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Self-averaging in many-body quantum systems out of equilibrium: Chaotic systems
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Despite its importance to experiments, numerical simulations, and the development of theoretical models,
self-averaging in many-body quantum systems out of equilibrium remains underinvestigated. Usually, in the
chaotic regime, self-averaging is taken for granted. The numerical and analytical results presented here force
us to rethink these expectations. They demonstrate that self-averaging properties depend on the quantity and
also on the time scale considered. We show analytically that the survival probability in chaotic systems is not
self-averaging at any time scale, even when evolved under full random matrices. We also analyze the participation
ratio, Rényi entropies, the spin autocorrelation function from experiments with cold atoms, and the connected
spin-spin correlation function from experiments with ion traps. We find that self-averaging holds at short times
for the quantities that are local in space, while at long times, self-averaging applies for quantities that are local
in time. Various behaviors are revealed at intermediate time scales.
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I. INTRODUCTION

The property of self-averaging is at the heart of studies
about disordered systems [1] and random matrices [2]. It holds
when the distribution of the quantity of interest is peaked
around its average and its relative variance goes to zero as
the system size increases. For sufficiently large systems, the
distribution converges to a delta function. This implies that,
by increasing the system size, one can reduce the number
of samples used in experiments and in statistical analysis.
If the system exhibits self-averaging, its physical properties
are independent of the specific realization, which allows
for the construction of theoretical models to describe finite
samples. Lack of self-averaging, on the other hand, means
sample to sample fluctuations even in the thermodynamic
limit, so ensemble averages are needed no matter how large
the system size is. In this case, scaling analyses become quite
challenging.

Absence of self-averaging typically happens near critical
points of disordered systems [3–10]. This is the case of one-
body [11] and many-body [12] systems in the vicinity of the
metal-insulator transition. Using results from Anderson local-
ization, it has been shown, for example, that the entanglement
entropy is not self-averaging [13]. Self-averaging has also
been the theme of works about spin glass [6,14], the kinetics
of domain growth [15], and diffusion in disordered media
[16–19], often in comparison to ergodicity.

Ergodicity refers to temporal averages [20] and has re-
cently received extensive attention in studies about equilibra-
tion and thermalization of isolated quantum systems [21–29].
Self-averaging, on the other hand, is associated with averages
over disorder realizations and it has gotten little consideration
in the context of quantum systems out of equilibrium, apart

from a few recent works on driven systems [30,31] and studies
about the two-level form factor [32–36], which is a quantity
used to study spectral properties in the time domain.

The present work addresses the mostly uncharted territory
of self-averaging during the evolution of interacting many-
body quantum systems. The focus is on the chaotic regime,
where self-averaging is usually assumed to hold. Our results
invalidate these expectations.

We show analytically and confirm numerically that the sur-
vival probability evolving under full random matrices from the
Gaussian orthogonal ensemble (GOE) is not self-averaging
at any time scale. We also study the survival probability in
a chaotic disordered spin model of experimental interest and
verify that it is nowhere self-averaging. This is a consequential
result, since this spatially nonlocal quantity is a very common
tool in studies of nonequilibrium quantum dynamics [37–60].
As we show, if self-averaging is assumed and one decreases
the number of random realizations used as the system size
increases, one misses essential features of the evolution of the
survival probability. The same is expected for other non-self-
averaging quantities.

Our analysis is extended also to other nonlocal and local
quantities evolved with both the GOE and the disordered spin
model. As examples of nonlocal quantities, we consider the
participation ratio and Rényi entropies. They measure the
spread of the initial state in the many-body Hilbert space and
are connected with the out-of-time ordered correlator [61,62].
As local observables, we investigate the spin autocorrelation
function, which is similar to the density imbalance measured
in experiments with cold atoms [63], and the connected spin-
spin correlation function, which is used in experiments with
ion traps [64]. The results are rather nontrivial, being depen-
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dent on the observable and time scales, although a general
picture emerges for short and long times.

