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Lyapunov growth in quantum spin chains
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The Ising spin chain with longitudinal and transverse magnetic fields is often used in studies of quantum chaos,
displaying both chaotic and integrable regions in its parameter space. However, even at a strongly chaotic point
this model does not exhibit Lyapunov growth of the commutator squared of spin operators, as this observable
saturates before exponential growth can manifest itself (even in situations where a spatial suppression factor
makes the initial commutator small). We extend this model from the spin 1/2 Ising model to higher spins,
demonstrate numerically that a window of exponential growth opens up for sufficiently large spin, and extract a
quantity which corresponds to a notion of a Lyapunov exponent. In the classical infinite-spin limit, we identify
and compute the appropriate classical analog of the commutator squared, and show that the corresponding
exponent agrees with the infinite-spin limit extracted from the quantum spin chain.
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I. INTRODUCTION

In classical physics, chaos is often characterized by an
exponential sensitivity to initial conditions during an early
time window,

∂Xi(t )

∂Xj (0)
∼ eλLt , (1.1)

where Xi, Xj are generalized coordinates of the system. In
contrast, in quantum mechanics chaos is often characterized
by the system obeying random matrixlike behavior, which
is related to late-time dynamics. This can manifest itself in
the statistical properties of the spectrum of the Hamiltonian.
For instance, level spacings of chaotic systems are expected
to obey a Wigner-Dyson distribution, whereas a generic in-
tegrable system will obey Poissonian statistics [1–3]. For a
recent review, see [4].

Recently, interest in another probe of quantum chaos, the
commutator squared [5]

C(t ) = 〈[W (t ),V (0)]†[W (t ),V (0)]〉β ≡ 〈|[W (t ),V (0)]|2〉β,

(1.2)

has been revived [6–10].1 By writing (1.1) in terms of a
Poisson bracket

∂Xi(t )

∂Xj (0)
= {Xi(t ), Pj (0)} (1.3)
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1The commutator squared is closely related to another probe of

chaos known as the Loschmidt echo, see [11] for a review. Loschmidt
echoes in higher-spin generalizations of spin chains were studied
in [12], were an exponential sensitivity compatible with a classical
Lyapunov exponent was identified. This is closely related to and
consistent with the results presented in this work.

we expect that for a chaotic system, at least in the semiclassi-
cal regime,

〈|[Xi(t ), Pj (0)]|2〉β ∼ e2λLt (1.4)

in an appropriate time window.
In [7,13,14], the commutator squared was studied in an

Ising spin chain with longitudinal (hz) and transverse (hx)
magnetic fields,

H =
∑

n

[ − S(n)
z S(n+1)

z − hxS(n)
x − hzS

(n)
z

]
, (1.5)

where n labels the sites and, e.g., S(n)
x denotes the first Pauli

matrix at site n. This is known as the mixed field Ising model.
This system is known to be integrable if either hx or hz

vanishes and is known to display chaotic spectral statistics
at (h∗

x , h∗
z ) ≡ (−1.05, 0.5) [13], which we will refer to as the

“strongly chaotic point.” The commutator squared

C(x, t ) = 〈 ∣∣[S(1)
z (t ), S(1+x)

z (0)
]∣∣2〉

β=0 (1.6)

vanishes initially, but increases as the operator S(1)
z (t ) “grows”

(i.e., acts nontrivially on a growing number of sites). In order
to display exponential growth in the commutator squared,
we need a sufficiently long time window between its onset
(after an initial dissipation time) and saturation (which must
occur since the commutator squared is bounded), which in
turn requires that the commutator squared includes a small
prefactor. While the Hamiltonian does not contain a small
parameter, the Lieb-Robinson bound ensures that the com-
mutator squared is initially exponentially suppressed in the
spatial distance between sites 1 and n, so one might have
hoped to be able to display exponential growth by starting
with sufficiently separated sites. However, this hope is not
realized and no exponential growth is observed, even for
well-separated operators [15–17].

In order to find exponential growth, we increase the di-
mension of the local Hilbert space by associating with each
site a spin j representation of SU(2) (where the original
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model would correspond to j = 1/2). In this paper we study
this system as we increase j towards the large j classical
limit.

We start by studying this model at fixed j. We adopt a
working definition of chaos based on the spectral statistics of
the model and map out the “phase diagram” of integrability vs
chaos as a function of the magnetic fields.

Having established where our model is chaotic according
to this working definition, we turn to the commutator squared.
At small j we find that the commutator squared follows the
first term of the Baker-Campbell-Hausdorff (BCH) expansion
until it reaches the near saturation regime where it is well
described by a “diffusion” type approach to saturation [17]. As
j is increased, an exponential regime appears at intermediate
times and persists for an increasing amount of time as j is
increased. An exponent that can be understood as a Lya-
punov exponent is extracted and extrapolated to the infinite j
limit.

We then study the classical large j limit of this model. We
construct the quantity which corresponds to the classical limit
of C(x, t ) [18] and discuss how the growth of this quantity
can be interpreted in terms of the divergence of classical tra-
jectories so that it represents a notion of a classical Lyapunov
growth. We finally compute the classical Lyapunov exponent
defined in this way and find that it matches the infinite-
spin quantum extrapolation within a range of magnetic fields
where our model is chaotic according to our spectral statistics
based definition of chaos.

The plan of our paper is as follows. In Sec. II we describe
the behavior of the spectral statistics and the commutator
squared of the mixed field Ising model at spin 1/2. In Sec. III
we introduce the higher spin generalization of this model
and define the classical limit that we consider. We also study
the classical limit of the commutator squared. In Sec. IV
we present the results of our numerical study of the mixed
field Ising model at higher spin, including an analysis of the
spectral statistics and the commutator squared. We describe
the appearance of a regime of exponential growth and how we
extracted an associated Lyapunov exponent. Finally, in Sec. V
we present the results of a numerical study of the classical
limit of the model, describe how to extract the classical analog
of the Lyapunov exponent computed in the quantum model,
and compare the results of the classical analysis to the limit of
the quantum analysis.

II. SPIN 1/2 MIXED FIELD ISING MODEL

In this section we will give a short review of the study of
chaos in the Ising spin chain model with external longitudinal
and transverse magnetic fields, where the Hamiltonian is
given by (1.5). We will focus on open boundary conditions
unless otherwise specified.2

2Open boundary conditions correspond to the Hamiltonian

H = −
L−1∑
n=1

S(n)
z S(n+1)

z −
L∑

n=1

[
hxS(n)

x + hzS
(n)
z

]
. (2.1)

A. Spectral statistics

In this section we will review the map of where to find
chaos in the parameter space (hx, hz ) of the mixed field Ising
model. In the limits of hx = 0, |hx| → ∞ or |hz| → ∞ the
model becomes trivially integrable as the Hamiltonian is
diagonal in the individual spin basis. It is also known to be
integrable for hz = 0. This can be understood via a Jordan-
Wigner transform [19] and is known to manifest itself in the
spectral statistics for finite chains with both open and periodic
boundary conditions [13].

Away from these integrable lines, a fiducial parameter
point exhibiting random matrixlike spectral statistics has been
identified at hx = −1.05 and hz = 0.5 [13]. We will refer to
this parameter point as the “strongly chaotic” point. As we
move towards the limits of large or small magnetic fields
where the model is integrable the spectral statistics interpo-
lates between strongly chaotic and integrable behavior, so that
the region where this model is strongly chaotic corresponds to
intermediate values of the magnetic field.

As has been already alluded to, chaotic and integrable
systems are differentiated by the distinct spectral statistics that
they display. One diagnostic of this is the statistics of the
spacing between consecutive energy eigenvalues. However,
there are two subtleties which must be taken into account.
First, the influence of the model-dependent density of states
must be removed by normalizing the differences by the local
density of states. Only those normalized fluctuations are con-
jectured to present universal features. This procedure is known
as unfolding the spectrum. Second, if the Hamiltonian under
consideration has symmetries, it first needs to be block diago-
nalized according to its conserved charges. The unfolding has
to be performed separately for the different blocks, because
the eigenvalues in different blocks are uncorrelated [4].

Once these have been dealt with we arrive at the definition
of quantum chaos that we will use in this work: that the
differences between consecutive energy levels of the unfolded
spectrum in each block obeys the applicable Wigner-Dyson
distribution chosen depending on whether or not the Hamilto-
nian has a time-reversal symmetry [4]. Our model exhibits a
time-reversal symmetry3 so that strongly chaotic points are
those where the unfolded energy level spacings ω are well
described by the Wigner surmise [4]

P(ω) = πω

2
e−πω2/4. (2.2)

On the other hand, nontrivial integrable models are those
where the unfolded energy level spacing follows Poisson
statistics,

P(ω) = e−ω. (2.3)

Some integrable models are trivial in the sense that they
have regularly spaced energy levels with a high level of
degeneracy. In such models, the unfolding procedure fails.
The mixed field Ising model is trivial in this sense when
hx = 0, |hx| → ∞, or |hz| → ∞ so that the Hamiltonian is

3This is most easily seen by noticing that in the usual represen-
tations of SU(2) our Hamiltonian is real. This means that complex
conjugation provides a time-reversal operation with T 2 = 1.
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FIG. 1. The level spacing distribution for the Ising spin chain ( j = 1/2) for an L = 14 chain at integrable (leftmost) and chaotic (rightmost)
points in parameter space follow the Poisson distribution (2.3) and the Wigner surmise (2.2), respectively. In between these two parameter
points, there is a continuous transition from Poisson to Wigner-Dyson statistics. The middle figure, with magnetic fields very near the integrable
line, displays this crossover.

diagonal in the spin basis. We will refer to both nontrivially
integrable models with Poisson statistics and these trivially
integrable models as integrable.

