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Motivated by the quest for experimentally accessible dynamical probes of Floquet topological insulators,
we formulate the linear response theory of a periodically driven system. We illustrate the applications of this
formalism by giving general expressions for optical conductivity of Floquet systems, including its homodyne
and heterodyne components and beyond. We obtain the Floquet optical conductivity of specific driven models,
including two-dimensional Dirac material such as the surface of a topological insulator, graphene, and the
Haldane model irradiated with circularly or linearly polarized laser, as well as semiconductor quantum well
driven by an ac potential. We obtain approximate analytical expressions and perform numerically exact
calculations of the Floquet optical conductivity in different scenarios of the occupation of the Floquet bands,
in particular the diagonal Floquet distribution and the distribution obtained after a quench. We comment on
experimental signatures and detection of Floquet topological phases using optical probes.
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I. INTRODUCTION

Optical properties of solids are widely studied, both exper-
imentally and theoretically [1]. As a result of its interaction
with light, quantum properties of matter, such as its con-
ductivity, can be modified, thus enabling optically activated
devices [2–6]. Beside such device applications, the optical
response of material provides a powerful way to probe the
quantum states of electrons and their excitations in spatially
periodic potentials. This response is well understood when the
light intensity is sufficiently weak to be treated perturbatively
within the framework of linear response theory. In particular,
the Kubo formalism connects the equilibrium electronic band
structure to various linear response coefficients, such as opti-
cal conductivity [7].

Recently, the effects of strong light-matter interaction have
come to the forefront of materials research. In particular, it
was understood theoretically using the Floquet theory of pe-
riodically driven systems, and shown experimentally, that the
electronic bands in the material can themselves be modified
under the intense field of light. In this way, new electronic
phases, such as quantum Hall states in graphene, have been
proposed to be produced dynamically out of equilibrium
[8–15]. For example, time-resolved spectroscopy of surfaces
of topological insulators under intense laser has shown mod-
ified Floquet-Bloch bands consistent with the predictions of
Floquet theory [16].

The modification of bands leaves a trace in a vari-
ety of physical properties, such as transport coefficients
[8,10,13,17–27] and quantum noise [28–30], thus allowing
its detection. However, spectroscopic measurements are con-
strained in what they can probe or how readily they may be set
up while the system is externally driven. Thus, it is desirable

to have a larger toolbox of probes of the Floquet-Bloch bands.
In this toolbox, the optical response of the system stands out
since it can detect not only the dynamical modifications of
the bands, but also their bulk topology, for example in the DC
limit of the optical Hall conductivity [18,31,32].

In this paper, we extend the equilibrium linear response
theory to the Floquet theory of a strongly driven system out
of equilibrium, which is probed by a weak external potential.
We show that even in this linear-probe regime, the strong
driving of the system results in a response not only at the
frequency of the probe but at all its harmonic displacements
by the frequency of the drive. Thus, probing a system driven
at frequency � at a probe frequency ω produces a signal at
ω + n�, n ∈ Z. Our theory greatly expands the existing liter-
ature [19,33] by naturally incorporating not just the homodyne
(n = 0) but also the heterodyne (n = ±1) response [34–36] as
well as all higher harmonics of the drive.

We provide a general expression for Floquet optical con-
ductivity tensor, elucidate its optical sum rules, and present
analytical expressions in the DC limit. We illustrate the struc-
ture of this optical response in specific models through ana-
lytic and numerical calculations. We recover previous results
for quantization of the homodyne optical Hall conductivity
in the DC limit in terms of the Chern number of occupied
Floquet-Bloch bands [18]. Moreover, we show that the hetero-
dyne optical conductivity also detects the Floquet topological
transitions in the DC limit as a singular enhancement at the
transition.

The paper is organized as follows. In Sec. II, we present
the general theory of linear response of a periodically driven
system using Floquet theory. In Sec. III, we use this theory to
give a general expression for the Floquet optical conductivity
and obtain its DC limit. In Sec. IV, we present analytical
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expressions in the high-frequency limit for the optical con-
ductivity of a general two-band model and illustrate its utility
for a driven Dirac cone. In Sec. V, we present numerical solu-
tions for the homodyne and heterodyne optical conductivity
tensor of two-dimensional periodically driven models [36].
We conclude in Sec. VI with a discussion. Some details of
our calculations are given in the Appendix.

II. LINEAR RESPONSE IN FLOQUET FORMALISM

A. Primer on Floquet theory

Using the Floquet theorem for a periodic Hamiltonian
Ĥ (t ) = Ĥ (t + T ) with period T = 2π/�, the evolution oper-
ator Û (t, t0) = Texp [−i

∫ t
t0

Ĥ (s)ds], where Texp is the time-
ordered exponential, can be decomposed as [37,38]

Û (t, t0) = e−i(t−t0 )ĤF (t )�̂(t, t0), (1)

into a periodic micromotion operator

�̂(t, t0) = �̂(t + T, t0) = �̂(t, t0 + T )

≡
∑

α

|φα (t )〉 〈φα (t0)| , (2)

and the evolution under the Floquet Hamiltonian

ĤF (t ) =
∑

α

εα |φα (t )〉 〈φα (t )| , (3)

with quasienergy eigenvalues εα (independent of t), both
written in the basis of periodic Floquet states |φα (t )〉 =
|φα (t + T )〉 that are solutions of the Floquet-Schrödinger
equation,

[Ĥ (t ) − i∂t ] |φα (t )〉 = εα |φα (t )〉 . (4)

This structure can be formalized in the extended Floquet-
Hilbert space [39–41] F = H ⊗ I , where H is the usual
Hilbert space and I is the auxiliary space of periodic func-
tions spanned by an orthonormal basis |t ) = |t + T ) with

(t ′|t ) = δ̆(t − t ′) ≡
∑
p∈Z

δ(t − t ′ − pT ) (5)

and
∫ T

0 |t )(t |dt/T = Ĭ , the identity operator in I . Equiva-
lently, we may define an orthonormal Fourier basis

|n) =
∫ T

0
e−in�t |t )dt/T (6)

for n ∈ Z with (n′|n) = δnn′ ,
∑

n |n)(n| = Ĭ . A periodic state
|φ(t )〉 ∈ H can be “lifted” to

|φt 〉〉 ≡ |φ(t )〉 ⊗ |t ) ∈ F . (7)

We also define a set of Fourier states

|φm〉〉 =
∑

n

|φ(n+m)〉 ⊗ |n) ∈ F , (8)

where the Fourier components

|φ(n)〉 =
∫ T

0
ein�t |φ(t )〉 dt/T . (9)

Then, |φt 〉〉 = ∑
m e−im�t |φm〉〉.

For a periodic operator Ĥ (t ) = Ĥ (t + T ) acting on H , we
define

ˆ̂H =
∫ T

0
Ĥ (t ) ⊗ |t )(t |dt

T
=

∑
n,m

Ĥ (n−m) ⊗ |n)(m|, (10)

acting on F with Fourier components

Ĥ (n) =
∫ T

0
ein�t Ĥ (t )dt/T . (11)

The Fourier shift operator ˆ̂μn |φm〉〉 = |φn+m〉〉 is given by

ˆ̂μn = 1 ⊗
∫ T

0
|t )ein�t (t |dt/T . (12)

We also define a time-derivative operator
ˆ̂Zt = 1 ⊗

∑
n

|n)n�(n|, (13)

with the action
ˆ̂Zt |φm〉〉 = i |(dφ/dt )m〉〉

≡
∫ T

0
eim�t [id |φ(t )〉 /dt] ⊗ |t )dt/T . (14)

The Floquet-Schrödinger equation in this extended space
takes the form

( ˆ̂H − ˆ̂Zt ) |φαm〉〉 = εαm |φαm〉〉 , (15)

where |φαm〉〉 form a complete basis for F , and εαm = εα +
m� with quasienergies εα .