The two spatially local quantities are self-averaging at
the short times currently accessible experimentally, which
is reassuring. After equilibration, when there are only small
fluctuations around infinite-time averages, the connected spin-
spin correlation function, the participation ratio, and the Rényi
entropies are all self-averaging, while the survival probability
and the spin autocorrelation function are not. These two
latter quantities are autocorrelation functions, being therefore
nonlocal in time.

This paper is organized as follows. The definition of self-
averaging, as well as the models, initial states, and quantities
investigated are presented in Sec. II. Section III shows the
entire evolution of the average values of the observables under
the GOE and the spin model. The plots display the different
time scales involved in the dynamics and they serve as refer-
ences for the following core sections. Section IV provides the
analytical and numerical results for the survival probability.
The other nonlocal quantities are studied in Sec. V, and the
local experimental observables are examined in Sec. VI. An
explicit example of the consequences one may face when
decreasing the number of random realizations for a quantity
that is non-self-averaging is given in Sec. VII. Conclusions
and future directions are presented in Sec. VIII. There are also
two appendices.

II. GENERAL DEFINITIONS

In this section, we define the concept of self-averaging and
introduce the Hamiltonians and quantities examined in this
work.

A. Self-averaging

Self-averaging implies that a single large system is enough
to represent the whole statistical ensemble. By analyzing the
sample to sample fluctuations, a quantity O is said to be
self-averaging when the ratio between its variance σ 2

O and the
square of its mean, that is, its relative variance [3–10,30],

RO(t ) = σ 2
O(t )

〈O(t )〉2
= 〈O2(t )〉 − 〈O(t )〉2

〈O(t )〉2
, (1)

goes to zero as the system size L increases. In our studies,
〈.〉 includes the averages over both disorder realizations and
initial states taken in a narrow energy window around the mid-
dle of the spectrum. Notice that our RO(t ) is time dependent,
since we investigate whether the observable is self-averaging
not only at equilibrium but during its entire time evolution.

It is common to distinguish strong self-averaging, when
RO(t ) ∼ L−1, from weak self-averaging, when RO(t ) ∼ L−ν

for 0 < ν < 1. In this work, we find also more extreme cases,
in the sense that the relative variance of O can decrease or
increase exponentially in system size. This sort of “super”
self-averaging or “super” non-self-averaging behavior occurs
at large times, when the dynamics of a chaotic many-body
system become analogous to those of full random matrices
[65]. At such long times, the initial state is spread over the
many-body Hilbert space, which is exponentially large in L.

Equation (1) is the standard definition of self-averaging
[3–10,30]. One may, of course, have observables for which
〈O(t )〉2 goes to zero at long times as the system size increases,
which is indeed the case of all quantities studied here, except
for the entropies. The question we address is whether the
variance goes to zero faster than 〈O(t )〉2.

B. Models and initial states

We study quantum Hamiltonians of the form

H = H0 + V, (2)

where H0 is the integrable part of H and V is a strong
perturbation that takes the system into the chaotic regime.
We denote by |n〉 the eigenstates of H0. The eigenstates and
eigenvalues of H are |α〉 and Eα , respectively.

1. GOE model

One of the models that we study is formed by GOE full
random matrices of dimension D [2]. For this model, H0

corresponds to the diagonal part of the matrix, while V con-
tains the off-diagonal elements. All entries are real numbers
independently drawn from a Gaussian distribution with mean
value 〈〈Hi j〉〉 = 0 and variance〈〈

H2
i j

〉〉 =
{

2 i = j
1 i �= j

. (3)

This model is unphysical, because it assumes interactions
between all degrees of freedom, but it has the advantage of
allowing for analytical calculations. This is possible because
the eigenvalues of the GOE model are highly correlated and
the eigenstates are normalized random vectors. This model
is also relevant, because it correctly reproduces the spectral
correlations and the late time dynamics of realistic models
[65].