As a first step, one should therefore identify the symmetries
of the Hamiltonian. For open boundary conditions, the Hamil-
tonian (1.5) has a reflection symmetry about the center of the
chain for any value of the magnetic fields. For the special case
of hz = 0, we find an additional symmetry generator that flips
every spin, �nS(n)

x .
Once the eigenvalues have been classified according to

the conserved charges of the system, we unfold the different
spectra using the method detailed in [20]. The idea is that
the average spacing between eigenvalues is controlled by the
local mean density of states: if there are D(E )δE eigenvalues
within a region δE of the spectrum, then the average spacing
will have to be 1/D(E ). We are instead interested in the
fluctuations around this average. If we rescale the difference
between consecutive eigenvalues by the local mean density of
states, the average difference will be one and we can study the
shape of the distribution. In order to determine the local mean
density of states we can compute the difference in energies
between two states some distance apart in the spectrum. We
should take this distance to scale like the total number of
states to some power between 0 and 1, for example 1/2, so
that in the large-system limit the window is at an intermediate
scale and we obtain a well-defined notion of coarse-grained
density of states. An explicit implementation of these ideas is
described in [20]. In the end, what we plot is the distribution
of normalized spacings ωi, defined by

ω
(raw)
i = Ei+1 − Ei

Ei+	 − Ei−	

, (2.4)

ω̄ = (N − 10	)−1
N−5	∑

i=5	+1

ω
(raw)
i , (2.5)

ωi = ω
(raw)
i

ω̄
, (2.6)

for each i = 5	 + 1, . . . , N − 5	, where a cut has been in-
troduced at the edges of the spectrum to remove edge effects.4

	 is the largest integer smaller than
√

N and N is the total
number of states in a given block.

In Fig. 1 we display the crossover in the level spacing
statistics as we move from integrability to the strongly chaotic
regime. Similar spectral statistics were found in [13]. The
leftmost figure is a representative of the integrable line hz = 0
and can be seen to follow the Poisson distribution except for
a deficit in the first bin. A similar deficit at small separations
appears in the figures of [13]. The absence of a peak at the
location expected from the Wigner surmise and a close match
to the slower decay of the Poisson distribution at large separa-
tion allow us to clearly distinguish the level spacing statistics
at this integrable point from those expected in the strongly
chaotic regime. The second figure shows the crossover regime
that appears for magnetic fields near the integrable line and
the last figure is the strongly chaotic point, studied by [13],
which follows the Wigner surmise.

B. Commutator squared

Apart from the spectral statistics, other potential indicators
of chaos such as the commutator squared or equivalently
the out-of-time-order correlator (OTOC) have been studied
in the mixed field Ising model [14,21]. It was found that the
commutator squared displays a sharp growth that spreads to
more distant sites. However, the early time behavior up to
saturation was qualitatively similar for both integrable and
chaotic values of the magnetic fields. Here we review the
study of the time evolution of the commutator squared in an
L = 8 spin chain described by the Hamiltonian (1.5), which
was identified as chaotic by its spectral statistics, at infinite

4The unfolding is independent of the exact number multiplying 	,
as long as it removes a non-negligible part of the spectrum at the
edges.
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FIG. 2. The commutator squared as a function of time depicted for various positions of the second operator. No exponential regime
develops as the distance between the two operators grows. The figure on the left uses a semi-log scale where exponential growth would appear
linear, whereas the figure on the right uses a log-log scale to exhibit the early time power-law growth. The BCH prediction for this early time
power-law growth is superimposed (dashed line).

temperature (β = 0),

C(x, t ) = 〈 ∣∣[S(1)
z (t ), S(1+x)

z (0)
]∣∣2〉

β=0. (2.7)

1. Exponential growth?

From our classical intuition about this commutator
squared, we would expect it to grow exponentially in chaotic
systems. More precisely, if a classical limit of the model
exists, the corresponding classical system is expected to be
chaotic by the BGS conjecture and is therefore expected to
exhibit a strong sensitivity to initial conditions [1,2]. The
question is then how robust is this behavior in the quantum
regime? Clearly a region of exponential growth requires that
the commutator squared starts out with a large suppression
leaving room for the growth. Is this suppression sufficient,
such that systems with a small parameter suppressing the
commutator squared generically exhibit exponential growth or
is the exponential growth solely present in the classical limit?

Large separations between the operators in the commutator
squared provide a suppression of the form exp (−2λL x/vB),
where vB is known as the butterfly velocity. This was orig-
inally conjectured to provide sufficient room for this expo-
nential growth [21]. However, it has been understood that this
is not the case and that spin systems with small numbers of
degrees of freedom per site do not exhibit exponential growth
[15–17,22].

Figure 2 shows the commutator squared for different sites
as a function of time. On this semi-log plot, exponential
growth of the commutator squared would appear as a linear
region. No exponential regime is visible for any site, no matter
how far removed from each other. This demonstrates that for
this model the large suppression in the commutator squared
from the separation between the local operators, which makes
the scrambling time parametrically large, is not sufficient
to ensure that the commutator squared exhibits a period of
exponential growth.

2. Early time behavior

Given that the commutator squared does not exhibit a
period of exponential growth, we would like to gain a better
understanding of the behavior that it does exhibit. We can start

by using the BCH expansion to understand the very early time
behavior [23].

For the commutator squared involving two sites separated
by x sites, the leading order term in this expansion is

C(x, t ) ∼ (4hx )2x+2

[(2x + 1)!]2
t4x+2. (2.8)

This leading order form already goes some way towards
explaining the large suppressions we see at large separations.

Figure 2 shows the commutator squared on a log-log plot to
reveal this early time power-law growth with the leading order
term overlaid in a dashed line. For sufficiently early times the
commutator squared and the leading order term agree. As the
second order term becomes non-negligible, the two curves
diverge. However, for all times the commutator squared is
below the leading order, evidently power-law, value.5

3. Near saturation behavior

It has been argued that the near saturation behavior should
be analyzed in terms of the functional form [16,24]

C(x, t ) ∼ e−λ
(x−x0−vBt )1+p

t p , (2.9)

where vB is the butterfly velocity chosen so that the saturation
of the commutator squared occurs at tsat = x−x0

vB
. Then x0 plays

the role of fixing the overall constant in front of the commu-
tator squared and p is a parameter that describes the shape
of the wave front as the operator spreads. p = 0 describes
a Lyapunov behavior, whereas p = 1 is known as diffusive
behavior.6

In fact, it was argued in [17] that in the thermodynamic
limit of long chains we should generically expect to see diffu-
sive behavior with p = 1. In Fig. 3 we fit the near saturation
region for the parameters vB, x0, and λ with p fixed to 1. We
see that the early time behavior is well described by the BCH
form, that there is a small crossover region, and then that

5We thank Oleg Evnin for a discussion on this topic.
6Note that the center of the wave front is moving ballistically at a

constant velocity. The shape of this wave front is what is spreading
out diffusively.
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FIG. 3. The commutator squared for sites 2, 4, 6, and 8 of
an eight-site chain. A fit to the ansatz (2.9) with p = 1 for the
near saturation behavior (red dashed line) and the early time BCH
behavior (blue dashed line) are superimposed.

this diffusive functional form matches to the near saturation
behavior. As we move to larger separations, the crossover
happens at lower values of the commutator squared.7

We conclude that there is no sign of exponential growth
of the commutator squared at the strongly chaotic point.
Although the spatial separation of the two operators was
expected to play the role of the small parameter needed to
open a window for exponential behavior, the first term in the
BCH expansion fits the early growth very well until the near
saturation behavior described in [17,24] takes over, leaving no
room for an intermediate exponential regime. In the following
sections we will see how, by considering our model with
higher representation of the SU(2) living at each site, we will
be able to open up a window of exponential growth between
the early time BCH and near saturation behaviors.

III. HIGHER SPIN GENERALIZATION
OF THE ISING MODEL

So far we have worked with the usual mixed field Ising
model, which is a Hamiltonian defined for a chain of L spin
1/2 particles. We will now extend this model in a way such
that the model has a classical limit where we can compare
classical and quantum indicators of chaos. We will do so by
generalizing the representation of SU(2) at each site of the

7The authors of [17] had to consider very long chains to see the
diffusive behavior with p = 1. They used a matrix product operator
(MPO) approach which works best for small values of the commuta-
tor squared, but requires more resources to resolve the near saturation
behavior. The fact that this crossover into the diffusive near saturation
behavior moves to lower values of the commutator squared as the
separation increases explains why such large separations are required
to identify this behavior when focusing only on the regime where
the commutator squared is small. With the benefit of hindsight, we
can see that this functional form accurately describes the commutator
squared even for small chains as long as we look sufficiently close to
saturation.

chain, replacing the spin 1/2 particles by spin j particles.
A model of this type has been consider in [25]. The same
Hamiltonian still makes sense with the spin matrices replaced
by their spin j equivalents. We consider the Hamiltonian

H = 2√
3

√
j( j + 1)

[
−

L−1∑
n=1

S(n)
z S(n+1)

z

−
L∑

n=1

(
hxS(n)

x + hzS
(n)
z

)]
, (3.1)

where the prefactor of
√

j( j + 1) is there to ensure that
evolution equations have a finite large j limit and the factor
of 2/

√
3 is present to ensure that this Hamiltonian has the

conventional normalization for j = 1/2 used for example in
[13]. The S(n)

a at each site form a spin j representation of
SU(2), but in order to fix the relative strengths of the couplings
we will now give a prescription for normalizing them.

This model admits a semiclassical limit at large j, where
the phase space at each site is a fuzzy sphere which goes over
to a smooth S2 in the classical limit [26]. The analogy to the
sphere can be understood by normalizing the spin matrices to
have a constant Casimir,8∑

a=x,y,z

S(n)
a S(n)

a = 3, (3.2)

which is the equation of a 2 sphere of radius
√

3. As we
increase j, the dimension of the representation increases and
this fuzzy quantum sphere goes over to a smooth classical
space. With this normalization the commutation relations are

[
S(n)

a , S(m)
b

] =
√

3 i√
j( j + 1)

δn,mεabcS(n)
c , (3.3)

so that the right-hand side vanishes in the large j classical
limit.

A. Classical limit

We will now identify the classical system at the endpoint
of this limit. The usual correspondence principle associates
the Poisson bracket to (−i) times the commutator (in units
where h̄ = 1). Equivalent classical dynamics are obtained by
simultaneously rescaling the Hamiltonian and the Poisson
bracket,

Hcl ≡ lim
j→∞

H√
j( j + 1)

, (3.4)

{·, ·} ≡ lim
j→∞

−i
√

j( j + 1) [·, ·], (3.5)

∂t O = {O, Hcl}. (3.6)

The phase space consists of a 2 sphere at each site on our
chain. We can choose more familiar coordinates on the sphere

8We use 3 for this constant in order to match onto the conventions
of [13] for spin 1/2.

174313-5



BEN CRAPS et al. PHYSICAL REVIEW B 101, 174313 (2020)

at each site in terms of angles (θ (n), φ(n) ),

S(n)
x =

√
3 sin θ (n) cos φ(n), (3.7)

S(n)
y =

√
3 sin θ (n) sin φ(n), (3.8)

S(n)
z =

√
3 cos θ (n). (3.9)

Since the commutators between spins at different sites vanish
and the commutators between spins at a given site only
involve spins at that site, the Poisson bracket must have the
form

{F, G} =
L∑

n=1

ω−1(θ (n), φ(n) )

(
∂F

∂θ (n)

∂G

∂φ(n)
− ∂F

∂φ(n)

∂G

∂θ (n)

)
.

(3.10)

It remains to identify the function ω−1. By using the corre-
spondence principle rewritten in terms of the angular coordi-
nates

−i
√

j( j + 1)
[
S(n)

x , S(n)
y

] =
√

3S(n)
z

−−−→
j→∞

{
S(n)

x , S(n)
y

} =
√

3S(n)
z (3.11)

⇒ {
√

3 sin θ (n) cos φ(n),
√

3 sin θ (n) sin φ(n)} = 3 cos θ (n),

(3.12)

we can determine that the symplectic form is given by

ω−1(θ (n), φ(n) ) = csc θ (n), (3.13)

ω =
L∑

n=1

sin θ (n) dθ (n) ∧ dφ(n). (3.14)

This is the canonical SU(2) invariant symplectic form on the
sphere. The final Poisson bracket is

{F, G} =
L∑

n=1

csc θ (n)

(
∂F

∂θ (n)

∂G

∂φ(n)
− ∂F

∂φ(n)

∂G

∂θ (n)

)
. (3.15)

The equations of motion governing this system are

θ̇ (n) = {θ (n), H} = 2hx sin φ(n), (3.16)

φ̇(n) = {φ(n), H}
= −2

(
hz +

√
3 cos θ (n−1) +

√
3 cos θ (n+1)

− hx cot θ (n) cos φ(n)). (3.17)

The inconvenient factors of
√

3 come from the fact that
we normalized our Hamiltonian so that it matches with the
conventions in the literature for spin 1/2.

It is important to realize that the phase space of the classical
model is given by

⊗L
n=1 S2, so that each site contributes a

single conjugate pair to the phase space. This is not a lattice
of classical particles moving on a sphere along with their
conjugate angular momenta.

This limit is not quite the usual notion of a classical
limit that might be studied to understand the correspondence
between the classical and quantum physics of single particle
systems, since the number of degrees of freedom at each site

is taken to be large and therefore the Hilbert space and not
only the Hamiltonian changes as we take j large.9

B. Commutator squared in the classical limit

In the spin 1/2 case the commutator squared was defined
in (2.7). This definition can be straightforwardly extended to
the higher spin representations

C( j)(x, t ) ≡ 〈 ∣∣[S(1)
z (t ), S(1+x)

z (0)
]∣∣2〉

β
, (3.18)

where we have added a label ( j) indicating which representa-
tion we are considering.

The classical analog of the commutator squared with a
finite large spin limit is10

C(cl)(x, t ) ≡ lim
j→∞

j( j + 1)C( j)(x, t ) (3.19)

= lim
j→∞

j( j + 1)
〈∣∣[S(1)

z (t ), S(1+x)
z (0)

]∣∣2〉
β

(3.20)

= 〈 ∣∣{S(1)
z (t ), S(1+x)

z (0)
}∣∣2〉

β
. (3.21)

This Poisson bracket is related to the sensitivity of our
system to a perturbation of its initial conditions

{
S(1)

z (t ), S(n)
z (0)

} = 3
∂ cos θ (1)(t )

∂φ(n)(0)
. (3.22)

The quantity in (3.21) should then be interpreted as an average
over phase space, weighted by an appropriate Boltzmann
factor. Phase space consists of the different initial conditions
for all of the dynamical variables θ (n)(0), φ(n)(0) and the
derivative in (3.22) corresponds to the dependence of a par-
ticular phase space coordinate at a later time to a change of
initial conditions.

In practice it can be computed using a Monte Carlo
approach. First, randomly choose an initial condition
θ (n)(0), φ(n)(0). Then evolve the system for a time t with
both this initial condition as well as an initial condition where
φ(n)(0) at the nth site has been deformed to φ(n)(0) + ε. The
derivative can then be written as

∂ cos θ (1)(t )

∂φ(n)(0)
= lim

ε→0

cos θ (1)
ε (t ) − cos θ

(1)
0 (t )

ε
, (3.23)

where cos θ (1)
ε (t ) denotes the value after time evolution for a

time t with perturbed initial conditions.
In practice the numerical accuracy of the calculation puts

a lower bound on ε. Since | cos θ (1)(t )| � 1, the numerator is
bounded by 2. The finite ε approximation to (3.23) starts off
at zero, since the perturbation in the initial condition of φ(n)

leaves θ (1) unchanged. It can then grow until it reaches the
bound at order ε−1 at which point it will generically saturate.

9The feature that the size of the Hilbert space increases is shared
by large N limits, but there are a number of differences from gauge
theory large N limits: the spins live in a representation of SU(2) but
the Hamiltonian is not SU(2) invariant so there is no symmetry to
gauge and the dimension of the representation, not the rank of a
gauge group, is getting large.

10See also [27] for a similar approach to the one described here for
studying many-body chaos in a classical lattice model.
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Finally, we should average this numerical estimate for the
derivative over different randomly chosen initial conditions.
Once we have computed this approximation to C(cl ), for
chaotic systems we should find a region of exponential growth
from C(cl) ∼ O(1) to O(ε−2). By fitting a line to a semi-log
plot of this quantity we can extract the Lyapunov exponent

∂ cos θ (1)(t )

∂φ(n)(0)
∼ eλLt ⇒ C(cl)(x, t ) ∼ e2λLt . (3.24)

Let us now compare this to the quantum story. From the
correspondence principle, we expect that in the large j limit,
the commutator squared should also grow exponentially

j( j + 1)C( j)(x, t ) −−−→
j→∞

C(cl)(x, t )

⇒ C( j
1)(x, t ) ∼ 1

j( j + 1)
e2λLt . (3.25)

Since the commutator squared is bounded11 we know that
this growth must eventually break down. The suppression by
j( j + 1) implies that it can persist for a time

λL	texp ∼ 1
2 log j( j + 1). (3.30)

As j is taken to be large, this regime of exponential growth
will persist for longer. In our classical analysis, the use of a
finite perturbation ε to estimate the derivative by the initial
condition lead to an analogous breakdown of the exponential
growth at a scale ε−2, where ε−1 plays the role of j in this
analogy.