Finally, we note that in the extended Floquet-Hilbert space,
we can represent the Floquet Green’s function

ˆ̂G(ω) = (ω − ˆ̂H + ˆ̂Zt )
−1 = lim

η→0+

∑
αm

|φαm〉〉 〈〈φαm|
ω − εα − m� + iη

.

(16)

Back in the Hilbert space H , we have the Fourier components

Ĝ(n)(ω) ≡ (0| ˆ̂G(ω)|n)

= lim
η→0+

∑
αm

∣∣φ(m)
α

〉 〈
φ(m+n)

α

∣∣
ω − εα − m� + iη

. (17)

B. Floquet linear response theory

We formulate the linear response of the driven system
in a manner parallel to the linear response theory of an
equilibrium system by taking the total Hamiltonian Ĥ (t ) =
Ĥ0(t ) + Ĥext(t ), where Ĥ0(t ) is the periodic Hamiltonian of
the driven system and the probe Hamiltonian

Ĥext(t ) = lim
η→0+

eηtλ(t )Â(t ), (18)

with Â(t ) the (possibly time-dependent) probe field, is slowly
turned on in the distant past, t → −∞, with the strength
λ(t ) = λe−iωt at probe frequency ω, as depicted in Fig. 1.
Now we assume a general initial density matrix ρ̂0(t0) (not
necessarily thermal) at some initial time t0. Then, the expec-
tation value of an arbitrary operator B̂(t ) is given by B(t ) =
Tr[ρ̂(t )B̂(t )], where Tr is the trace over the many-body Hilbert
space. The change in B due to the external field is

δB(t ) = Tr[ρ̂(t )B̂(t )] − Tr[ρ̂0(t )B̂0(t )], (19)
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FIG. 1. A representation of the component of the dynamical
response. Starting at time t0, the response of the periodically driven
system with Hamiltonian Ĥ0(t ) = Ĥ0(t + 2π/�) at a later time t >

t0 is measured in linear order with external perturbation Ĥext(t ) =
Ĥext(t + 2π/ω). The perturbation is switched on adiabatically long
before t0.

with the index 0 indicating the absence of the external field.
The linear response is given in terms of the susceptibility

χBA(t, t ′) = δB(t )

δλ(t ′)

∣∣∣∣
λ=0

. (20)

In the following, we shall assume all operators can
be expanded in a single-particle basis, e.g., the fermionic
creation operators ĉ†

kμ with k the lattice momentum in
the first Brillouin zone and μ some internal degree of
freedom (spin, sublattice, band index, etc.), as Ĥ0(t ) =∑

kμν ĉ†
kμ[H0(k, t )]μν ĉkν

. For brevity, we will drop k and treat
the operators as matrices in the single-particle basis (diagonal
in k), with the trace shown by tr. We work in the natural units
h̄ = c = e = 1.

In order to carry out this calculation, we define an interac-
tion picture via the unperturbed evolution operator Û0(t, t0) =
Texp[−i

∫ t
t0

Ĥ0(s)ds], so that ρ̂I (t ; t0) = Û †
0 (t, t0)ρ̂(t )Û0(t, t0).

Thus,

i
∂

∂t
ρ̂I (t ; t0) = [

Ĥ I
ext(t ; t0), ρ̂I (t ; t0)

]
, (21)

where Ĥ I
ext(t ; t0) = Û †

0 (t, t0)Ĥext(t )Û0(t, t0). Therefore, to lin-
ear order,

ρ̂I (t ; t0) = ρ̂0(t0) − i
∫ t

t0

[
Ĥ I

ext(s; t0), ρ̂0(t0)
]
ds, (22)

where we used ρ̂I (t0; t0) = ρ̂0(t0). Writing the operators such
as B̂ = ∑

μν ĉ†
μ[B]μν ĉν in the single-particle basis and defin-

ing the Green’s function g0νμ = Tr[ρ̂0(t0)ĉ†
μĉν] in Eq. (19),

we have

δB(t ) = i
∫ t

t0

tr
{
g0

[
HI

ext(s; t0), BI (t ; t0)
]}

ds + tr[g0δBI (t ; t0)],

(23)

where the single-particle matrices in the interaction picture
are defined as BI (t ; t0) = U †(t, t0)B(t )U (t, t0) with U (t, t0) =
Texp[−i

∫ t
t0

H0(s)ds], and δBI = BI − BI
0 is the change in the

response field itself up to linear order in the probe field. The
susceptibility can now be written as

χBA(t, t ′; t0) = lim
η→0+

eηt ′
[i�(t − t ′)tr{g0[AI (t ′; t0), BI (t ; t0)]}

+ δ(t − t ′)tr{g0MI (t ; t0)}], (24)

where MI (t ; t0) = δBI (t ; t0)/δλ(t )|λ=0 and we have assumed
t ′ > t0.

So far, our development applies to any time-dependent
Hamiltonian dynamics. Now, we use the Floquet decompo-
sition of the evolution operator U (t, t0) to write BI (t ; t0) =
�†(t, t0)[ei(t−t0 )HF (t )B(t )e−i(t−t0 )HF (t )]�(t, t0). Thus,

〈φα (t0)| BI (t ; t0) |φβ (t0)〉 = BF
αβ (t )e−i(t−t0 )(εβ−εα ), (25)

with the time-periodic matrix elements,

BF
αβ (t ) = 〈φα (t )| B(t ) |φβ (t )〉 ≡

∑
m

e−im�t BF (m)
αβ . (26)

In the extended Floquet Hilbert space, we have

BF (m−n)
αβ = 〈〈φαn| ˆ̂B |φβm〉〉 . (27)

Therefore, the matrix elements of the operator in the interac-
tion picture are

〈φα (t0)| BI (t ; t0) |φβ (t0)〉
=

∑
m

〈〈φα0| ˆ̂B |φβm〉〉 e−im�t e−i(t−t0 )(εβ−εα ). (28)

The susceptibility can be viewed as a function χAB(t, τ ; τ0)
of τ = t − t ′, τ0 = t − t0, and a periodic function of t . The de-
pendence on τ0 is a consequence of assuming that the density
matrix at the initial time t0 is arbitrary. If this initial matrix
is diagonal in the Floquet basis, the dependence on τ0 will
drop away. Alternatively, if we average over this initial time
for a fixed initial density matrix, only the diagonal elements
of the density matrix will contribute to the susceptibility. The
temporal structure of the susceptibility makes it possible to
define its Fourier components,

χ
(n)
AB (ω; τ0) = 1

T

∫ T

0
dt

∫
dτein�t+iωτχAB(t, τ ; τ0). (29)

174314-3



ABHISHEK KUMAR et al. PHYSICAL REVIEW B 101, 174314 (2020)

Using the Floquet matrix elements in Eq. (28), we find

χ
(n)
AB (ω; τ0) = lim

η→0+

∑
αβ

g0αβe−iτ0(εα−εβ+iη)

[∑
γ m

( 〈〈φβ−n| ˆ̂A |φγ m〉〉 〈〈φγ m| ˆ̂B |φα0〉〉
ω + (εα − εγ − m�) + iη

− 〈〈φβ0| ˆ̂B |φγ m〉〉 〈〈φγ m| ˆ̂A |φαn〉〉
ω − (εβ − εγ − m�) + iη

)

+ 〈〈φβ0| ˆ̂M |φαn〉〉
⎤
⎦. (30)

We can also write this more compactly using the Floquet Green’s function (16) as

χ
(n)
AB (ω; τ0) =

∑
αβ

g0αβe−iτ0(εα−εβ+iη) 〈〈φβ0| ˆ̂A ˆ̂G(ω + εα + n�) ˆ̂B + ˆ̂B ˆ̂G†(−ω + εβ ) ˆ̂A + ˆ̂M |φαn〉〉 . (31)

We note that the reality of χAB(t, τ ; τ0) imposes the condi-
tion χ

(−n)
AB (ω; τ0) = χ

(n)
AB (−ω; τ0)∗. Moreover, since the right-

hand side of Eq. (30) is an analytical function of ω in the upper
half of the complex plane (all the residues are in the lower
half by virtue of η > 0), the Floquet susceptibility satisfies
the Kramers-Kronig relations

χ̃
(n)
AB (ω) = 1

iπ
P

∫ ∞

−∞

χ̃
(n)
AB (ω′)

ω′ − ω
dω′, (32)

where P
∫

is the principal value of the integral and

χ̃
(n)
AB (ω) ≡ χ

(n)
AB (ω) − χ

(n)
AB (∞)

= χ
(n)
AB (ω) −

∑
αβ

g0αβe−iτ0(εα−εβ ) 〈〈φβ0| ˆ̂M |φαn〉〉 .

(33)

III. FLOQUET OPTICAL CONDUCTIVITY

A. General expression

In the specific case of optical conductivity, the probe field
is the current and with the strength proportional to the electro-
magnetic gauge potential, δA, which enters the Hamiltonian
through minimal coupling k → k − A. Here, A = A0 + δA
may contain both a drive and the probe fields. The external
Hamiltonian has the form Hext = −j0 · δA, where the current

j0 = j|A→A0 = ∂H0

∂k

∣∣∣∣
k→k−A0

. (34)

The full current operator to linear order is j = j0 + m0δA,
where the Hermitian matrix

m0 = ∂j
∂A

∣∣∣∣
A→A0

= ∂2H0

∂k∂k

∣∣∣∣
k→k−A0

(35)

is the inverse effective mass tensor of the original Hamil-
tonian, and the term proportional to it is the diamagnetic
contribution to current.

The Fourier transform of the current is related to the probe
field,

δj(ω; τ0) =
∑

n

χ(n)
j j (ω − n�; τ0)δA(ω − n�)

=
∑

n

σ(n)(ω − n�; τ0)δE(ω − n�), (36)

where δE(ω) = iωδA(ω) is the probe electric field, and we
have defined the Floquet optical conductivity,

σ(n)(ω; τ0) = χ(n)(ω; τ0)

iω
. (37)

So, unlike the equilibrium response, now the optical current
at frequency ω responds to the field at ω − n� with the
weight χ(n)(ω − n�; τ0) for all n ∈ Z. For a monochromatic
probe field, δE(ω) = Eω0δ(ω − ω0), we have δj(ω; τ0) =
[
∑

n σ(n)(ω0; τ0)δ(ω − ω0 − n�)]Eω0 . Thus, σ(n)(ω; τ0) is the
component of optical conductivity at frequency ω + n�

in response to the field at ω. As a function of time,
we have δj(t ) = σ(ω0, t ; τ0)δEω0 e−iω0t with σ(ω0, t ; τ0) =∑

n e−in�tσ(n)(ω0; τ0); so, for fixed (or averaged) τ0, the cur-
rent shows periodic oscillations with the drive frequency
enveloped in the probe frequency.

The occupation of Floquet bands given by g0αβ is not fixed
in our formalism and depends on relaxation processes not
considered here [42,43]. In the following, we assume only the
diagonal elements of the density matrix in the Floquet basis
contribute to conductivity, either because the density matrix is
diagonal or assuming we average over the initial time. Then,

σuv(n)(ω) = i

ω

∑
α

g0α

[∑
γ m

( 〈〈φα−n| ˆ̂ju
0 |φγ m〉〉 〈〈φγ m| ˆ̂jv0 |φα0〉〉

ω + (εα − εγ − m�) + i0+

− 〈〈φα0| ˆ̂jv0 |φγ m〉〉 〈〈φγ m| ˆ̂ju
0 |φαn〉〉

ω − (εα − εγ − m�) + i0+

)
+ muv(n)

0αα

]
,

(38)

where u and v are spatial directions. Using the Green’s func-
tion defined in Eq. (16) one can also write

σuv(n)(ω) = i

ω

∑
α

g0α 〈〈φα0| ˆ̂ju
0

ˆ̂G(ω + εα + n�) ˆ̂jv0

+ ˆ̂jv0
ˆ̂G†(−ω + εα ) ˆ̂ju

0 + muv
0 |φαn〉〉 . (39)

Like the general susceptibility, Floquet optical conductivity
satisfies the reality condition

σ(−n)(ω) = σ(n)(−ω)∗. (40)
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B. Floquet optical sum rules

The Floquet optical conductivity satisfies the general sum
rule,

1

π

∫ ∞

−∞
σ(n)(ω)dω = 〈m(n)〉, (41)

where the expectation value on the right-hand side is the same
as tr[g0m(n)]. Using the reality condition, we may also write
this as

1

π

∫ ∞

0
[σ(n)(ω) + σ(−n)(ω)∗]dω = 〈m(n)〉. (42)

The sum rule can be obtained in the usual way [44,45] from
Eq. (37), σ(n)(ω) = [χ̃(n)(ω) − 〈m(n)〉]/(iω), and the Kramers-
Kronig relations (32) of susceptibility χ̃. The integral over fre-
quency is defined in the limit ω → ω + i0+, which maintains
the poles of the susceptibility in complex frequency in the
lower-half plane. Then, using (ω + i0+)−1 = Pω−1 − iπδ(ω)
and P

∫ ∞
−∞

dω
ω

= 0, we have

1

π

∫ ∞

−∞
σ(n)(ω)dω = 1

iπ
P

∫ ∞

−∞

χ̃(n)(ω) − 〈m(n)〉
ω

dω

− [χ̃(n)(0) − 〈m(n)〉] (43)

= 〈m(n)〉. (44)

C. Relation to Berry flux and Chern number of Floquet bands

Equation (38) can be understood as the spectral amplitude
of excitations from side band −n to the central FZ and from
the central FZ to side band n via virtual states |φγ 〉 in side band
m. This is quite similar to the form of optical conductivity
for a time-independent unperturbed Hamiltonian, except that
one now needs to take account of FZ side bands. As in the
time-independent case, we may seek a relationship between
the DC Hall conductivity and the Chern number of the bands.
In particular, setting n = 0 and taking the DC limit ω → 0,
we find

σxy(0)(0) = −i
∑

α �=γ ,m

g0α

〈〈φα0| ˆ̂jx
0 |φγ m〉〉 〈〈φγ m| ˆ̂jy

0 |φα0〉〉
(εα − εγ − m�)2

− {x ↔ y}. (45)

The divergent 1/ω terms vanish in the DC limit for the off-
diagonal Hall conductivity (see the Appendix for a proof).
When the Floquet bands are either fully occupied or empty,

this is the TKNN formula [46] that relates the DC Hall con-
ductivity to the Chern number of the occupied bands |φα0〉〉,
if ˆ̂j is the current associated with the Bloch Hamiltonian
of these bands, i.e., ˆ̂H − ˆ̂Zt . This is in fact the case: ˆ̂j =
∂ ˆ̂H/∂k = ∂ ( ˆ̂H − ˆ̂Zt )/∂k since ˆ̂Zt is independent of k.

To gain a better understanding of this quantization, we note
that for any parameter s,

〈φα (t )| [∂sH (t )] |φγ (t )〉 = (εγ − εα + i∂t ) 〈φα (t )|∂sφγ (t )〉
+ (∂sεα )δαγ . (46)

Therefore, we can express the matrix elements of the current
operator

〈〈φα0| ˆ̂ju
0 |φγ m〉〉

= 1

T

∫ T

0
eim�t 〈φα (t )| ∂ku H (t ) |φγ (t )〉 dt

= εγ + m� − εα

T

∫ T

0
eim�t 〈φα (t )|∂kuφγ (t )〉 dt

≡ −i(εγ + m� − εα )
[
ru
αγ

](m)
, (47)

where we have defined the Fourier components of the ele-
ments of the “position” operator ru ≡ i∂ku , which furnishes
the time-dependent Berry connection for the Floquet bands.
Then,

σxy(0)(0) = −i
∑

γ �=α,m

g0α

[
rx(m)
αγ ry(−m)

γα − ry(m)
αγ rx(−m)

γα

]
(48)

=
∑

α

g0αF (0)
α , (49)

where the Berry flux

Fα (k, t ) = ∂kx r
y
αα (k, t ) − ∂ky r

x
αα (k, t ). (50)

Here, we are showing the dependence on the momenta explic-
itly for clarity, so α labels the bands and not their momenta.
When the Floquet bands are fully occupied or empty and g0α

is independent of k, we find σxy(0) = 1
2π

∑
α g0αCα with the

Chern number Cα = 1
2π

∫
F (0)

α (k)dk. Since the Floquet states
at different times are unitarily related by the micromotion
and Floquet spectrum is constant and gapped at all times,
the Chern number Cα (t ) = 1

2π

∫
Fα (k, t )dk = Cα is time in-

dependent.
We also show in the Appendix that the DC limit of Hall

conductivity for Fourier modes n �= 0 is given by

σxy(n)(0) = −i
∑

α �=γ ,m

g0α

〈〈φα−n| ˆ̂jx
0 |φγ m〉〉 〈〈φγ m| ˆ̂jy

0 |φα0〉〉 − 〈〈φα0| ˆ̂jv0 |φγ m〉〉 〈〈φγ m| ˆ̂ju
0 |φαn〉〉

(εα − εγ − m�)2
(51)

= in�
∑
γαm

g0α

rx(n+m)
αγ ry(−m)

γα + ry(m)
αγ rx(n−m)

γα

εα − εγ − m�
, (52)

and that, in the extended Floquet-Hilbert space, this expression can be recast in terms of the Floquet Green’s function in the
form,

σxy(n �=0)(0) = in�
∑

α

g0α 〈〈φα0| ∂kx ∂ky
ˆ̂G+

αn + {
∂kx

ˆ̂G−
αn, ∂ky

} |φαn〉〉 , (53)
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with ˆ̂G±
αn = 1

2 [ ˆ̂G(εα + n�) ± ˆ̂G(εα )]. We note here that a
finite value of this DC Hall conductivity signifies the hetero-
dyne response of the Floquet system, i.e., the presence of a
current at frequency n� in response to a DC electric field. We
will show in a specific model that this response can be nonzero
and large.

We should note here that the ideal filling of fully occupied
or empty Floquet bands (i.e., g0α = 0 or 1) is not necessarily
obtained in experiments. This depends on the initial condi-
tions at t → −∞ and on relaxation mechanisms that are not
the subject of our study [42,43,47]. Moreover, the DC limit of
the optical conductivity is not equivalent to a measurement of
the DC conductivity with leads as the equilibrium states in the
leads determine the filling of the Floquet states and reduce the
DC conductivity from its quantized value [20,21,30].

IV. ANALYTICAL RESULTS

In this section, we will first study a general driven two-band
model, with the Hamiltonian

H0(k, t ) = d(k) · σ + V(k) · σ cos(�t ), (54)

where d(k) specifies the static model with energy bands
±|d(k)| and V(k) is the amplitude of the external drive. In
the following, we will suppress the explicit dependence on
k for brevity. We obtain analytical expressions for Floquet
Hamiltonian, micromotion, and current elements in a high-
frequency approximation [40,41]. We will use these expres-
sions to calculate the Floquet optical conductivity in detail for
specific models of driven systems.

A. Off-resonant high-frequency approximation

Since the drive term commutes with itself at different
times, we map the Hamiltonian to the rotating frame given by
UR(t ) = exp[−iV · σ sin(�t )/�]. In this frame, the Hamilto-
nian is

HR(t ) = U †
R (t )H (t )UR(t ) − iU †

R (t )∂tUR(t )

≡ dR(t ) · σ, (55)

with

dR(t ) = d‖ + cos

(
2|V|
�

sin(�t )

)
d⊥

+ sin

(
2|V|
�

sin(�t )

)
d⊥ × V̂. (56)

Here, d‖ = (d · V̂)V̂ and d⊥ = d − d‖ are parallel and per-
pendicular components of d to V and the unit vector V̂ =
V/|V|.

Up to 1/� in the high-frequency limit we find the Floquet
Hamiltonian

HF = H (0)
R +

∑
n �=0

[
H (−n)

R , H (n)
R

] + [
H (0)

R , H (n)
R − H (−n)

R

]
2n�

≡ dF · σ, (57)

with

dF =
[

J0(2|V|/�) − πd · V̂
2�

H0(2|V|/�)

]
d⊥

+
[

d · V̂ + π |d⊥|2
2�

J0(2|V|/�)H0(2|V|/�)

]
V̂, (58)

where J0(z) and H0(z) are Bessel and Struve func-
tions. The micromotion in the original frame is �(t ) =
UR(t )�R(t ), where �R(t ) = exp [

∑
n �=0

ein�t −1
n�

H (−n)
R ] is the

micromotion in the rotating frame. However, since H (n)
R ∝

(|d⊥|/�)Jn(2|V|/�) � O(1/�2) for |n| > 0, we have up to
1/�, �(t ) ≈ UR(t ).

Using these expressions, the elements of the current op-
erator in the spatial direction u can be written as jFu

αγ (t ) =∑
m∈Z 〈〈φα0| ˆ̂ju

0 |φγ m〉〉 e−im�t = jFu(t ) · 〈φα| σ |φγ 〉, with

jFu(t ) = ju
‖(t ) + cos

(
2|V|
�

sin(�t )

)
ju
⊥(t )

+ sin

(
2|V|
�

sin(�t )

)
ju
⊥(t ) × V̂, (59)

where |φα〉 are the eigenstates of HF , the current operator in
the original frame is ju(t ) = ∂ku [d + V cos(�t )], and ju

‖(t ) =
(ju(t ) · V̂)V̂ and ju

⊥(t ) = ju(t ) − ju
‖(t ) are its parallel and per-

pendicular components to V.

B. Resonant high-frequency approximation

Now, we assume the frequency is small enough to satisfy
the condition for resonance, �/2 = |d|. We will assume that
the frequency is still large enough so that after, say, a single
shift into the first Floquet zone, energy scales are small
compared to the drive frequency.