2. Disordered spin model

We consider a realistic disordered spin-1/2 chain in the
strong chaotic regime. It has local two-body interactions only
and its Hamiltonian is given by

H0 = J
L∑

k=1

(
hkSz

k + Sz
kSz

k+1

)
V = J

L∑
k=1

(
Sx

k Sx
k+1 + Sy

kSy
k+1

)
. (4)

In the above, h̄ = 1, Sx,y,z
k are spin operators on site k, L is

the number of spins in the lattice, J sets the energy scale,
and periodic boundary conditions are taken. The Zeeman
splittings hi are independent random numbers uniformly dis-
tributed in [−h, h], where h is the disorder strength. The total
magnetization in the z direction is conserved. We work in the
largest subspace, namely the one with zero total z magneti-
zation, which has dimension D = L!/(L/2)!2. To be in the
fully chaotic region, we fix h = 0.75. This model has been
extensively studied in the context of many-body localization,
both theoretically [66–69] and experimentally [63].
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While, for the sake of concreteness, our calculations and
numerical simulations are done for this model, they can be
extended to a large class of different systems [65]. The impor-
tant elements that the model has to satisfy are to be strongly
chaotic, in the sense of level statistics comparable to those of
random matrix theory, and have interactions that are strictly
local and two body only.

3. Initial state and notation for R(t )

The initial state |�(0)〉 is an eigenstate of H0, as often
considered in experiments with cold atoms and ion traps. It
has energy close to the middle of the spectrum,

E0 = 〈�(0)|H |�(0)〉 =
∑

α

∣∣c0
α

∣∣2
Eα ∼ 0, (5)

where c0
α = 〈α|�(0)〉. This is the region of the spectrum

where the energy eigenstates are chaotic [70]. Such initial
states are very far from equilibrium, which results in an
extremely fast initial evolution under the full Hamiltonian H .

In our numerical simulations, our averages are performed
over 0.01D initial states with energy closest to the center of
the spectrum and over many disorder realizations. The total
amount of data considered in each average is 104. For clarity,
we refer to the relative variance obtained for GOE matrices as
RGOE

O (t ) and as Rspin
O (t ) the one obtained for the chaotic spin

model.

C. Quantities

We consider both nonlocal quantities and local experimen-
tal observables.

1. Survival probability

The survival probability is the squared overlap between the
initial state and its time evolved counterpart,

PS (t ) = |〈�(0)|e−iHt |�(0)〉|2. (6)

This quantity is nonlocal in space and also in time, since it
compares the state at time t with the state at time t = 0. It
has been studied in many different contexts, from the decay
of unstable nuclei [37], the quantum speed limit [38,39], and
the onset of power-law decays [43–47], to quench dynamics
[48–52], ground state and excited state quantum phase transi-
tions [53,54], and multifractality in one-body and many-body
systems [55–57]. The survival probability is related to the
two-level form factor studied in Refs. [35,71–74], but this
one contains information about the eigenvalues only, while
the survival probability contains information about the initial
state also, being therefore more appropriate for studies of
dynamics.

The survival probability can be written in the following
useful integral representation,

PS (t ) =
∣∣∣∣∫ dEe−iEtρ0(E )

∣∣∣∣2

, (7)

where

ρ0(E ) =
∑

α

∣∣c0
α

∣∣2
δ(E − Eα ) (8)

is the energy distribution of the initial state, known as local
density of states (LDOS). The width �0 of the LDOS is related
to the number of states |n〉 that are directly coupled to |�(0)〉
according to

�2
0 =

∑
n �=0

|〈n|H |�(0)〉|2. (9)

In the above, the sum runs over all states |n〉, apart from
|�(0)〉. For the GOE model, the average over initial states and
disorder realizations naturally gives〈

�2
0

〉GOE = D, (10)

while the sparsity of the spin Hamiltonian implies that〈
�2

0

〉spin = J2L2

8(L − 1)
∼ J2

8
L. (11)

This difference has important consequences for the time
scales involved in the evolution of the mean value of the
observables and in their self-averaging behavior. In what

follows, we use the notation � =
√

〈�2
0〉.

2. Inverse participation ratio and Rényi entropies

The inverse participation ratio and the Rényi entropies are
nonlocal quantities in space, but they are local in time. In
contrast to the survival probability, they compare the state at
time t with all states |n〉, not only with |�(0)〉.

The inverse participation ratio is defined as

IPR(t ) =
∑

n

|〈n|e−iHt |�(0)〉|4. (12)

It quantifies the spread of the initial many-body state in the
basis of unperturbed many-body states |n〉 [75]. At t = 0,
when the initial state is fully localized in this basis, IPR(0) =
1. A state completely delocalized at time t has IPR(t ) ∼ 1/D.

The second-order Rényi entropy is related to the inverse
participation ratio as

S(t ) = − ln[IPR(t )], (13)

where no partial trace of degrees of freedom is involved.
While the asymptotic value of IPR(t ) scales with the inverse
of the size of the exponentially large Hilbert space, the max-
imum value of S(t ) is proportional to L. The motivation to
study not only IPR(t ), but also its logarithm, comes from the
knowledge that the logarithm cuts the tails of the distribution,
therefore enhancing self-averaging properties.

The results for S(t ) are equivalent to those for the Shannon
entropy (or first-order Rényi entropy), which is written as

Sh(t ) = −
∑

n

|〈n|e−iHt |�(0)〉|2 ln |〈n|e−iHt |�(0)〉|2. (14)

This entropy is often used in studies of quantum chaos (see
Refs. [76–78] and references therein).

3. Spin autocorrelation function and connected
correlation function

The spin autocorrelation function and the connected spin-
spin correlation function are experimental quantities. They are
both local in space, but only the latter is also local in time.
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The spin autocorrelation function is given by

I (t ) = 4

L

L∑
k=1

〈�(0)|Sz
keiHt Sz

ke−iHt |�(0)〉. (15)

It measures the average over all sites of the proximity of
the orientation of a spin k at time t to its orientation at
t = 0. By mapping the spin system to hardcore bosons, one
finds that this quantity is analogous to the density imbalance
between even and odd sites, which is measured in cold atom
experiments [63].

The connected spin-spin correlation function is defined as

C(t ) = 4

L

∑
k

[〈�(t )|Sz
kSz

k+1|�(t )〉

− 〈�(t )|Sz
k|�(t )〉〈�(t )|Sz

k+1|�(t )〉]. (16)

Similar to IPR(t ), it quantifies how far |�(t )〉 is from the
classical states |n〉. This quantity has been measured in ex-
periments with ion traps [64].

III. DYNAMICS OF MEAN VALUES

Before studying in detail the behavior of the relative
variance of the quantities above, we briefly explain how the
average values, 〈O(t )〉, change with time. We outline the main
stages of the evolution and the time scales associated with
these steps, so that in the following sections, we can analyze
how the fluctuations behave in each of these regions.

In Figs. 1(a) and 1(b), we show the evolution of the mean
value of the survival probability for the GOE model and for
the chaotic spin model, respectively. The entire dynamics is
depicted, from the moment the system is quenched out of
equilibrium to the moment a new equilibrium is reached,
which happens when 〈PS (t )〉 only fluctuates around a finite
asymptotic value. This saturation point corresponds to

〈PS〉 =
〈

lim
t→∞ PS (t )

〉
=

〈∑
α

∣∣c0
α

∣∣4

〉
. (17)

The analytical expression for the evolution of the survival
probability was obtained for large Hamiltonian matrices in
Refs. [65,79,80]. For both the GOE and the realistic model,
it is given by

〈PS (t )〉 = 1 − 〈PS〉
D − 1

[
Db2

1(�t ) − b2

(
�t

μD

)]
+ 〈PS〉. (18)

The first term in the equation above is determined by the shape
and energy bounds of the LDOS [46–49], which depend on
the model and initial state. For GOE matrices, the shape is
semicircular, up to corrections that are subdominant in 1/D,
which gives [48,49]

b2
1(�t ) = J 2

1 (2�t )

�2t2
, (19)

where J1 is the Bessel function of the first kind. For re-
alistic chaotic many-body systems, the LDOS is Gaussian
[48,49,81–83] and b1 involves an early Gaussian decay,
e−�2t2

, and a later power-law behavior ∝ t−2, as given in
Refs. [65,79].

FIG. 1. Evolution of the mean value of the survival probabil-
ity for the GOE model (a) and for the chaotic spin model (b),
and evolution of the mean value of the inverse participation ra-
tio (c), second-order Rényi entropy (d), spin autocorrelation func-
tion (e), and connected spin-spin correlation function (f) for the
chaotic spin model. The system sizes are indicated in the panels.
In (a)–(c) and (e), from the top curve to the bottom curve: D =
252, 924, 3 432, 12 870, 48 620 (orange, red, green, blue, purple); in
(d) and (f), these sizes are from the bottom curve to the top curve.
In (a) and (b): Horizontal dashed lines mark the saturation value.
In (a): Analytical expression from Eq. (18) and numerical data for
D = 12 870. In (b)–(f): Numerical data. All panels: Average over 104

data, where 0.01D different initial states with E0 ∼ 0 are selected for
each disorder realization.

The b1 function controls the initial decay of the survival
probability. For �t 	 1, it leads to the universal 1 − �2t2 be-
havior, where 1/� is the characteristic time for the depletion
of the initial state. Later, oscillations emerge that decay as a
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power law [46,47]. The power-law behavior continues until
the minimal value of 〈PS (t )〉 is reached at tTh. This time is
referred to as Thouless time and it marks the point of the
complete spread of the initial state in the many-body Hilbert
space, as explained in Ref. [65].

Beyond tTh, the dynamics become universal and deter-
mined by the second term in Eq. (18), which is the two-level
form factor,

b2(t ) =
{

1 − 2t + t ln(2t + 1) t � 1

t ln
(

2t+1
2t−1

) − 1 t > 1
. (20)

This function is responsible for the dip below 〈PS〉, which is
known as correlation hole and exists only when the eigen-
values are correlated [32,40,41,77]. Since the GOE and the
realistic chaotic model have similar level statistics, the same
equation for b2(t ) is used for both cases. In Eq. (18), μ = 2 for
the GOE model and μ = √

2π for the spin model [65]. The b2

function initially grows linearly and later shows a power-law
behavior up to saturation, which happens at the relaxation
time tR.

We therefore have four regions in time that exhibit different
behaviors, as indicated in Figs. 1(a) and 1(b):

(1) The short time region, for t 	 1/�.
(2) The power-law decay, happening for 1/� < t < tTh.
(3) The interval for the correlation hole, tTh < t < tR. The

time tTh to reach the minimum of the hole is a constant for
the GOE model but grows exponentially with system size
for the spin model [65]. This exceedingly long time is a
consequence of the spatial locality of the initial state and of
couplings of the realistic model.

(4) The saturation region, for t > tR. The relaxation time
(or Heisenberg time) is the largest time scale of the system
and is given by the inverse of the mean level spacing [65].

Four distinct behaviors, at the same time scales identified
for the survival probability, appear also for the spin autocor-
relation function, as seen in Fig. 1(e). Similarly to what one
finds for 〈PS (t )〉, the correlation hole is evident for 〈I (t )〉 as
well. Note, however, that we know analytically that the ratio
between the saturation point and the minimum value of 〈PS (t )〉
remains constant as the system size increases, but this analysis
has not been done for 〈I (t )〉.

For the quantities that are local in time, we observe two
different behaviors before the Thouless time, one for t < 1/�

and another one for 1/� < t < tTh, as evident in the plots
for the inverse participation ratio [Fig. 1(c)], second-order
Rényi entropy [Fig. 1(d)], and connected spin-spin correlation
function [Fig. 1(f)], and also for the Shannon entropy (not
shown). However, beyond tTh, the effects of the correlation
hole are minor for these quantities, and we basically see only
fluctuations around their infinite-time averages. We can then
say that the dynamics of 〈IPR(t )〉, 〈S(t )〉, 〈Sh(t )〉, and 〈C(t )〉
saturate before the Thouless time.

IV. SURVIVAL PROBABILITY

Despite being a central quantity in the analysis of sys-
tems out of equilibrium, not much is known about the self-
averaging properties of the survival probability. Some of the
existing works have focused on the two-level form factor,

which corresponds to the long-time part of the survival prob-
ability. They include numerical studies about the spectral
correlations of the hydrogen atom in a magnetic field [34]
and theoretical arguments [35] that both indicate the lack of
self-averaging of the two-level form factor.

Here, we provide an analytical expression for RGOE
PS

(t ) at
all times and show that the survival probability is not self-
averaging at any time scale. We confirm numerically that this
picture holds for physical chaotic models as well. We start the
discussion below with estimates for RPS (t ) for both models at
short and long times and then proceed with the presentation
of the analytical result for RGOE

PS
(t ) and numerical results for

both models.

A. Short times

For short times, t 	 1/�, one can expand the survival
probability as

PS (t ) = 1 − �2
0t2 + O(t4). (21)

From this expansion, one finds that the relative variance is
given by

RPS = σ 2
�2t4 + O(t6), (22)

where σ 2
�2 = 〈�4

0〉 − 〈�2
0〉2. For the GOE and the realistic

chaotic model, one has(
σ 2

�2

)GOE = 2D,(
σ 2

�2

)spin = J4L2(L − 2)

64(L − 1)2
∼ J4

64
L, (23)

so the relative variance grows linearly with matrix and sys-
tem size, respectively. The survival probability is non-self-
averaging for both the GOE and the spin model.

B. Long times

Strong evidence for the absence of self-averaging of the
survival probability at long times was already hinted at by
studies of temporal fluctuations. In chaotic systems after
saturation, the dispersion of the temporal fluctuations of PS (t )
is proportional to the value of the infinite-time average, PS

[49,50], so the relative variance remains constant as L in-
creases. The same result is obtained also for the relative
variance of PS (t ) over the ensemble of realizations, because
for chaotic systems and time intervals beyond tR, temporal
averages become comparable to ensemble averages.

The survival probability in Eq. (6) can also be written as

PS (t ) =
∑
α �=β

∣∣c(0)
α

∣∣2∣∣c(0)
β

∣∣2
e−i(Eα−Eβ )t +

∑
α

∣∣c(0)
α

∣∣4
. (24)

For times t > tR, the ensembles averages cancel out the first
term in Eq. (24), so 〈PS (t > tR)〉 ∼ 〈PS〉 = 〈∑α |c(0)

α |4〉. The
eigenvectors of GOE random matrices are statistically equiva-
lent to normalized Gaussian random vectors [84], which gives
〈PS〉 ∼ 3/D. For physical models, we also have 〈PS〉 ∝ 1/D
for eigenstates away from the borders of the spectrum.

To obtain the variance σ 2
PS

(t ), in addition to 〈PS (t )〉2, one
needs the ensemble average of the square of the survival
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probability as well,

〈
P2

S (t )
〉=〈 ∑

α,β,γ ,δ

e−i(Eα−Eβ+Eγ −Eδ )t
∣∣c0

α

∣∣2∣∣c0
β

∣∣2∣∣c0
γ

∣∣2∣∣c0
δ

∣∣2

〉
. (25)

At large times, only the terms with α = β and γ =
δ, or α = δ and γ = β matter, because the phase
factors average to zero. Since 2〈∑α |c(0)

α |4 ∑
β |c(0)

β |4〉 ∼
2〈∑α |c(0)

α |4〉〈∑β |c(0)
β |4〉, one finds that σ 2

PS
∝ 〈PS〉2, and as

a consequence

RPS (t > tR) = O(1). (26)

At long times, the relative variance is therefore independent
of system size.

C. Analytical result for all times

The derivation of the analytical expression for the mean
value of the squared survival probability evolved under ran-
dom matrices is lengthy and is explained in Appendix A. The
formula reads〈

P2
S (t )

〉 = g4(t ) + 〈PS〉g3(t ) + 4〈PS〉〈PS (t ) − 〈PS〉〉
+ 〈PS〉2〈PS (2t ) − 〈PS〉〉 + 2〈PS〉2. (27)

In the above, the functions g4(t ) and g3(t ) are related to
the Fourier transforms of the four- and three-point spectral
correlation functions, respectively. The agreement between
Eq. (27) and the numerical results is perfect, as can be seen in
the figure in Appendix A. Combining Eq. (18) and Eq. (27),
one obtains RGOE

PS
(t ) analytically.

In Fig. 2(a), we plot the numerical results for RGOE
PS

(t ) for
various matrix sizes. It is clear that the survival probability is
not self-averaging at any time scale. The analytical expression
for RGOE

PS
(t ) agrees very well with the numerics for t > 1/�,

while for very short times, where the Fourier transform of
the LDOS dominates the dynamics, finite size corrections are
important. In this case, one computes RGOE

PS
(t ) using Eq. (22).

This is shown in the inset of Fig. 2(a), where the dots are the
coefficients for limt→0 RGOE

PS
(t )/t4 extracted numerically and

the dashed line shows the analytical behavior predicted from
Eqs. (22) and (23), limt→0 RGOE

PS
(t )/t4 ∝ D.

A qualitatively analogous behavior is shown for the spin
model in Fig. 2(b). At short times, Rspin

PS
(t ) grows with system

size, and at large times, it is size independent. The inset
confirms the prediction by Eq. (22) and Eq. (23), indicating
that limt→0 Rspin

PS
(t )/t4 is proportional to L. This coefficient

grows slower for the spin model than for the GOE model,
because of the sparseness of the realistic Hamiltonian.

At intermediate times, where in Fig. 1, 〈PS (t )〉 shows
oscillations decaying as a power law, RPS (t ) also oscillates
for both models, as observed in Fig. 2. In the case of the
physical model, the relative variance in this region reaches
values above 1. Since the power-law decay of 〈PS (t )〉 is caused
by the bounds of the spectrum of finite systems [46,47], at
such intermediate times, the state |�(t )〉 acquires weight on
eigenstates closer to the edges of the spectrum, which are not
described by random matrix theory. The values of Rspin

PS
(t )

above 1 could be a manifestation of correlations between the
components of these states.

FIG. 2. Relative variance RPS (t ) for the survival probability for
the GOE model (a) and the spin model (b). The system sizes are
indicated in the main panels. From the bottom curve to the top curve,
the sizes of the matrices are D = 252, 924, 3 432, 12 870 (orange,
red, green, blue) and also D = 48 620 (purple) for panel (b). The
short times coefficients of limt→0 RPS (t )/t4 are plotted for the GOE
and spin models in the insets of panels (a) and (b), respectively. In
panel (a), the coefficients are shown as a function of D, while in panel
(b), as a function of L.

Beyond the region of the power-law decay, the relative
variance of the survival probability behaves similarly for
any time, RPS (t > tTh) ∼ 1. This suggests that the correlation
hole, which is clearly manifested in the mean value of the sur-
vival probability in Fig. 1, does not affect the self-averaging
properties of this quantity in any way different from what one
sees for t > tR.

V. INVERSE PARTICIPATION RATIO AND RÉNYI
ENTROPIES

The inverse participation ratio and Rényi entropies
are defined in Eqs. (12)–(14). While their self-averaging
properties are similar for t > 1/�, they differ for short
times.

A. Inverse participation ratio

There is a fundamental difference between PS (t ) and
IPR(t ): The survival probability measures the distance of the
evolved state |�(t )〉 from the initial state (indicated as n = 0),
while the inverse participation ratio measures the distance
of |�(t )〉 from any unperturbed many-body state |n〉. The
inverse participation ratio can be seen as a generalization
of the squared survival probability, where in addition to the
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term with n = 0, which gives P2
S (t ) itself, it contains also all

other terms with n �= 0. This parallel allows us to intuitively
understand the behavior of the relative variance of IPR. At
short times, |�(t )〉 is still very close to |�(0)〉, so the term
with n = 0 dominates the evolution and IPR(t ) behaves anal-
ogously to P2

S (t ) [62]. This means that self-averaging is absent
at short times. At large times, on the other hand, the average
over all unperturbed many-body states drastically reduces the
fluctuations, and the inverse participation ratio becomes very
strongly self-averaging, in the sense that RIPR ∝ D−1 for both
the GOE and the spin model.

For times t 	 1/�, IPR(t ) can be expanded as

IPR(t ) = 1 − 2�2
0t2 + O(t4), (28)

which is exactly the same expression one has for P2
S (t ) at

leading order in t . This means that

RIPR(t ) ∝ RPS (t ) ