system of interest’s Hilbert space is chosen. The multi
D2-Ansatz,

M Ns
@)= (Zmuwm) (@), (14)

k=1 \n=1

then replaces (2), and the equations of motion (7) and (8) are
replaced by

(@nl(oelid, — TL|Why) = 0, (15)
Ns )
> A% Gl laela 0, — )| W) = 0. (16)
n=1

We stress that, in the present D2 Ansatz, the coherent states do
not carry the index 7, in contrast to the so-called D1 Ansatz
[27,28]. In the MCTDH community, the two approaches D2
and D1 are termed single and multiset, respectively [9]. Fur-
thermore, although the harmonic oscillators are not coupled
directly to each other (W;; = 0), their combined wave function
experiences non-Gaussian distortions due to the coupling to
the spin system, requiring it to be represented by more than
just a single multimode CS. As we will show below, the
multiplicity M of the D2 Ansatz needed for convergence is
surprisingly low, however.

In order to tackle case (ii) mentioned above, we seek for
a natural way to avoid the appearance of an ill-conditioned
coefficient matrix that causes two of Eqs. (7) and 2N of
Egs. (8) to become approximately linearly dependent. The
system of equations being nonlinear is expected to behave
chaotically, but regularization of vanishing coefficients being
successfully implemented, the system at the same time shows
regular behavior. From this, we conclude that it may be
enough to remove the linear dependencies in (8) only.

It is the linearity in the variations of (6) and the linearity
in the displacements of (9) which is the key to implement this
removal. To be more precise, assume that two CSs |a;) and
|o;) move from a certain time 7y on connectedly, i.e., without
changing their relative position. Mathematically, this means
that the N free parameters of one of them, say ¢, are replaced
by the parameters of the other one as in the D1.5 Ansatz [29],

at)=out)+C an

for t > ty, where C = a;(ty) — otx(tp) is a constant. Conse-
quently, day; = day; and ay; = ¢;; for all j. At the level
of the coefficient matrix, this amounts to deleting the N
rows/columns corresponding to the displacements o;; and
replacing the N rows/columns corresponding to oy ; with the
sum of both from time 7, on.

o; may from time fy on be regarded as dead since its N
free parameters are removed. We name this programed death
for the ensemble’s benefit apoptosis. Still, the corresponding
coefficient A; remains as a free parameter [29] which is highly
advantageous because, in contrast to a complete removal of
the CS |ay) [9], the norm of the ansatz wave function is
naturally conserved (no reexpansion is necessary), and no
instabilities are introduced. Hence, apoptosis is compatible
with any adaptive integrator and can be performed on the
fly. Furthermore, keeping the coefficient comes at marginal
computational cost since usually M < N.

Depending on the precise problem to whose solution an
ansatz in terms of CSs is used, the number M of CSs required
to converge the problem may be large. In this case, it may hap-
pen that multiple CSs approach each other during propagation,
and apoptosis of more than one CS could be required at a time
step. Finding those CSs which are close to each other can be
implemented using a connected-component search in graphs
[30]. Then, each connected component has to be replaced by
one of its members only.

An important final detail concerns the position of those CSs
which are initially unpopulated, i.e., whose coefficients are
initially zero. We may draw two conclusions from the above
considerations. First, those coefficients have to be subject to
an initial noise due to case (i). This is in complete coincidence
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with the procedure used in MCTDH. Second, the precise
position of those CSs is, in principle, undetermined but should
be governed by two restrictions: Because of (ii), they should
not come too close to any other CS, but on the other hand, their
distribution should be such that they represent unity, at least,
approximately. Both conditions can be fulfilled if the CSs are
centered around the initial condition on a multidimensional
complex grid as given in Ref. [16].

IV. APPLICATIONS

In the following, we present applications to two problems
that have proven to be demanding test cases for several meth-
ods dealing with interacting many-body quantum systems
as there are path integral [31,32] and multilayer MCTDH
methods [33] as well as renormalization-group techniques
[34], hierarchical equations of motion [35], and tensor train
propagation [36], to name but a few.