To obtain analytical expressions valid at and near res-
onance, we employ a resonant high-frequency approxima-
tion that accounts for resonant transitions. First, we switch
to the rotating frame given by UR(t ) = P+ + P−e−i�t =
exp[i�t P−], where P± = 1

2 [1 ± d̂ · σ] are the projectors to
the two bands of the static model with energies ±|d|. The
Hamiltonian in this rotating frame is

HR(t ) = U †
R (t )H (t )UR(t ) − iU †(t )∂tUR(t )

≡ �

2
+ dR(t ) · σ, (60)

with

dR(t ) =
(

1 − �

2|d|
)

d + 1

2
V⊥ + V‖ cos(�t )

+ 1

2
V⊥ cos(2�t ) + 1

2
V⊥ × d̂ sin(2�t ). (61)

Here, V‖ = (V · d̂)d̂ and V⊥ = V − V‖ are the parallel and
perpendicular components of V to d. Now, we obtain the
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high-frequency Floquet Hamiltonian,

HF = H (0)
R +

∑
n �=0

[
H (−n)

R , H (n)
R

] + [
H (0)

R , H (n)
R − H (−n)

R

]
2n�

≡ �

2
+ dF · σ, (62)

with

dF =
(

1 − �

2|d| + |V⊥|2
8�|d|

)
d + 1

2

(
3

2
− |d|

�

)
V⊥. (63)

It is worth noting here that the term 3
4 V⊥ consists of a

1
2 V⊥ contribution from H (0)

R and a 1
4 V⊥ contribution from

commutators [H (0), H (±2)]/2�, which, nominally, belong to
the next order in the 1/� expansion. However, due to the
resonant shift accounted for in the rotating frame, the H (0)

R

component contains terms ∼�d̂, which feeds back to the
lowest order. Altogether, this yields the quasienergy bands
�
2 ± |dF |, with a gap at resonance 1

2 |V⊥|
√

1 + (|V⊥|/4�)2

[16,48].
The micromotion operator in the original basis is given

by �(t ) = UR(t )�R(t ), where, a lengthy but straightforward
calculation in the rotating frame, up to the same 1/�2 or-
der in the high-frequency expansion, yields [40,41] �R(t ) =
exp [

∑
n �=0

ein�t −1
n�

H (−n)
R ] ≡ exp[iα(t ) · σ], with

α(t ) = sin(�t )

2�
[2V‖ + cos(�t )V⊥ + sin(�t )V⊥ × d̂]

≡ Ṽ sin(�t )

2�
α̂(t ). (64)

Here, α̂(t ) = [2V‖ + cos(�t )V⊥ + sin(�t )V⊥ × d̂]/Ṽ is a
unit vector. We note that the vector form of α(t ), shown in
the square brackets in Eq. (64), consists of a component of
fixed magnitude |V⊥| rotating perpendicular to d, and a fixed
component 2V‖ parallel to d. Thus, the magnitude of this
vector, Ṽ = √

4|V‖|2 + |V⊥|2, is constant in time.
Using these expressions, we find the elements of the

current operator in the spatial direction u in the Flo-
quet basis as jFu

αγ (t ) = ∑
m∈Z 〈〈φα0| ˆ̂ju

0 |φγ m〉〉 e−im�t = jFu(t ) ·
〈φα| σ |φγ 〉 with

jFu(t ) = ju
R‖(t ) + cos

(
Ṽ

�
sin(�t )

)
ju
R⊥(t )

+ sin

(
Ṽ

�
sin �t

)
α̂(t ) × ju

R⊥(t ), (65)

where ju
R‖(t ) = [ju

R(t ) · α̂(t )]α̂(t ) and ju
R⊥(t ) = ju

R(t ) − ju
R‖(t )

are parallel and perpendicular components to α of the current
operator ju

R · σ in the spatial direction u in the rotating frame,

ju
R(t ) = ju

‖(t ) + cos(�t )ju
⊥(t ) + sin(�t )d̂ × ju(t ), (66)

and ju
‖(t ) = [ju(t ) · d̂]d̂ and ju

⊥(t ) = ju(t ) − ju
‖(t ) are, in turn,

parallel and perpendicular components to d of the current
operator ju(t ) · σ in the original frame with ju(t ) = ∂ku [d +
V cos(�t )]. Here, the Floquet modes |φα〉 are eigenstates of
the Floquet Hamiltonian (63). When V is independent of k,
the current operator in the original frame simplifies to ju =
∂ku d, which is time independent.

kΩ

2Λ

2Λ0

2Λr

1

FIG. 2. Extended Floquet zones and cutoffs for resonantly driven
Dirac cone. The cutoff �/2 < � < � isolates a single resonance
in the spectrum. The cutoffs �0 � �/2 at the original Dirac point
and �r � �/2 at the resonant Dirac point select the dominant
contributions to the optical response in each case.

C. Dirac electrons irradiated with linearly polarized light

As our first example, we choose d = v(kx, ky, 0) and V =
(V, 0, 0). This can be taken to represent Dirac electrons
with Fermi velocity v driven by a linearly-polarized laser
field, which is realized in irradiated graphene or the sur-
face of a strong topological insulator. First, we note that
along ky = 0, we may find the full evolution operator U (t ) =
e−i[vkxt−(V/�) sin(�t )]σx , which yields the Floquet Hamiltonian
HF = vkxσx. Thus, the original Dirac point remains gapless
and there is also a pair of gapless points at resonance for
k = k±

r = (±�/2v, 0) at any frequency. We will see below
that analyzing this system more generally requires both off-
resonant and resonant treatments of the Floquet states. For
simplicity, we set the bandwidth by choosing an energy cutoff
� such that �/2 < � < �, which ensures there is a single
resonance at k = kr with v|kr | = �/2. The extended Floquet
zones and the relevant cut-offs are sketched in Fig. 2.

Using Eq. (58) for off-resonant high-frequency approx-
imation, we find that the original Dirac point becomes
slightly anisotropic with Floquet Hamiltonian HF ≈ vkxσx +
vJ0(2V/�)kyσy. To obtain the Floquet spectrum near res-
onance, we use the resonant high-frequency approximation
and Eq. (63), noting V‖ = V kx(kx, ky, 0)/|k|2 and V⊥ =
V ky(ky,−kx, 0)/|k|2. We can see that the gap at res-
onance has the magnitude (vkryV/�)

√
1 + (vkryV/2�2)2.

This gap is maximized for k = (0,±�/2v) at a value
(V/2)

√
1 + (V/4�)2 and closes at k±

r , as it must. Expanding
around k = k±

r + q for small |q| � �/v, we find two highly
anisotropic Dirac points with the Floquet Hamiltonian HF ≈
�/2 + vqxσx ∓ v(V/�)qyσy.

The current operators in the original frame are jx =
v(1, 0, 0) and jy = v(0, 1, 0). The Floquet current elements
can be written as jFu

αβ = jFu · 〈φα| σ |φβ〉, where jFu are found
from Eqs. (59) or (65). At the original Dirac point, we find
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jFx = v(1, 0, 0) and jFy = v cos[(2V/�) sin(�t )](0, 1, 0) −
v sin[(2V/�) sin(�t )](0, 0, 1). The Fourier components are,
thus,

jFx(n) = vδn0(1, 0, 0) (67)

jFy(n) =
{
vJn(2V/�)(0, 1, 0) even n,

−ivJn(2V/�)(0, 0, 1) odd n.
(68)

To proceed analytically, we set an energy limit
v
√

k2
x + [J0(2V/�)ky]2 < �0 < �/2. After rescaling

J0(2V/�)ky �→ ky, we find

σ
xx(n)
0 (ω) = δn0

J0(2V/�)
σD, (69)

where σD = 1/16 is the optical conductivity of a single half-
filled Dirac cone (in units of e2/h̄) [49]. Assuming �0 � �,
we see that the main contribution to optical conductivity in
Eq. (38) is found when ω ± m� ≈ εα − εγ in the central
Floquet zone. Thus, after some algebra, we find for |ω −
m�| � �

2 ,

σ
yy(n)
0 (ω) ≈ ζm

Jn+m(2V/�)Jm(2V/�)

J0(2V/�)

ω − m�

ω
σD, (70)

with ζm = [3 − (−1)m]/2 for even n. For odd n, σ
yy(n)
0 = 0.

We note that the factor ζm = 2 for odd m arises from the fact
that 〈k−| σz |k+〉 = 1 = | 〈k−| σx |k+〉 |2 + | 〈k−| σy |k+〉 |2
where |k±〉 are the eigenstates of HF with quasienergy
±v

√
k2

x + [J0(2V/�)ky]2. For small V/� � 1, the typical val-
ues of this contribution scale as σ

yy(n)
0 ∼ (V/�)n+2m/[(n +

m)!m!m] and vanish quickly with increasing n and m. Optical
Hall conductivity σ

xy(n)
0 (ω) = 0 since it involves integrals

over odd functions of k. This is similar to the situation for
a static Dirac cone, as in graphene.

Keeping terms linear in q = k − k±
r near the resonant

Dirac points, it is easy to see that only current elements
at q = 0 make nonzero contribution to optical conductivity,
since integrals over odd functions of q vanish. The current
elements are

jFx±
r = v(1, 0, 0), (71)

jFy±
r = v cos[(2V/�) sin(�t ) ± �t](0, 1, 0)

+ sin[(2V/�) sin(�t ) ± �t](0, 0, 1). (72)

As with the original Dirac point, we rescale the anisotropic
momentum (V/�)qy �→ qy to find

σ xx(n)±
r (ω) = δn0

�

V
σD, (73)

and σ
xy(n)±
r (ω) = 0. Thus, the anisotropic Dirac point in the

Floquet spectrum can be identified via a large contribution to
the optical longitudinal conductivity in the direction parallel
to the polarization.

To find σ
yy(n)±
r , we proceed again by setting an energy

cutoff v
√

q2
x + [V qy/�]2 < �r � �/2 and find, after some

algebra, that while for odd n contributions from the two
resonant Dirac points have opposite signs and cancel, they add

up for even n:

σ yy(n)±
r (ω) ≈ �

4V
[ζmJ−

m (2V/�)J−
n+m(2V/�)

− ζm+1J+
m (2V/�)J+

n+m(2V/�)]
ω − m�

ω
σD,

(74)

where J±
ν (z) = Jν−1(z) ± Jν+1(z) and |ω − m�| � �

2 . For
small V/� � 1, some typical values of this contribu-
tion are σ

yy(0)±
r (ω) ≈ (v/�)σD for m = 0 and σ

yy(0)±
r (ω) ≈

ω−m�
ω

(�/4V )σD for m = ±1, which show, respectively, sup-
pression and enhancement by the anisotropy of the resonant
Dirac point. Interestingly, the second Fourier components
σ

yy(−2m)±
r (ω) ≈ −3σ

yy(0)±
r (ω) for m = ±1 is even larger in

magnitude, but higher Fourier components |n| > 2 and larger
|m| > 1 are quickly suppressed.

V. NUMERICAL RESULTS

In this section, we present our numerical results obtained
by exact numerical solutions of the Floquet states as well as
numerical integration of our analytical expressions obtained in
the previous section in more complicated two-band models.
We consider two examples: the Haldane model [50] driven
by circularly polarized light and the driven Bernevig-Hughes-
Zhang (BHZ) model of a driven quantum well [51].

A. Driven Haldane model

As our next example, we consider the Haldane model
[50] driven by circularly-polarized light. Setting the nearest-
neighbor distance on the honeycomb lattice a = 1 and with
periodic boundary conditions, the tight-binding Hamiltonian
is given by

H0(k, t ) = J
3∑

j=1

{cos[k(t ) · a j]σx − sin[k(t ) · a j]σy

+ δ′ sin[k(t ) · b j]σz} + μsσz, (75)

where k(t ) = k − A(t ) with the circularly polarized vector
potential A(t ) = A(cos �t, sin �t, 0), J is the hopping am-
plitude to the nearest neighbors at a j = (cos θ j, sin θ j ) with
θ j = (2 j − 1)π/3, and δ′ is the ratio of the hopping amplitude
with J to the next-nearest neighbors at b1 = a3 − a2, b2 =
a2 − a1, and b3 = a1 − a3. Here, the Pauli matrices act on the
sublattice space, and μs is the staggered chemical potential.
We will denote half of the Floquet bandwidth by W , which
is related to J, δ′ and varies with the drive parameters A,�.
Note that for δ′ = 0 and μs = 0 we obtain the tight-binding
model for graphene. As is well known, in equilibrium (A = 0)
the Haldane model exhibits nontrivial topological phases: for
example, when 0 < |δ′| < 1/3 and |μs/J| < 3

√
3δ′, the bands

have Chern numbers C = ±1.
We calculate the Floquet spectrum in the extended

Hilbert space, as detailed in previous sections. The Fourier
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FIG. 3. Driven Haldane model. Quasienergies close to Floquet
zone center (a) and Chern number of the lower band (b) as a function
the intensity A for �/J = 9. Changes in the Chern number are
accompanied by gap closings at the Floquet zone center via the
appearance of single or multiple Dirac points at high symmetry or
other points in the Brillouin zones.

components of the Hamiltonian are given by

H (n)
0 = J

3∑
j=1

[
ϒ

(n)
j+ (A)σx − iϒ (n)

j− (A)σy − 2iδ′Y (n)
j− (A)σz

]
+ μsδn0σz, (76)

where

ϒ
(n)
j± (A) = 1

2in
[eik·a j ± (−1)ne−ik·a j ]e−inθ1− j Jn(A), (77)

Y (n)
j± (A) = 1

2
[eik·b j ± (−1)ne−ik·b j ]einθ j Jn(

√
3A). (78)

The Fourier components of the current operator matrix
elements entering in Floquet optical conductivity are jF (n)

0αβ =∑
lm〈φ(l )

α |j(n+l−m)
0 |φ(m)

β 〉, where j(n)
0 is the Fourier component

of j(t ) = ∂H0(t )/∂k, given by

j(n)
0 = J

3∑
j=1

{
a j

[
iϒ (n)

j− (A)σx + ϒ
(n)
j+ (A)σy

] + 2δ′b jY
(n)
j+ (A)σz

}
.

(79)

For concreteness, in the following we will fix the values
μs/J = 0.2 and δ′ = 0.1, which place the system in equi-
librium in the topological phase. For the driven system, we
set �/J = 9, which is larger than the bandwidth 2W (A = 0),
so for weak driving we expect the Floquet spectra to be
approximately the same as in equilibrium. Figure 3(a) shows
the quasienergies around the Floquet zone center ε/� = 0
as a function of amplitude A. For this drive frequency and
the range of amplitudes shown, there are no gap closings at
the Floquet zone edge ε = �/2. Due to inversion symmetry
breaking caused by nonzero μs, the gap at the K and K ′
points close at different values of drive amplitude: The gap
at the K point closes first at A ≈ 0.75, followed by the gap
at K ′ near A ≈ 1.3. Other gap closings occur near A ≈ 2.4
and A ≈ 2.5, which involve three points consistent with the
threefold rotational symmetry of the honeycomb lattice.

In Fig. 3(b) we plot, as a function of the drive amplitude A,
the Chern number of the lower band, C− = 1

2π

∫
F−(k, t )dk,

as defined in Eq. (50). Changes in the Chern number are
concomitant with gap closings. When the gap closes at a
single k, such as K or K ′ points, the Chern number changes by
one caused by the passage through a Dirac cone in the gapless

(a)

−1.0

−0.5

0.0

0.5

1.0

(b)

(c) (d)

−

−

−

FIG. 4. Spectral properties and homodyne optical conductivity
of the driven Haldane model at �/J = 9. (a) Quasienergies along a
high-symmetry path in the BZ for three different laser intensities,
A = 0.4, A = 1, and A = 2.45. (b) Density of states A(ω) as a
function of probe frequency. (c) Longitudinal conductivity σ (0)

xx (ω)
and (d) Hall conductivity σ (0)

xy (ω) as a function of probe frequency ω

normalized to the quasienergy bandwidth for �/J = 9. The DC Hall
conductivity agrees with the Chern numbers in Fig. 3(b). The half-
bandwidths are W (A = 0.4)/J = 2.89, W (A = 1)/J = 2.30, and
W (A = 2.45)/J = 0.52. In panels (c) and (d), the scaling factor
indicated in blue corresponds to the case A = 2.45.

spectrum [14,52]. On the other hand, as mentioned above gap
closings near A ≈ 2.5 occur at three points, inducing changes
in the Chern number by 3. As representative case studies, we
will consider three amplitudes below: A = 0.4 corresponding
to C− = −1 as in equilibrium, A = 1 corresponding to C− =
0 following the Floquet gap closing at K point, and A = 2.45
corresponding to C− = −2 in the lower Floquet band.

In Fig. 4(a), we plot the quasienergy spectrum along a
high-symmetry path in the Brillouin zone (BZ) for three laser
intensities. In Fig. 4(b) we plot the average density of states in
a drive cycle [8] A(ω) = − 1

π
Im Tr[Ĝ(0)(ω)], where the Flo-

quet Green’s function is defined in Eq. (17). Now, we calculate
the optical conductivity tensor σ(n)(ω) as defined in Eq. (38),
assuming ideal occupation of the lower Floquet bands, i.e.,
g0αβ = δαβ�(−εα ). The results for the longitudinal and Hall
conductivities are shown in Figs. 4(c) and 4(d) for n = 0 and
in Fig. 5 for n = ±1.

The structure of peaks and steps in the response can
be understood as arising from particle-hole excitations near
van Hove singularities, which in our particle-hole symmetric
spectrum is equal to twice the energies in the single-particle
Floquet spectrum. The latter can be seen in the spectral density
A(ω). We note that for A = 2.45, A(ω) shows a peak at
ω ≈ 0.42W , but the corresponding structure near ω ≈ 0.84W
is not visible in optical conductivity since most of the optical
weight for this amplitude is shifted close to the topological
gap. As expected, the DC Hall conductivity is σ (0)

xy (0) = C−
(in units of e2/h). In order to perform a more detailed study of
the Fourier components of the conductivity tensor, and its real
and imaginary components, in the next section we consider
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FIG. 5. Heterodyne optical conductivity of the driven Haldane model at �/J = 9 and three different intensities of the laser.

the driven quantum well, where we can employ our analytical
expressions more easily.

B. Driven quantum well

As our final example, we take d = (A sin kx, A sin ky, M −
4B + 2B cos kx + 2B cos ky) and V = (0, 0,V ) to represent
a two-band model of a driven quantum well, such as one
formed in a semiconductor heterojunction [51] and driven
by an ac gate voltage. The equilibrium model for V = 0
has a topological phase when sgn(MB) > 0, characterized
by a nonzero Chern number C = 1

4π

∫
dk d̂ · ∂kx d̂ × ∂ky d̂ =

1
2 [1 + sgn(MB)]. For concreteness, we assume below A >

0, B/A = 0.2, V/A = 0.35, and M/A = ±0.2 with M < 0
corresponding to the trivial phase, C = 0 and M > 0 to the
topological phase, C = 1 in equilibrium.

In contrast to the driven Haldane model, our first example,
the current operators are time independent, ju = A cos kuσu −
2B sin kuσz, for u = x, y. The diamagnetic response de-
pends on the inverse-mass matrix muv

0 = −δuv (A sin kuσu +
2B cos kuσz ), which is diagonal in the spatial directions and,
therefore, does not contribute to the Hall response.

1. Ideal Floquet occupation

Figures 6 and 7 summarize our numerical results for the
ideal case when only the lower Floquet band is occupied.
In Fig. 6, we show the results for the high-frequency drive
at �/A = 8. As before, the main features of the response
correspond to optical transitions at the van Hove singularities
of the Floquet bands. We note that in addition to steps and
peaks at optical transitions 2ε in the same Floquet zone, the
heterodyne response (n = ±1) also shows features at optical
transitions ∓(� − 2ε) across neighboring Floquet zones.

In the high-frequency regime, the homodyne Hall conduc-
tivity approaches a quantized value in the DC limit set by the

Chern number of the Floquet band. Moreover, the heterodyne
response, while nonzero, is suppressed by one or two orders
of magnitudes.

In Fig. 7, we show the results for the mid-frequency drive
at �/A = 2.5. We note that now the homodyne and hetero-
dyne components have the same order of magnitude. At this
frequency, the Floquet spectrum is modified by the resonant
drive via gap closings at the Floquet zone edge. In particular,
the Floquet bands have nontrivial Chern numbers C = 2 both
for M/A = 0.2 and C = 1 for M/A = −0.2.

As before, the nontrivial topology of the Floquet bands is
reflected in the DC limit of the homodyne Hall conductivity,
consistent with general expectations. The DC limit of the
heterodyne Hall conductivity shows an enhanced value. We
study this limit based on Eq. (A6) and show our results in
Fig. 8. We observe that the DC heterodyne Hall conductivity is
generically not quantized. However, both DC Hall and longi-
tudinal heterodyne conductivity show singular enhancements
at the topological transitions in the Floquet spectrum and can
become large as the frequency is lowered.

2. Quench

As an alternative dynamical scenario, we also compute
optical response following a quench of the static Hamiltonian
by the drive [33,43,47,53]. We simplify the calculation by
assuming that only the diagonal elements of the density
matrix in the Floquet basis contribute. The contributions of the
off-diagonal elements g0αβ are accompanied by phase factor
e−i(t−t0 )(εα−εβ ). So assuming g0 does not depend strongly on
the initial time, these contributions are expected to become
incoherent for t � t0. One can also see this by integrating over
the initial distant time t0, which formally cancels for all terms
with εα �= εβ . Thus, we take

g0αβ = |〈φα (0)|ψGS〉|2δαβ, (80)
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FIG. 6. Homodyne and heterodyne optical conductivity of the driven quantum well model in the high-frequency limit, �/A = 8. The other
parameters are chosen to be B/A = 0.2, V/A = 0.35. In panels (a)–(d), M/A = 0.2 corresponds to the topological phase of the equilibrium
(average) Hamiltonian. In panels (e)–(h), M/A = −0.2 corresponds to the trivial phase of the equilibrium (average) Hamiltonian. In each panel,
the scaling factor applies to n = ±1.

where |ψGS〉 is the ground state of the quantum well without
the drive.

A typical sample of our results in the mid-frequency
regime, �/A = 2.5 and M > 0, is shown in Fig. 9 for the ho-
modyne response and in Fig. 10 for the heterodyne response.
The peaks and steps in the optical conductivity still follow
the optical transition at van Hove singularities of the Floquet
bands. However, in the quenched system, the intensities of
these features is strongly modified, especially at lower optical
frequencies. In particular, the DC Hall conductivity of the
homodyne response is not quantized any more since it is now
determined by the partial occupation of both bands, which
carry opposite Berry fluxes.

VI. CONCLUSION

In this work, we have extended the Kubo formula of the
linear response to the case of a periodically driven system. Our
expression is valid for a general density matrix of the driven
system. These expressions simplify when the density matrix
is diagonal in the Floquet basis of quasienergies or when only
the diagonal part is taken to contribute to the response, upon
averaging the initial time of switching on the probe.

We have derived the Floquet optical conductivity and
elucidate its general dynamical structure and, in particular,
its homodyne and heterodyne components. Importantly, the
nonhomodyne response means that when the system is probed
at some frequency ω, a current is generated not only at the
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(h)

−
−
−
−

FIG. 7. Homodyne and heterodyne optical conductivity of the driven quantum well model in the mid-frequency limit, �/A = 2.5. The
other parameters are as in Fig. 6. In panels (a) and (e), the scaling factor applies to n = ±1.
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FIG. 8. The DC heterodyne optical conductivity of the driven
quantum well as a function of the drive frequency. In this case,
Re σ (n)

xx = Im σ (n)
xy = 0 in the range of drive frequencies considered.

In panels (a) and (b) M/A = 0.2, and in panels (c) and (d) M/A =
−0.2. The other parameters are as in Figs. 6 and 7.

drive frequency but also at frequencies ω + n�, where �

is the drive frequency and n is an integer. We also obtain
Floquet-optical sum rules which include an inverse effective
mass term related to the curvature of the Floquet.

Using the general expressions for the optical conductivity
and resonant and off-resonant rotating-wave approximation,
we obtain analytical results for the case of a driven two-level
system in the high-frequency limit when the drive doesn’t
necessarily commute with the system’s Hamiltonian. We in-
vestigate the optical response of two driven lattice models:
the Haldane model on the honeycomb lattice with circularly
polarized light and the BHZ model for a two-dimensional
quantum well topological insulator with an oscillatory Zee-
man field. In both models we calculate numerically the
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−

−

(c)
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(d)
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FIG. 9. Homodyne optical conductivity of the driven quantum
well as a function of the probe frequency in the steady state following
a quench by the drive (solid curve) compared to the ideal Floquet
occupation (dashed curve). The parameters are as in Figs. 7(a)–7(d).

longitudinal and Hall conductivity response to an AC probe
field, including the homodyne and heterodyne components.
We observe that the steps and peaks of the optical conductivity
trace the optical transitions of the quasienergy spectrum at van
Hove singularities.

The homodyne and heterodyne responses trace optical
transitions, respectively, within and across neighboring Flo-
quet zones. Moreover, the DC limit of homodyne and het-
erodyne conductivities signal the Floquet topological tran-
sitions. In the ideal Floquet occupation, the DC homodyne
Hall conductivity is quantized at the Chern number of the
occupied Floquet bands. The DC heterodyne response, on
the other hand, shows singular enhancement at the Floquet
phase transitions. Away from the ideal limit, the quantization
is spoiled; however, the spectral signatures in the Floquet
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FIG. 10. Heterodyne optical conductivity of the driven quantum well as a function of the probe frequency in the steady state following a
quench by the drive (solid curve) compared to the ideal Floquet occupation (dashed curve). The parameters are as in Figs. 7(a)–7(d).
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optical response persist. These features demonstrate that the
full Floquet optical conductivity is a powerful probe of the
Floquet spectrum and its nontrivial topology.
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APPENDIX: DC LIMIT

In this Appendix we provide some details of the deriva-
tion of the DC limit of the optical Hall conductivity,
limω→0 σ(n)

xy (ω). In particular, we show that the divergent 1/ω

terms vanish for all components of the optical Hall conduc-
tivity. These terms are found from Eq. (38) by setting ω = 0
inside the bracket,

σuv(n)
div (0) = i

ω

∑
α

g0α

[∑
γ m

(
ju(n+m)
0αγ jv(−m)

0γα

εα − εγ − m� + i0+ + jv(m)
0αγ ju(n−m)

0γα

εα − εγ − m� − i0+

)
+ muv(n)

0αα

]
. (A1)

First, focus on the terms in parentheses. Using the identity (z + i0+)−1 = P (z−1) − iπδ(z), we see that the terms with the
delta function boil down to

1

4πω

∑
α �=γ ,m

∫ [
ju(n+m)
0αγ (k) jv(−m)

0γα (k) − ju(m)
0αγ (k) jv(n−m)

0γα (k)
]
δ(εα (k) − εγ (k) − m�)dk, (A2)

where we have shown the dependence on the crystal momentum k explicitly for clarity, so α and γ here refer to band and other
internal indices. We fix the values of the quasienergies in the first Floquet zone, so the delta function enforces m = 0. However,
in the simplest case we are considering here, the bands are nondegenerate for a given value of k, so the condition εα = εγ cannot
be satisfied and these terms vanish.

The other terms read

i

ω
P

∑
α �=γ ,m

g0α

ju(n+m)
0αγ jv(−m)

0γα + jv(m)
0αγ ju(n−m)

0γα

εα − εγ − m�
= 1

ω

∑
α �=γ ,m

g0α

[
ju(n+m)
0αγ rv(−m)

γα − rv(m)
αγ ju(n−m)

0γα

]
, (A3)

where we have used Eq. (47) to relate to the elements of the Berry connection. The bracket on the right-hand side here vanishes
for γ = α identically when summed over m, so we can sum over all γ and m without singularities, yielding

1

ω

∑
α

g0α

[
ju
0 (t )rv − rv ju

0 (t )
](n)
αα

. (A4)

Since ju(t ) = ∂H (t )/∂ku and rv = i∂kv
, the terms in the bracket evaluate to −i∂2H (t )/∂ku∂kv ≡ −imuv

0 (t ). So, this term
simplifies to

− i

ω

∑
α

g0αmuv(n)
0αα , (A5)

which exactly cancels the divergent m term in Eq. (A1). So, all divergent terms vanish in the DC limit.
The next order in ω yields the finite DC limit as

σuv(n)(0) = −i
∑

γ �=α,m

g0α

ju(n+m)
0αγ jv(−m)

0γα − jv(m)
0αγ ju(n−m)

0γα

(εα − εγ − m�)2
(A6)

= −i
∑

γ �=α,m

g0α

[
ru(n+m)
αγ rv(−m)

γα − rv(m)
αγ ru(n−m)

γα

] + in�
∑

γ �=α,m

g0α

ru(n+m)
αγ rv(−m)

γα + rv(m)
αγ ru(n−m)

γα

εα − εγ − m�
, (A7)

where we have again used Eq. (47) to relate to the elements of the Berry connection. For Hall conductivity (uv = xy), as shown
under Eq. (49), the first term is 1

2π

∑
α g0αCαδn0. The second term is as shown in Eq. (52). To obtain the form given in Eq. (53),

we first note again that the term γ = α vanishes upon integration over m, since its summand is odd under m. So, we can sum
over all γ . Now, writing matrix elements rv(m)

αγ = 〈〈φα0| rv |φγ m〉〉 and using the definition of the Floquet Green’s function (16),
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we can write this term as

in�
∑

α

g0α[〈〈φα−n| ru ˆ̂G(εα )rv |φα0〉〉 + 〈〈φα0| rv ˆ̂G(εα )ru |φαn〉〉]

= in�
∑

α

g0α

[
〈〈φα−n| [ru, ˆ̂G(εα )]rv |φα0〉〉 + 1

n�
〈〈φα−n| rurv |φα0〉〉 + 〈〈φα0| rv[ ˆ̂G(εα ), ru] |φαn〉〉 − 1

n�
〈〈φα0| rvru |φαn〉〉

]

= in�
∑

α

g0α 〈〈φα0| [ru, ˆ̂G(εα + n�)]rv − rv[ru, ˆ̂G(εα )] + 1

n�
[ru, rv] |φαn〉〉

= in�
∑

α

g0α 〈〈φα0| [[ru, ˆ̂G+
αn], rv] + {[ru, ˆ̂G−

αn], rv} |φαn〉〉

= in�
∑

α

g0α 〈〈φα0| ∂2 ˆ̂G+
αn/∂kv∂ku + {∂ ˆ̂G−

αn/∂ku, ∂/∂kv} |φαn〉〉 . (A8)

In the first and second lines, we have used the identities ˆ̂G(ω) |φαn〉〉 = (ω − εα − n�)−1 |φαn〉〉 and 〈〈χm| ˆ̂G(ω) |ψn〉〉 =
〈〈χm−n| ˆ̂G(ω − n�) |ψ0〉〉. In the next lines we have used the identities [ru, rv] = 0 and [(ru, ˆ̂G), rv] = ∂kv

∂ku
ˆ̂G and defined

ˆ̂G±
αn = 1

2 [ ˆ̂G(εα + n�) ± ˆ̂G(εα )].
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