In order to study the exponential growth, it will be most
convenient to plot j( j + 1)C( j)(x, t ) since this is the quantity
that goes over to a finite classical curve. This is in contrast to
studies of the near saturation behavior related to the growth of
operators, where C( j)(x, t ) itself is the quantity of interest.

A quantity analogous to our (3.21) has been studied in a
single particle context [18], where its correspondence to the
classical limit of the commutator squared computed in the
corresponding quantum system was exhibited explicitly. In
this work we aim to exhibit a similar correspondence in a
many-body context. Although the formalism we present here
applies in the general many-body context, our numerical study
will be restricted to very small systems.

11This can be seen by writing C ( j)(x, t ) as an inner product:

C ( j)(x, t ) = (〈ψ | − 〈ψ ′|)(|ψ〉 − |ψ ′〉), (3.26)

|ψ〉 = S(1)
z (t )S(1+x)

z (0)|β〉, (3.27)

|ψ ′〉 = S(1+x)
z (0)S(1)

z (t )|β〉, (3.28)

where we have replaced the thermal trace by an inner product in a
unit norm purifying state |β〉. The thermofield double is an example
of such a state. By using the Cauchy-Schwarz inequality and the
fact that the spin operators normalized as in (3.2) are bounded
with maximal eigenvalue

√
3 j/( j + 1), we find that the commutator

squared is bounded by

|C ( j)| � 36 j2

( j + 1)2
. (3.29)

In [18] it was emphasized that this quantity does not
correspond to the “standard” Lyapunov exponent defined by〈

lim
t→∞

1

t
log

∣∣∣∣ ∂z(t )

∂z(0)

∣∣∣∣
〉
, (3.31)

where z are coordinates on phase space. Nonetheless, we
would argue that λL in (3.24) can be thought of as a Lyapunov
exponent of the system. It differs from this standard exponent
in two ways.

First, the standard exponent uses a metric on phase space
for defining the distance between two trajectories. Since
generic phase spaces do not come equipped with a metric this
is a choice that must be made. In our case, there is a natural
SU(2) invariant metric on phase space that could be used. The
commutator squared consists of a different way to measure the
divergence between two trajectories.

The second difference, which was emphasized in [18], is
that the averaging over phase space is performed differently
in the two cases. In the definition of the standard Lyapunov
exponent, an exponent is extracted at each point in phase space
and then averaged. The growth rate of the commutator squared
involves averaging the trajectories and then extracting an
exponent from the averaged trajectory. Since these trajectories
may be growing exponentially at different rates, the average
over phase space will tend to pick out the trajectory that grows
at the fastest rate. For intermediate times, when λmaxt 
 1
but well before saturation of the commutator squared, this
average over phase space can be computed in a saddle point
approximation

〈eλ(θn
0 ,φn

0 )t 〉 ∝ eλmaxt . (3.32)

While the exponent extracted from the growth rate of the
commutator squared is not the standard Lyapunov exponent,
the choice of this standard was somewhat arbitrary and not
necessarily well defined in the general many-body setting.
Since the classical limit of the growth rate of the commutator
squared is also a characterization of the divergence of classical
trajectories, we will continue to refer to it as a Lyapunov
exponent as has become standard terminology in the literature
on the commutator squared, e.g., [10]. This exponent is also
sometimes known as a generalized Lyapunov exponent and
has appeared previously in studies of the phase space depen-
dence of chaos [28,29].

IV. QUANTUM ANALYSIS

In this section we study the quantum mixed field Ising
model at finite j. We wish to understand if there is an emer-
gence of early time exponential growth of the commutator
squared, diagnosing a classical notion of chaos, when con-
sidering a semiclassical limit of the mixed field Ising model.
We will focus on chaotic models, as defined by the late-time
diagnostic of the spectral analysis, and therefore first map out
where the model is integrable or chaotic. We find that the
model is only integrable at the trivial hx = 0 and |hx| → ∞
and |hz| → ∞ limits and that the integrable line at transverse
fields hz = 0 only exists for j = 1/2. Then we turn to the
commutator squared. By increasing j we are able to see the
appearance of the Lyapunov regime, although we must restrict
to very short spin chains in order for the numerics to be
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FIG. 4. The level spacing statistics for a two-site chain for j = 45 (left) and a six-site chain for j = 2 (right) with a purely transverse
magnetic field. For both chain lengths we see no sign of the integrability at hz = 0 present in the j = 1/2 case.

tractable. By extrapolating this result to large j we extract the
classical limit of the Lyapunov exponent.

A. Spectral statistics

We use the same approach as in the spin 1/2 case in Sec. II.
First we must determine the symmetries of the model. The
reflection symmetry of the chain generalizes to higher spin
representations. When hz = 0, there is still a symmetry under
Sz → −Sz while keeping Sx fixed, implemented by the unitary

U =
L⊗

n=1

e
√

j( j+1)
3 iπS(n)

x . (4.1)

We present the spectral analysis for higher spin mixed
field Ising chains with L = 2 and L = 6. The former case is
relevant to determine which points in the parameter space
represent chaotic models, for our later investigation of the
commutator squared. The latter serves as a representative
for slightly longer chains which illustrates the nonintegrable
structure of the hz = 0 line away from the origin and
the integrable character of the |hx| → ∞ and |hz| → ∞ limits
for higher spins. For L = 3, however, we observed Poisson
statistics for every value of the magnetic fields, which is prob-
ably due to a residual symmetry that we were not immediately
able to identify. Since the energy eigenvalues in different
blocks are uncorrelated, even if the eigenvalues in each block
obey Wigner-Dyson statistics the combined distribution will
be Poisson. This interpretation is supported by the fact that the
L = 3 chain exhibits exponential growth of the commutator
squared in the semiclassical regime for chaotic parameter
points, as seen in Fig. 14.

Figure 4 demonstrates that the line hz = 0 is no longer inte-
grable. The strongly chaotic point at (h∗

x , h∗
z ) = (−1, 05, 0.5)

keeps displaying Wigner-Dyson statistics for higher spins. We
observe a breakdown of the Wigner-Dyson statistics as we
tune hx to be small or large while keeping hz fixed (see Figs. 5
and 6). This crossover behavior will be shown to be visible in
the study of the commutator squared as well (cf. Sec. V B).

B. Commutator squared

As reviewed in Sec. II, the early time behavior of the
commutator squared is not able to distinguish an integrable
from a chaotic Hamiltonian in a spin 1/2 chain. In particular,

the correlator does not possess the exponential regime ex-
pected from the classical picture of chaos. We now show that
as the local Hilbert space increases, by taking higher SU(2)
representations, an exponential region develops between the
early BCH and the near-saturation behavior. The emergence of
an exponential regime is a consequence of the increase of the
time to saturation, which grows logarithmically in dimension
of the Hilbert space at each site. As discussed in the previous
section, we expect the exponential growth to be visible for a
window of

λL	texp ∼ 1
2 ln j( j + 1). (4.2)

If we want to be able to observe a few e-foldings of exponen-
tial growth, we need j � 10 and are therefore forced to restrict
our study to very short chains. In the following we will detail
our investigation for L = 2 at the strongly chaotic point, while
we will briefly discuss the L = 3 case at the end.

The smallness of the chain allows us to use exact diag-
onalization of the Hamiltonian H up to j ∼ 61. In Fig. 7,
j( j + 1)C( j)(x, t ) is computed for various spins ranging from
j = 1/2 to j = 61.

For the spin 1/2 curve, the early time growth is power
law (BCH) as discussed in Sec. II and immediately followed
by the saturation. However, as we increase the local Hilbert
space, a region of exponential growth develops before satura-
tion, which is observed to grow with increasing spin.

1. Near saturation behavior

We also note the feature that this exponential regime breaks
down well below the value to which the commutator squared
saturates.

But first, we need to understand to what value the commu-
tator squared saturates. It can be written in terms of the overlap
of the states

|ψ〉 ≡ S(1)
z (t )S(1+x)

z (0)|β〉, (4.3)

|ψ ′〉 ≡ S(1+x)
z (0)S(1)

z (t )|β〉, (4.4)

C( j)(x, t ) = (〈ψ | − 〈ψ ′|)(|ψ〉 − |ψ ′〉) (4.5)

= 〈ψ |ψ〉 + 〈ψ ′|ψ ′〉 − 2Re〈ψ |ψ ′〉, (4.6)

where we have replaced the thermal trace by an inner product
in a unit norm purifying state |β〉. The thermofield double is
an example of such a state. The first two terms are norms and
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FIG. 5. The level spacing statistics for a two-site chain for j = 45 as we vary the transverse magnetic field hx . The center figure is at
the conventional strongly chaotic point (h∗

x , h∗
z ) = (−1.05, 0.5) where we observe Wigner-Dyson statistics. As we decrease or increase the

magnetic field hx (in the figures to the left and right, respectively) we see that the Wigner-Dyson statistics start to break down.

can be thought of as the expectation value of an operator in a
state prepared by inserting an operator at another time

〈ψ |ψ〉 = [〈β|S(1+x)
z (0)

]
S(1)

z (t )S(1)
z (t )

[
S(1+x)

z (0)|β〉]. (4.7)

After a dissipation time, we expect the state in brackets to
thermalize and be indistinguishable by simple probes from the
thermal state. Therefore these terms are expected to decay to
the disconnected answer〈

S(1+x)
z (0)S(1)

z (t )S(1)
z (t )S(1+x)

z (0)
〉
β=0

−−−→
t→∞

〈 (
S(1)

z

)2〉
β=0

〈 (
S(1+x)

z

)2〉
β=0 = 1. (4.8)

On the other hand, the last term involving the overlap between
the two states, which is an OTOC, is expected to decay to
zero at late times in chaotic systems as a consequence of the
butterfly effect [6,10]. The state |ψ〉 can be thought of as
being prepared by perturbing the system at time 0, evolving
forward to time t and inserting another perturbation, before
evolving the system back to time 0 in order to compare the
state to |ψ ′〉. For chaotic systems and a sufficiently long time
t , we expect the second perturbation to sufficiently change the
trajectory of the evolution such that the first perturbation does
not rematerialize when the state is evolved back to time 0. In
other words, the state |ψ〉 is expected to be indistinguishable
from the thermal state for simple operators inserted at time 0.
Since |ψ ′〉 is perturbed at time 0, the overlap between the two
states is expected to be small.

These considerations might lead one to expect that

C( j)(x, t ) −−−→
t→∞ 2

〈 (
S(1)

z

)2〉
β=0

〈 (
S(1+x)

z

)2〉
β=0 = 2. (4.9)

However, we find instead that the commutator squared satu-
rates before reaching this value and oscillates around approxi-
mately 1.6 for large spin. This is due to the fact that the OTOC
does not strictly go to zero and instead oscillates around a
small positive value. Indeed, in [30] it was understood that for
finite size systems with energy conservation, the OTOC satu-
rates to a nonzero value inversely proportional to the system
size. We will denote the true late time value of the commutator
squared as C( j)

sat . Figure 8 demonstrates the behavior of the
commutator squared beyond the region of exponential growth
until saturation.

In addition to this small deviation in C( j)
sat , we wish to

highlight another feature of the late time behavior. Denote
the approximate value of the commutator squared where
the exponential growth breaks down and the near saturation
behavior takes over by C( j)

break. Then we observe that

	sat ≡ ∣∣C( j)
break − C( j)

sat

∣∣ (4.10)

increases as we increase j. This means that the Lyapunov
growth breaks down well before saturation and that the separa-
tion between these scales is a feature that survives in the clas-
sical limit. In [24], exponential growth right up to saturation
was contrasted with other types of near saturation behavior.

FIG. 6. The level spacing statistics for a six-site chain for j = 2 as we vary the transverse magnetic field hx . The center figure is at
the conventional strongly chaotic point (h∗

x , h∗
z ) = (−1.05, 0.5) where we observe Wigner-Dyson statistics. As we decrease or increase the

magnetic field hx we see that the Wigner-Dyson statistics start to break down, although the spread in the magnetic fields for which one finds
Wigner-Dyson statistics is larger than for the two-site chain.
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FIG. 7. A semi-log plot of the commutator squared is shown as a function of time for various spins, with separation x = 0 on the left
and x = 1 on the right. The lowermost (light blue) curve corresponds to the spin 1/2 case. The different curves represent increasing spin
representations as one moves towards the darkest curve, for which j = 61. An exponential regime emerges at intermediate values of the
commutator squared and grows as we increase the spin.

We would like to emphasise that due to the breakdown of
the exponential growth observed here, our identification of a
region of exponential growth does not have any implications
for the near saturation behavior of the commutator squared
and that our results are therefore independent of the analysis
presented in that work. We will now focus on the region of
exponential growth and leave a more detailed analysis of the
near saturation behavior for future work.

2. Extracting a quantum Lyapunov exponent

Now that we have observed the qualitative existence of
a region of exponential growth in the commutator squared,
we would like to give a quantitative estimate of the resulting
exponent. Although the analysis is performed in the semiclas-
sical regime of the quantum model, we will term this quantity
the quantum Lyapunov exponent to distinguish it from the
exponent that will be determined in the classical model and to
emphasise that it is computed using quantum dynamics. We
will fit a line to the Lyapunov region of the semi-log plot of
the commutator squared and extract from this the Lyapunov
exponent λ

( j)
L for each choice of the spin j, see Fig. 11. As we

increase the spin towards the classical limit, we observe that
the quantum Lyapunov exponent saturates to a finite value λ∞

L
which we compare to the Lyapunov exponent extracted from
a classical analysis in the next section.

FIG. 8. A semi-log plot of the commutator squared displaying
its late time saturation for various spins. The horizontal black lines
depicts the naive saturation of the commutator squared at the value
of 2.

However, there are a number of ambiguities that must be
fixed in this procedure. In order to quantify the uncertainty
introduced by these ambiguities, we will vary the choices we
make and produce a distribution of λ∞

L . The variance of this
distribution will then give us a rough estimate of the size of
these uncertainties.

The first ambiguity comes from the presence of small
fluctuations on top of the exponential regime (which appears
as a linear regime in the semi-log plot of Fig. 7 which make
the fit to this exponential regime depend on exactly which time
interval [ti, t f ] we fit to. We will argue at the end of this section
that this may be due to edge effects in the two-sites setting, but
in the meantime we would like to estimate the uncertainty in
λ∞

L coming from this ambiguity. To do so, we will choose a
variety of different cuts within which to perform the linear fit
on the semi-log plot and we will use the variance in λ∞

L as
we vary these cuts as an estimate of the ambiguity introduced
from this issue.

To be specific, we start by determining the time at which
the difference between the commutator squared of the highest
two spins, normalized by the value for the highest spin,
becomes 1 percent. This time gives a rough estimate as to
where the exponential growth starts to breakdown and at the
same time seems to be early enough (see Fig. 9) to be a
valid upper bound for the lower spins as well. This time will
therefore be chosen as an upper bound for t f for all spins.
Afterwards, we pick the lower bound ti at the time where
j( j + 1)C( j)(x, t ) = 9, which roughly coincides with the time
at which the exponential regime starts. We divide this time
range into four equal parts, and define within the first and last
part five equally spaced initial and final times. In this way, the
commutator squared appears to be in the exponential regime
for every one of the 25 constructed time intervals for all the
spins we wish to analyze.

This procedure is intended to account for the small fluc-
tuations, as the range of the initial (final) times ti (t f ) covers
roughly one wiggle of the commutator squared. We illustrate
this for the strongly chaotic point in Fig. 9, together with the
corresponding linear fits to the commutator squared restricted
to those intervals for the highest spin used in this analysis
( j = 61) in Fig. 10 and we comment on the size of the region
to which can be fit an exponential growth.
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FIG. 9. The various time intervals used for the fits of the Lyapunov exponents at the strongly chaotic point. The lower (upper) bounds of
the time interval ti (t f ) are taken in between the two vertical red (blue) lines. The left figure is for x = 0 and the right for x = 1.

Now that we have defined all these time intervals, we fit a
line in each interval to the curve for the commutator squared
at each spin. Fixing the time interval, we generate λ

( j)
L for each

spin and extrapolate these to λ∞
L using a procedure which will

be described below. This gives us a distribution of λ∞
L for

all the different choices of the time interval. By taking the
mean and standard deviation of this distribution we obtain an
estimate of λ∞

L and the uncertainty on this estimate coming
from the ambiguity of the fitting procedure.

Next, there is an ambiguity in how to perform the ex-
trapolation of λ

( j)
L to λ∞

L . The dependence of the Lyapunov
exponent on the spin is displayed in Fig. 11. We see that λ

( j)
L is

monotonic in j and that the rate of increase slows as j → ∞,
such that the Lyapunov exponent saturates towards a finite
value λ∞

L in the infinite spin classical limit. We tried to fit two
types of functional forms to λ

( j)
L : an exponential of the form

λ
( j)
L = λ∞

L,exp − a1 exp[−a2

√
j( j + 1)], (4.11)

and a power law of the form

λ
( j)
L = λ∞

L,pow − a1
[

j( j + 1)
]− a2

2 , (4.12)

which were both found to provide a good fit. We also tried
fitting an unbounded function of the form

λ
( j)
L = a1 + a2 ln

√
j( j + 1), (4.13)

but this was not found to provide a good fit, giving further
confidence that this quantity saturates in the classical limit.
These three types of fits are compared in Fig. 11. In addition
to varying the time interval over which we fit, we will also
extrapolate using both of the exponential and the power-law
functional forms for each time interval when generating our
distribution for λ∞

L .
We could also simply provide a lower bound on the ex-

trapolated value by looking at the value of λ
( j)
L for the highest

spin we have analyzed. In fact, this turns out to be quite close
to the result found by the exponential extrapolation, although
the power-law approach gives a higher value. These three
approaches are compared in Fig. 12. However, we will stick
to using the two extrapolation methods described above as we
expect λ

(61)
L to systematically underestimate the infinite spin

limit.
We have described two ambiguities in our procedure for

extracting λ∞
L : (1) the choice of time interval; and (2) the

choice of extrapolating function. By varying the choice of
time interval we produce a distribution for λ∞

L and compute its
mean and standard deviation for each extrapolation separately.
In Table I we provide the results for the extrapolated Lya-
punov exponent using each of the extrapolation methods for
both of the sites of our chain at the strongly chaotic point. In
Fig. 13 we show the commutator squared at j = 61 for the two
sites together with the slope set by averaging the Lyapunov

FIG. 10. The left figure demonstrates the spread of the linear fits (gray) to the region of exponential growth for the commutator squared
at the highest spin ( j = 61) we studied for various choices of the time interval to which we fit. The commutator squared is shown for j =
1, 7, 16, 20, 25, 33, 45, and 61, to illustrate its approach to these linear fits. The right figure depicts commutator squared and its corresponding
fit for j = 20 in blue and j = 61 in red. The dashed vertical lines illustrate the time at which the data starts to deviates from the fit. The region
where the data fits well to a line corresponds to an exponential growth of roughly three and four e-foldings for j = 20 and 61, respectively.
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FIG. 11. The Lyapunov exponents extracted from the fit to the exponential regime of the commutator squared as a function of the spin j at
infinite temperature and at the strongly chaotic point (h∗

x , h∗
z ) = (−1.05, 0.5) for the largest time range [ti, t f ]. A power law (red, dashed), an

exponential (blue, solid), and a logarithmic (green, dash-dotted) function have been fitted to the data for separations of x = 0 (left) and x = 1
(right). We see that both the power law and exponentials provide a good fit, whereas the logarithm (which grows without bound at large spin)
does not.

exponents over both sites and over the exponential and the
power-law extrapolation. In the next section we will compare
the extrapolated infinite-spin quantum Lyapunov exponents to
that obtained from an analysis of the system in the classical
limit as we vary the magnetic fields.

To conclude the semiclassical analysis, we would like to
argue that the fluctuations on top of the exponential behavior
are due to edge effects in L = 2 chains and that we expect
them to vanish for larger separation between the two operators
in the commutator squared. In particular, by inspecting L = 3
chains for relatively small j where the exponential regime
starts to appear, we notice that for larger spatial separation
between the perturbation and probe sites the fluctuations seem
to fade away, as seen in Fig. 14 for j ranging between 10 and
13.5. Although this argument should be taken with care, as we
are restricted to very low spin and therefore an exponential
regime is barely present, this figure gives some support to
the statement that the analysis we just performed can be
applied to longer chains and that the exponential regime of
the commutator squared is not only present in L = 2 chains.

V. CLASSICAL ANALYSIS

In this section we will implement the procedure described
in Sec. III B to compute the classical analog of the commutator
squared C(cl) and compare it to the results obtained in the
classical limit of our quantum model.

TABLE I. Lyapunov exponents at the strongly chaotic point
extrapolated to infinite spin using different methods compared to the
result from the classical analysis.

Site 1 Site 2

λ∞
L,pow 0.722 ± 0.019 0.725 ± 0.017

λ∞
L,exp 0.701 ± 0.016 0.700 ± 0.014

λ
(61)
L 0.697 ± 0.015 0.695 ± 0.014

λclassical
L 0.752 ± 0.013 0.750 ± 0.010

A. Extracting a classical Lyapunov exponent

The quantum case includes an average over a thermal
ensemble at infinite temperature. The initial conditions in
the classical averaging are therefore also selected from a
Boltzmann ensemble at infinite temperature, i.e., a uniform
distribution. Since the phase space is a product a spheres, the
appropriate uniform distribution for this space must be used,
namely

P(θ (n), φ(n) ) =
L∧

n=1

sin θ (n)

4π
dθ (n) ∧ dφ(n). (5.1)

As discussed in Sec. III B, in practical computations the ex-
ponential regime only persists until the saturation of C(cl)(x, t )
at O(ε−2), where ε is the small perturbation in the initial con-
dition. The exponential regime can be extended by decreasing
the size of the initial perturbation. However, in practice the
size of the perturbation is limited by the numerical accuracy
of the computation and so we will usually use perturbations
of order 10−6.

Figure 15 shows the result for the average of the Poisson
bracket as a function of time in a semi-log plot. The curve has
an intermediate regime which consists of small fluctuations
superimposed on an overall linear growth. The slope of a
linear fit to this regime of the curve is what we will call the
classical Lyapunov exponent. At high magnetic fields, some
fluctuations persist even when averaging over O(105) initial
conditions. This results in the slope being sensitive to the exact
endpoint of the time interval on which we fit. Furthermore
there is a smooth crossover between the Lyapunov regime and
the subsequent saturation regime, making the exact endpoint
of the Lyapunov regime somewhat arbitrary. Therefore we
vary the endpoints of the fitting region and compute the mean
and standard deviation of the resulting distribution to produce
the Lyapunov exponent λL and an estimate of the uncertainty
due to this ambiguity.12 The start of the fitting time interval is

12This is another average than the one over initial conditions, the
curve in Fig. 15 is already the average over curves at many different
initial conditions.
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FIG. 12. A comparison between the Lyapunov exponent at the highest computed spin (yellow diamonds) and the ones obtained from a
power law (blue circles) or an exponential (red circles) extrapolation to infinite spin. The transverse field hx is varied around the strongly
chaotic value of h∗

x = −1.05 and the longitudinal field is fixed at h∗
z = 0.5. The error bars denote one standard deviation of the distribution of

Lyapunov exponents found using the procedure outlined in Sec. IV B 2.

kept fixed at the time when C(cl ) crosses 9, while the end of
the fitting time interval is varied.

In Table I we summarize our results for the Lyapunov
exponent at the strongly chaotic point. We find that the error
bars of the classical exponent and the power-law extrapolation
overlap, which suggests that the power-law approach provides
a better estimate than the exponential extrapolation.

On the left of Fig. 15 we present the commutator squared
computed at various spins on top of the Poisson bracket.
We see that the two match very well at early times until
the commutator squared starts to saturate. As we increase j,
we see that they match for a longer range of time and that
the commutator squared is indeed converging to the Poisson
bracket. On the right of Fig. 15 we present the highest spin
commutator squared on top of the Poisson bracket alongside
a line with a slope given by the Lyapunov exponents extracted
by our procedure outlined so far. We see that at a qualitative
level these lines both provide a reasonable fit to the curve. The
small differences between them are due to the details of how

FIG. 13. The commutator squared for the highest spin at the
strongly chaotic point together with the slope (black) found by
averaging the Lyapunov exponents over both extrapolation methods
and over the two sites. The blue (orange) curve is for x = 0 (x = 1).

they are extracted. The quantum Lyapunov at fixed spin tends
to be lower since the commutator squared tends to deviate
from the classical curve towards a lower value as it moves
towards saturation. This means that the extracted exponent is
dependent on exactly where we cut off the fitting region and
that it tends to get biased downwards. The classical Lyapunov
is extracted by fitting to the much longer period of exponential
growth visible in that case. However, this means it is sensitive
to fluctuation that can appear beyond the times reached by the
commutator squared. Potential sources of these fluctuations
include the residual variance in the Monte Carlo approach to
computing the phase space average over trajectories as well
as intrinsic fluctuations away from pure exponential growth
in the Poisson bracket. These issues speak to the difficulty
in extracting a Lyapunov exponent from numerical data and
lead to the variances observed in Table I. Nonetheless, Fig. 15
provides convincing evidence that the commutator squared is
exhibiting a region of exponential growth that captures the
exponential divergence of trajectories in the classical limit of
the model.

Figure 15 also demonstrates that the scale at which the
linear growth in the commutator squared breaks down, which
we denoted C( j)

break in Eq. (4.10), should be identified with the
scale at which the classical-quantum correspondence breaks
down. The time at which this occurs is known as the Ehrenfest
time and we could also define a concomitant Ehrenfest scale.
The discussion in Sec. IV B 1 of the near saturation behavior
of the commutator squared can therefore be recast in terms of
understanding the behavior of the system after the Ehrenfest
time. This suggests that the reason for the existence of this
new scale where the linear growth breaks down may be related
to wave packets spreading as is the case in single-particle
models involving coherent states. However, this line of rea-
soning does not lead us immediately to a better understanding
in our many-body model, since the correspondence we use is
between thermal averages which do not obviously suffer from
this issue.