A. Spin-boson dynamics

First, we consider the symmetric spin-boson model at zero
temperature [37],

N N

A . o

HSB = EO'X — EO’Z E )Lj(aj» + Clj) + § a)ja;aj’ (18)
= j=1

where A is the tunneling amplitude and A; is the coupling
between the spin-1/2 system and the bath mode ;. The
relationship between the modes and their corresponding cou-
plings is given by the spectral density (SD) of the bath oscilla-
tors, which we assume here to be of sub-Ohmic kind J(w) =
2raw!Sw'e™?/® with s = 0.25, which is very demanding
numerically. The Kondo-parameter « specifies the coupling
strength, and w, is the high-frequency cutoff. Discretization of
the SD is performed via a density of frequencies py ~ e~/
[13]. In the following, we take the two-state system initially
to be in state |4) and the bath to be equilibrated to the initial
state of the two-state system [32]:

W (0)) = [+)Id), (19)

where d; = 2% Furthermore, we take w,. to be the energy
J

scale of the system and set A = —0.lw.. With these pa-
rameters, the model has been shown to support long-lasting
coherent oscillations [32].

The result of the numerical implementation of the ideas
laid out above is shown in Fig. 1. Apoptosis is applied if the
distance d(|ey), o)) of two CSs |ay), |e;) undershoots the
threshold ¢ = 0.05, which we found heuristically to be opti-
mal for all tested systems. The distance d is given by the two-
product metric on CV, d(jay), o)) = ‘/21};1 laj — o>
Without application of apoptosis, propagation for o = 0.05
with M =10, e.g., would be limited to the time-interval
w.t € [0, 12.8] since, at w.t ~ 12.8, two CSs come close,
making the coefficient matrix nearly singular. With apoptosis
implemented, propagation may be continued (dashed line) for
times that are longer by an order of magnitude and beyond
(not shown). It is remarkable that the number of CSs coming
close during propagation is not related to the multiplicity M
nor the coupling strength in an obvious way: Propagation

0.4+ 1

0 10 20 30 40 50 60 70 80
wet

FIG. 1. Dynamics of the population P,(t) = (&) (t) of the spin-
boson model with parameters given in the text for N = 150 bath
modes and multiplicity M = 10. Apoptosis occurring for the first
time at times w, ! (indicated by the brokenness of the line) for differ-
ent coupling strengths & = 0.03: w.t = 22.3 (green line, lowermost
curve), o = 0.04: w.t = 34.3 (blue line, second-lowest curve), @ =
0.05: w.t = 12.8 (red line, third-lowest curve), o = 0.1: w.t = 28.6
(black line, uppermost curve).

with increased M may cope without apoptosis or with more
or fewer CSs connected. Thus, in the presence of apoptosis,
convergence can be checked by increasing the multiplicity
M in a systematic way either by increasing M in a separate
calculation starting again at time t = 0 or by spawning new
states on the fly. A detailed convergence study is given in
Appendix C.

In all the cases we have investigated, it turns out that the
scaling of the numerical effort with respect to the number of
degrees of freedom is extremely favorable.

B. Polaron dynamics

Second, for a molecular aggregate of N molecules with
periodic boundary conditions and one single electronic two-
level system per molecule, we have investigated the dynam-
ics under the Holstein molecular-crystal model Hamiltonian,
given by [27]

H = Hex + Hpp + Higes (20)

with diagonal coupling, where

N/2

Mo =—J Y BB +B], B, @1

n=—N/2+1

N/2
th = Z wnazan, (22)
n=—N/2+1

Him = Z )\_na)néLBm (aneiqum + flj,e_iq”m)- (23)

m,n

Here, E;g and B, are the exciton creation and annihilation
operators of the nth site, whereas &I, and @, are the creation
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and annihilation operators of a phonon of frequency w,. We
consider a linear dispersion phonon band,

2
(q) =wo+W<—7'f' - 1). 24)
By fixing even N and taking the phonon momenta as
2 Mo Y (25)
n= ", nN=—= sy s
"=y 2 2

the corresponding frequencies are

2|gn
a),,:a)0+W( "”-1). (26)
T

For this model, we investigate two settings. In the first setting,
the couplings A, are constant,

hn = —= 27

where g is the diagonal coupling strength [38]. In the second
setting, the couplings follow from the spectral density,

S
0*VW? — (0 — wyp)?

J@) =5

N
~ Y dawpd(o — w,). (28)
n=1

Here, S is the Huang-Rhys factor [39], wy = 1 is the central
energy of the phonon band, and W is the phonon energy
bandwidth [27]. In the following figures, we plot the diagonal
elements of the exciton reduced density matrix,

Pun(t) = (W(@)|BB,|W(1)), (29)

as a function of n and time. The exciton (two-level system in
the excited state) is initially at the middle position n = 0, and
all the phonons are initially in their ground states.

Our goal is to investigate events where two CSs come close
such that apoptosis is required. The number of these events is
expected to be large in the regime where convergence with
respect to the CSs is reached. To be more precise: apoptosis is
always required if the multiplicity M is large enough, whereas
“large enough” depends on the setting. Indeed, in the first
setting for g = 0.3 where the couplings scale with 1/ VN
and, thus, are small, we find that, already for M > 5, the
vast majority of propagations fails because of tiny integrator
steps if no apoptosis is applied. With apoptosis, the integrator
always recovers, and each propagation successfully reaches
the final time. Among those cases are many in which more
than two CSs are connected during propagation.

Please note that the Hamiltonian (20) as well as the initial
state are symmetric with respect to site number. Thus, the CSs
which are initially unpopulated are also chosen such that they
fulfill the symmetry. In this high-dimensional problem, no
regularization of the p matrix is required, and the coefficients
of the CSs which are initially unpopulated are set to 107°.

In the first setting, we extended to longer times the results
of Ref. [38] where for constant couplings (27) the parame-
ters read g = 0.3, J =0.2, W = 0.5, N = 10. In this case,
already for small multiplicity, the results are fully converged.
For instance, the case M = 9 is interesting because two CSs
come close right at the beginning of the propagation. Thus,

12 0.7
11
10 0.6
9
0.5
8
7
X 0.4
Q6
= 5 0.3
4
0.2
3
2 0.1
1
0
5 -4 3 2 1 0 1 2 3 4 5

n

FIG. 2. Reduced density-matrix dynamics for the Holstein
model with constant couplings (27). Parameters are g = 0.3, J =
0.2, W =0.5, N=10, M =9. For the sake of better visibility of
the dynamics at later times, p,,(¢) has been restricted to p,, () < 0.7
(i.e., if p,, > 0.7, then it is set to 0.7).

without apoptosis, the propagation could not even start. With
apoptosis applied, another event occurs at a later stage of
propagation. The integrator recovers successfully from both
events. The (converged) result for M = 9 is shown in Fig. 2.
Furthermore, again for the first setting, we compare the
absorption spectrum from theoretical predictions with the
Fourier-transformed multi Davydov-Ansatz results. For a con-
cise discussion of the extraction of the spectrum from the
dynamics, we refer to the Appendix of Ref. [15]. The linear
absorption spectrum for the parameter setting N = 16, J =
0.1, W =0.1, and g = 0.4 is plotted in Fig. 3. Huang-Rhys
theory [39] predicts the phonon sidebands at zero temperature

0.8+ i \ R}

0.2

0 ‘
6 -5 -4 -3

-2 -1 0 1 2 3 4 5 6
w/wy

FIG. 3. The linear absorption spectrum as a function of w. The
result obtained from the multi Davydov-Ansatz is plotted (blue
solid line) vs the Poisson distribution (30) (black dashed line). The
parameters read N = 16, J =0.1, W = 0.1, g =0.4.
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12 0.3
11
10 0.25
9
8 0.2
7 |
S
06 0.15
-~
5
4 0.1
3
2 0.05
]
0
-10 -8 6 -4 -2 0 2 4 6 8 10
n

FIG. 4. Reduced density-matrix dynamics for the Holstein model
of nonconstant couplings given by (28). Parameters are S = 0.3, J =
—0.5, W =0.8, N =20, M = 30. For the sake of better visibility
of the dynamics at later times, p,,(¢) has been restricted to p,,(t) <
0.3 (i.e., if p,, > 0.3, then it is set to 0.3).

to follow a Poisson distribution,

o0
SVI
F(w)=¢ Z (o + Swy — nay). (30)
n!
n=0
The leftmost sideband n = 0 is expected to be at w = —Swy
where
N
1 N
S=—> Ao, = Ng _ 2.56, (31)
wo ° = wo

in nice coincidence with Fig. 3. Furthermore, the tallest
peak is predicted to be at n =S5 — 1 = 1.56, which again
corroborates our numerical result since the two peaks atn = 1
and n = 2 have similar height. Finally, by fitting a Poisson
distribution with parameter A to the data, we find that the fit
is optimal for A ~ § (see dashed black line in Fig. 3), which
again confirms our results.

In the second setting, we have extended to longer times
and nontrivial multiplicity the results of Ref. [27] where the
couplings are given by (28). There, we could not find events
of CSs coming close for parameters N = 30, S =0.5, W =
0.8, J = —0.5 for multiplicities up to M = 50. This is ex-
pected since the coupling is rather strong (thus, more CSs
would be needed for convergence). In a slightly modified
setting (§S =0.3, W =0.8, J =—-0.5, N =20), we have
found that the majority of propagations fails because of tiny
integrator steps for M > 15 if no apoptosis is applied. For in-
stance, for M = 20, two CSs come close at the very beginning
of the propagation. The integrator recovers successfully with
apoptosis, and the propagation ends with three CSs connected.
Again, apoptosis is needed since two CSs come close at # ~
5.78 and the integrator recovers sucessfully from the apoptosis
event. The result is shown in Fig. 4.

V. CONCLUSIONS AND OUTLOOK

We have shown that the temporal stability of the numer-
ics for many-particle quantum dynamical simulations using
time-dependent CSs can be enhanced dramatically by using
apoptosis, i.e., programed removal of basis function freedom.
For 150 oscillators in a spin-boson dynamics, that, by using
orthogonal basis functions, only multilayer MCTDH methods
could cope with so far [33], a small double digit multiplicity
of moving Gaussians was enough to achieve converged results
for sub-Ohmic spectral densities and several oscillation peri-
ods of the spin system. Also the exciton dynamics in a Hol-
stein molecular-crystal model can be converged using small
multiplicities especially in the case of constant coupling.

The key to the long-time stability of our approach, apart
from apoptosis is the use of normalized coherent states, the
introduction of the auxiliary variables X; for the solution of
the linear algebra inversion problem, and regularization of the
so-called p matrix as detailed in Appendix B. Technically,
the compatibility of apoptosis with the integrator would allow
to reverse the procedure by connecting two CSs at some
long distance and freeing them again at a later stage of the
propagation, something we would like to investigate in the
future. In addition, the presented approach is not restricted
to problems with a finite-dimensional Hilbert space of the
system of interest. Also, implementations for degrees of free-
dom with a continuous variable will benefit from the proposed
numerical scheme as we will show in a future publication.

Finally, also finite temperatures of the bosonic heat bath
can be accounted for by additional initial condition sampling
using a P-function representation of the canonical density
operator [13,40].
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APPENDIX A: GAUGE FREEDOM

It is central to our approach to solve the variational equa-
tions of motion that there is a gauge freedom in the ansatz
(2), which is invariant with respect to (time-dependent) linear
transformations of the CS basis. Let Q be a nonsingular trans-
formation matrix, then the wave function remains unchanged
if Ay and |ot;) are replaced by

M
A= A=) AQ i, (AD
=1 ”
o) — l&) =) Quilewr). (A2)
=1

This is analogous to the MCTDH approach [7,21] where the
gauge freedom is used to significantly simplify the equations
of motion.

For diagonal transformations Q, the procedure effec-
tively amounts to multiplication of each CS with a possibly
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time-dependent nonzero C number. The transformation,
exp[ 120 P k=1,
Ou =
0, k#1

(A3)

results in the same wave function but with unnormalized
(Bargmann) CSs. Then, solving the linear system for these and
transforming back is equivalent with transforming the time
derivatives of the coefficients forth and back according to

X = Oucd [A(Q ™ i, (A4)

which is equivalent to Eq. (10). The disadvantage of using
the equations with unnormalized CSs from the start is that
the coefficients may become large, which is not the case if
normalized CSs are employed [41].

The introduction of the X variables allows to both use nor-
malized CSs and have the linear algebraic system of equations
in standard form (see Appendix B). This is the preferred way
of dealing with the appearance of ¢y as well as ¢ in Eq. (9).

APPENDIX B: REGULARIZATION DETAILS

In the following, we detail how to disentangle instabilities
arising due to closeness of coherent states from those arising
due to almost vanishing coefficients. The general system of
equations of motion emerging from Eqgs. (7) and (8) reads

M N
iy {xk + A Zakna;;}<a,|ak> = (|| W), (BD)

k=1 n=1

M N
ZA?< Z {Olkj <Xk + Ag Z dk,,ozl*n> +Ak0'lkj}

k=1 n=1
x (ot lag) = A (ol H| W), (B2)
with the notations used in the main text. We set
X=X, ..., Xy), (B3)
y = (ain, ..., 0mn), (B4)
A:= (A, ..., Ay). (BS)

Then the combined linear system of Egs. (B1) and (B2) takes
the standard form

(G 0)()-0)

Sik = {(ot|ogg)

(B6)

where
(B7)

are elements of the Hermitian M x M overlap matrix and

B=[F"®A]o[S® lixnl, (B8)
is an M x NM matrix, whereas,
D= ((lixy ®F' ® Lyrx1l o [Iyx1 @ F* ® Liyu])
o[lyxy ® (poS)I+ 1y ®(poS) (B9)

is a Hermitian NM x NM matrix [42] for whose derivation
we had to employ the anticommutation relation [a;, Ezj.] =1

In addition, we have used the M x M single-particle density-
matrix p = (AT ® A) known from MCTDH [21] and the
M x N matrix of displacements F = (o4;). Furthermore, ®
denotes the tensor product, o denotes the Hadamard product
(elementwise multiplication), 1 are matrices of ones, and 1 is
the identity matrix for the indexed dimensionality, whereas a
dagger denotes Hermitian conjugation.
The right-hand side of Eq. (B6) is given by

r = [Ho SJAT (B10)

s =vec[(poSoH)F + ([lix1nv ® (poS) o H)l, (BII)

where we have assumed a normally ordered Hamiltonian and
H is the matrix with elements Hyq(et}', ot ), whereas the tensor

H has the elements Hy, = %"M (see, e.g., Ref. [3]).
Furthermore, vec[-] denotes the Vecj%orization [43] of a matrix,
and (-), denotes summation over the second index. The gener-
alization of this exposition to the Davydov case can be found
in Ref. [41]. We note in passing that, although H, in general,
has tensorial character, it often simplifies tremendously, as,
e.g., for the case of a set of mutually uncoupled oscillators
in an open system context, where H= Zn wn&Z&n and, thus,
I:Ilkn = Wylgp.

Clearly, in general, also the block B is decisive for regular-
ity of the full matrix, but our implementations show that no
further instabilities arise once S and D are sufficiently regular.
The closeness of coherent states endangers the regularity of
S (and of F), whereas vanishing coefficients endanger the
regularity of D. While we have outlined in the main article
how to solve the first issue by apoptosis, we will detail now
how to regularize D.

In a first attempt, we have tried to regularize D by replacing
it with D + § exp[—p/d] for § <« 1. This leads to further
instabilities, most likely because this influences also the dis-
placements. In view of the special structure of D and keeping
in mind that apoptosis ensures regularity of F, it turns out
that it is much more expedient to regularize p only [this being
the main reason behind not canceling A} in Eq. (12)]. This is
performed by replacing p by either p 4 £, exp[—p/¢,] (see,
e.g., Ref. [21]) oreven by p + ¢,1) for g, <« 1. This, indeed,
does not effect the displacements, but effects the coefficients
(belonging to nearly unpopulated coherent states) only.

Finally, our implementations show that a strong regulariza-
tion of p is required in low-dimensional problems, especially
if many CSs are propagated. On the contrary, even if many
CSs are propagated, (almost) no regularization of p is required
in high-dimensional problems.

APPENDIX C: CONVERGENCE STUDY FOR
THE SPIN-BOSON CASE

For an intermediate coupling strength of o = 0.04, we
study in detail the convergence of the numerical results for
the spin-boson model discussed in the main text. To this end,
we define an error measure,

N,
1 t

Ay = N E ’PAm(ti) — Py()|, (C1)
T =1
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0 I I I I I *
8
M

FIG. 5. Convergence with respect to multiplicity M of the multi
Davydov-Ansatz for N = 150 oscillators chosen according to the
discretization method mentioned in the original article and for cou-
pling strength o = 0.04.

where P is the population displayed in Fig. 1 and with N, =
500 points in time that are spaced equidistantly. Although our
numerical integrator uses adaptive time steps, the output is
given at equidistantly spaced points.

The quantity A indexing P, with respect to which con-
vergence is checked, can be either (i) N, which is the num-
ber of bath oscillators of the spin-boson model with dis-
cretized spectral density, or (ii) M, which is the multiplic-
ity of the D2 Ansatz. With A,, we denote the maximum
value of the parameter that we have chosen (for which conver-
gence of the numerical results in the plot shown in the article
to within line thickness is reached).

In Fig. 5, for a number of N = 150 bath modes, the
convergence with respect to the multiplicity is checked. Using
M, = 12, it turns out that M = 10 leads to the converged
results shown in our paper that coincide exactly with the ones
from Ref. [32].

In Fig. 6, for a multiplicity of M = 10, the convergence
with respect to the number of bath modes N is checked. Using
Nm = 300, it turns out that N = 150 leads to the converged

6
*
5, i
4 J
[3p)
e}
—
* 3 ,
Z
< *
2, i
1t i
*
O L L L awk *\
50 100 150 200 250
N

FIG. 6. Convergence with respect to N for a multiplicity M = 10
and for coupling strength o = 0.04.

results shown in our paper that coincide with the ones from
Ref. [32]. We note that, in order to avoid oversampling of
small frequencies, we had to translate the initial bath shifts
in Eq. (19) into a unitarily transformed Hamiltonian.

Although the convergence check is possible self-
consistently, it helped a lot to have the converged results of
Ref. [32] at our disposal. In this respect, it is intriguing that the
same values of parameters M and N that lead to convergence
for coupling strength o = 0.04 are also suitable for the other
coupling strengths considered. In passing, we note that the
initial choice of the centers of the unpopulated Gaussians
plays a minor role as long as they are distributed close enough
around the initial condition.

Finally, it is worth mentioning that the error would increase
if the time series was extended to longer times, which could,
however, be cured by starting out with a higher multiplicity or
by spawning new CSs at a later stage of propagation.
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