B. Matching classical and quantum Lyapunov exponents

We present the results for the Lyapunov exponents, ob-
tained using both a classical and a quantum mechanical
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FIG. 14. A semi-log plot of the time dependence of the commutator squared at the strongly chaotic point for a three-site chain. The small
fluctuations on top of the exponential regime that are present when the perturbation is close to the probe site seem to become already almost
imperceptible for a distance of 2 between the perturbation and the probe site.

approach, over a range of magnetic fields including the pre-
viously studied strongly chaotic point in Fig. 16. We find that
the procedure for extrapolating a classical Lyapunov exponent
from the quantum data using a power-law extrapolation pro-
vides a better estimate than the exponential extrapolation and
that the procedure generally works best for parameter points
associated with high values of the Lyapunov exponent.

Figure 16 also supports the idea that as we move away from
the strongly chaotic region towards the integrable lines (at
hx = 0 and hx → ∞) there is a smooth crossover where the
Lyapunov exponent tends towards 0 at the integrable lines.
The strongest chaos is then the point where the Lyapunov
exponent achieves its maximum.13 This smooth crossover
between chaos and integrability was observed in the spectral
statistics in Sec. IV A.

As we move towards integrability the determination of a
Lyapunov exponent is more difficult, as is reflected in the
larger error bars, although the reason is different at large and
small values of the magnetic field hx.

13The point at (h∗
x , h∗

z ) = (−1.05, 0.5), which we have referred to
as the strongly chaotic point, is not where the Lyapunov exponent
achieves its maximum. It is simply a somewhat arbitrarily chosen
point in the strongly chaotic regime that is chosen as a convenient
point for comparison.

At large magnetic field, the Poisson bracket has progres-
sively larger fluctuations, as can be seen in Fig. 17. As the
deviations from linearity in the curve are seen to increase with
time, it is not clear whether those larger fluctuations are intrin-
sic to these parameter points leading to the disappearance of a
straight Lyapunov region, or if increasing the number of initial
conditions used in our Monte Carlo estimate of the average
over phase space would provide an exponential region that
extends the early time part with the same exponent. These
large fluctuations therefore lead to large error bars on the
classical Lyapunov exponent. Since the observed curve is not
quite linear and that its slope increases with time, the fact that
the quantum curve only follows the early part of the Poisson
bracket means that the estimate using the commutator squared
is lower than the computed classical exponent.

At small values of the magnetic field, the curve of the
classical Poisson bracket has a clear Lyapunov region. How-
ever, there are damped oscillations at early times and the
period of these oscillations as well as the time they take to
decay increases as hx → 0. Although the time range for which
the quantum curve tracks the classical curve also increases
a little, as seen in Fig. 17, it does not increase enough to
avoid the situation where we have only one oscillation or
less left to which we can fit in the quantum procedure. The
average over different time intervals is therefore not effective

FIG. 15. The left figure shows the classical version of the commutator squared (blue solid line), which is the average over initial conditions
of a Poisson bracket squared, between S(1)

z (t ) and S(1)
z (0). This is plotted for a two-site chain at the strongly chaotic point. The classical

Lyapunov exponent is extracted from a fit (purple dashed line) to the exponential regime. On top of the Poisson bracket, the commutator
squared [times the usual factor of j( j + 1)] is shown for increasing spins in red. In the right figure, the classical (blue solid) and highest spin
quantum (red dotted line) commutator squared are displayed at early times for both sites, with their respective fits. The slope of the fit to
the classical data (purple dashed line) is obtained by averaging the Lyapunov exponents at the two sites, while an average of the power-law
extrapolated Lyapunov exponent at both sites is used as slope to show the fit to the quantum data (purple dashed-dotted line).
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FIG. 16. A comparison between the classical Lyapunov exponents (yellow diamonds) and those obtained from the classical limit of the
quantum model using the power-law extrapolation (blue circles) and the exponential extrapolation (red squares) for a range of transverse field
strengths. The error bars depict an estimate of the uncertainty involved in extracting these Lyapunov exponents as described in Secs. IV B 2 and
V A. The longitudinal magnetic field is fixed at h∗

z = 0.5. We find a good match between the exponents extracted from the power-law approach
and the classical exponents in the strongly chaotic domain.

in smoothing out the effects of these oscillations and the
Lyapunov exponents cannot be reliably extracted. For this
reason, the quantum Lyapunov exponents are only shown for
hx � 0.2 in Fig. 16 while the classical Lyapunov exponents
are shown for smaller hx to demonstrate that they continue to
decrease.

We conclude that the classical limit of the quantum Lya-
punov exponent can be matched to (a corresponding notion
of) the classical Lyapunov exponent in regimes where the
dynamics is sufficiently strongly chaotic.

VI. DISCUSSION

In this work we studied different probes of quantum chaos
in a few-body spin chain. By analyzing a classical limit of this
model, we showed how this matches onto notions of classical
chaos and demonstrated how a notion of a Lyapunov exponent
can be matched across this classical limit.

In the quantum model, it was demonstrated that the com-
mutator squared undergoes a region of exponential growth
and that the size of this region grows as we move towards
the classical limit. A Lyapunov exponent can be extracted
from this region of exponential growth and we found that how
closely the level spacing statistics follow the Wigner-Dyson
surmise, a measure of quantum chaos, is correlated with the
size of this Lyapunov exponent, a measure of classical chaos.

In the classical model, the quantity which is the classical
limit of the commutator squared was identified and analyzed.
From it a Lyapunov exponent was extracted that matches onto
the limit of the corresponding quantum quantity. Moreover,
the quantum Lyapunov growth was observed to coincide with
the averaged Poisson bracket squared for a time related to the
size of the local Hilbert space.

Unfortunately, due to numerical limitations, we were only
able to study very short chains. Improved numerical methods,
perhaps the use of matrix product operator or other tensor net-
work techniques, may provide hope of studying longer chains,
but since the emergence of chaos may require the dynamics
to explore large regions of the Hilbert space including highly
entangled states the ansatz used by these methods may not be
very efficient.14

Nonetheless, studying longer chains would be very inter-
esting as it would allow the dynamics of operator spreading
to be investigated. It would also be interesting to understand
what happens to the observation made in [17] that for long
chains the commutator squared tends to obey the diffusive
form of their ansatz. It may be that there is a competition

14We would like to thank Maarten Van Damme for collaboration on
a preliminary investigation of this topic.
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FIG. 17. The classical version of the commutator squared (blue solid line) together with the the quantum commutator squared [times the
usual factor of j( j + 1)] at j = 61 (red dotted line), for a two-site chain with both sites superimposed and for various strengths of the transverse
magnetic field in our analysis. The purple dashed and dashed-dotted straight lines represent the fits to the classical and quantum Lyapunov
regime, where respectively the average of the classical and the average of the power-law extrapolated exponents at the two sites were used as a
slope. The left figure shows the time evolution until the saturation of the Poisson bracket while the right figure emphasizes the early time part.

between this long distance physics and the large j physics we
identified in this work.

In this work we focused on identifying a regime of expo-
nential growth in the commutator squared and extracting the
rate of this growth, but there are other features in the behavior
of the commutator squared that could be studied. In particular,
after the period of exponential growth, there is a regime before
saturation is reached which does not appear to vanish in the
classical limit. Understanding the shape of the operator wave
front would require us to understand this regime better. It
would also be interesting to better understand the duration of
the exponential regime. The separation between the scale of

the start of the exponential growth and the eventual satura-
tion is roughly 1

2 log j( j + 1) as we expected, but since the
exponential growth breaks down well before saturation, it still
remains to understand what precisely controls this transition.
In particular, we noticed that as we move away from the region
in parameter space where the chaotic behavior is strongest,
the linear regime becomes more difficult to identify and
the duration of the exponential growth is less clear as the
transition from the exponential growth into the near saturation
behavior is less sharp. It seems that while the corrections to
the classical limit are suppressed as we increase j, they are
enhanced as we move towards integrability.

174313-16



LYAPUNOV GROWTH IN QUANTUM SPIN CHAINS PHYSICAL REVIEW B 101, 174313 (2020)

ACKNOWLEDGMENTS

We would like to thank Vijay Balasubramanian, Oleg
Evnin, and Laurens Vanderstraeten for discussions. We
especially thank Tim De Jonckheere for collaboration in
the early stages of this project and Maarten Van Damme
for collaboration on preliminary investigations of the
applicability of matrix product operator methods to the
study of the model we have presented. This work is supported
in part by FWO-Vlaanderen through Projects No. G044016N
and No. G006918N and by Vrije Universiteit Brussel through

the Strategic Research Program “High-Energy Physics.”
M.D.C. is supported by a Ph.D. fellowship from the Research
Foundation Flanders (FWO). C.R. also acknowledges support
from the Simons Foundation (No. 385592) through the It
From Qubit Simons Collaboration, the US Department of
Energy Contract No. FG02-05ER-41367, from the Natural
Sciences and Engineering Research Council of Canada
(NSERC) funding reference number PDF-517316-2018 and
from a Postdoctoral Fellowship from the Research Foundation
Flanders (FWO).

[1] G. Casati, F. Valz-Gris, and I. Guarnieri, On the connection
between quantization of nonintegrable systems and statistical
theory of spectra, Lett. Nuovo Cimento 28, 279 (1980).

[2] O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of
Chaotic Quantum Spectra and Universality of Level Fluctuation
Laws, Phys. Rev. Lett. 52, 1 (1984).

[3] M. V. Berry and M. Tabor, Level clustering in the regular
spectrum, Proc. R. Soc. Lond. A 356, 375 (1977).

[4] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From
quantum chaos and eigenstate thermalization to statistical me-
chanics and thermodynamics, Adv. Phys. 65, 239 (2016).

[5] A. I. Larkin and Y. N. Ovchinnikov, Quasiclassical method in
the theory of superconductivity, Zh. Eksp. Teor. Fiz. 55, 2262
(1968) [Sov. Phys. JETP 28, 1200 (1969)].

[6] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford, and J. Sully,
An apologia for firewalls, J. High Energy Phys. 09 (2013) 018.

[7] S. H. Shenker and D. Stanford, Black holes and the butterfly
effect, J. High Energy Phys. 03 (2014) 067.

[8] S. H. Shenker and D. Stanford, Multiple shocks, J. High Energy
Phys. 12 (2014) 046.

[9] A. Kitaev, Hidden correlations in the hawking radiation and
thermal noise, talk given at Fundamental Physics Prize Sym-
posium, Nov. 10, 2014 .

[10] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on
chaos, J. High Energy Phys. 08 (2016) 106.

[11] A. Goussev, R. A. Jalabert, H. M. Pastawski, and D. Wisniacki,
Loschmidt echo, Scholarpedia 7, 11687 (2012).

[12] T. A. Elsayed and B. V. Fine, Sensitivity to small perturbations
in systems of large quantum spins, Phys. Scr. T165, 014011
(2015).

[13] M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Strong and Weak
Thermalization of Infinite Nonintegrable Quantum Systems,
Phys. Rev. Lett. 106, 050405 (2011).

[14] D. A. Roberts, D. Stanford, and L. Susskind, Localized shocks,
J. High Energy Phys. 03 (2015) 051.

[15] I. Kukuljan, S. Grozdanov, and T. Prosen, Weak quantum chaos,
Phys. Rev. B 96, 060301(R) (2017).

[16] V. Khemani, D. A. Huse, and A. Nahum, Velocity-dependent
Lyapunov exponents in many-body quantum, semiclassical, and
classical chaos, Phys. Rev. B 98, 144304 (2018).

[17] S. Xu and B. Swingle, Locality, Quantum Fluctuations, and
Scrambling, Phys. Rev. X 9, 031048 (2019).

[18] E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Lyapunov
Exponent and Out-of-Time-Ordered Correlator’s Growth Rate
in a Chaotic System, Phys. Rev. Lett. 118, 086801 (2017).

[19] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, 2011).

[20] O. Evnin and W. Piensuk, Quantum resonant systems, inte-
grable and chaotic, J. Phys. A 52, 025102 (2019).

[21] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Chaos in
quantum channels, J. High Energy Phys. 02 (2016) 004.

[22] B. V. Fine, T. A. Elsayed, C. M. Kropf, and A. S. de Wijn,
Absence of exponential sensitivity to small perturbations in
nonintegrable systems of spins 1/2, Phys. Rev. E 89, 012923
(2014).

[23] C.-J. Lin and O. I. Motrunich, Out-of-time-ordered correlators
in a quantum Ising chain, Phys. Rev. B 97, 144304 (2018).

[24] S. Xu and B. Swingle, Accessing scrambling using matrix
product operators, Nat. Phys. 16, 199 (2020).

[25] H. Frahm and H. Mikeska, On the dynamics of a quantum
system which is classically chaotic, Z. Phys. B 60, 117 (1985).

[26] J. Madore, The fuzzy sphere, Classical Quantum Gravity 9, 69
(1992).

[27] A. Schuckert and M. Knap, Many-body chaos near a thermal
phase transition, SciPost Phys. 7, 022 (2019).

[28] H. Fujisaka, Statistical dynamics generated by fluctuations
of local Lyapunov exponents, Prog. Theor. Phys. 70, 1264
(1983).

[29] R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, Characterisa-
tion of intermittency in chaotic systems, J. Phys. A: Math. Gen.
18, 2157 (1985).

[30] Y. Huang, F. G. S. L. Brandão, and Y.-L. Zhang, Finite-Size
Scaling of Out-of-Time-Ordered Correlators at Late Times,
Phys. Rev. Lett. 123, 010601 (2019).

174313-17

https://doi.org/10.1007/BF02798790
https://doi.org/10.1007/BF02798790
https://doi.org/10.1007/BF02798790
https://doi.org/10.1007/BF02798790
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1007/JHEP09(2013)018
https://doi.org/10.1007/JHEP09(2013)018
https://doi.org/10.1007/JHEP09(2013)018
https://doi.org/10.1007/JHEP09(2013)018
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.4249/scholarpedia.11687
https://doi.org/10.4249/scholarpedia.11687
https://doi.org/10.4249/scholarpedia.11687
https://doi.org/10.4249/scholarpedia.11687
https://doi.org/10.1088/0031-8949/2015/T165/014011
https://doi.org/10.1088/0031-8949/2015/T165/014011
https://doi.org/10.1088/0031-8949/2015/T165/014011
https://doi.org/10.1088/0031-8949/2015/T165/014011
https://doi.org/10.1103/PhysRevLett.106.050405
https://doi.org/10.1103/PhysRevLett.106.050405
https://doi.org/10.1103/PhysRevLett.106.050405
https://doi.org/10.1103/PhysRevLett.106.050405
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1103/PhysRevB.96.060301
https://doi.org/10.1103/PhysRevB.96.060301
https://doi.org/10.1103/PhysRevB.96.060301
https://doi.org/10.1103/PhysRevB.96.060301
https://doi.org/10.1103/PhysRevB.98.144304
https://doi.org/10.1103/PhysRevB.98.144304
https://doi.org/10.1103/PhysRevB.98.144304
https://doi.org/10.1103/PhysRevB.98.144304
https://doi.org/10.1103/PhysRevX.9.031048
https://doi.org/10.1103/PhysRevX.9.031048
https://doi.org/10.1103/PhysRevX.9.031048
https://doi.org/10.1103/PhysRevX.9.031048
https://doi.org/10.1103/PhysRevLett.118.086801
https://doi.org/10.1103/PhysRevLett.118.086801
https://doi.org/10.1103/PhysRevLett.118.086801
https://doi.org/10.1103/PhysRevLett.118.086801
https://doi.org/10.1088/1751-8121/aaf2a1
https://doi.org/10.1088/1751-8121/aaf2a1
https://doi.org/10.1088/1751-8121/aaf2a1
https://doi.org/10.1088/1751-8121/aaf2a1
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1103/PhysRevE.89.012923
https://doi.org/10.1103/PhysRevE.89.012923
https://doi.org/10.1103/PhysRevE.89.012923
https://doi.org/10.1103/PhysRevE.89.012923
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1038/s41567-019-0712-4
https://doi.org/10.1038/s41567-019-0712-4
https://doi.org/10.1038/s41567-019-0712-4
https://doi.org/10.1038/s41567-019-0712-4
https://doi.org/10.1007/BF01312650
https://doi.org/10.1007/BF01312650
https://doi.org/10.1007/BF01312650
https://doi.org/10.1007/BF01312650
https://doi.org/10.1088/0264-9381/9/1/008
https://doi.org/10.1088/0264-9381/9/1/008
https://doi.org/10.1088/0264-9381/9/1/008
https://doi.org/10.1088/0264-9381/9/1/008
https://doi.org/10.21468/SciPostPhys.7.2.022
https://doi.org/10.21468/SciPostPhys.7.2.022
https://doi.org/10.21468/SciPostPhys.7.2.022
https://doi.org/10.21468/SciPostPhys.7.2.022
https://doi.org/10.1143/PTP.70.1264
https://doi.org/10.1143/PTP.70.1264
https://doi.org/10.1143/PTP.70.1264
https://doi.org/10.1143/PTP.70.1264
https://doi.org/10.1088/0305-4470/18/12/013
https://doi.org/10.1088/0305-4470/18/12/013
https://doi.org/10.1088/0305-4470/18/12/013
https://doi.org/10.1088/0305-4470/18/12/013
https://doi.org/10.1103/PhysRevLett.123.010601
https://doi.org/10.1103/PhysRevLett.123.010601
https://doi.org/10.1103/PhysRevLett.123.010601
https://doi.org/10.1103/PhysRevLett.123.010601

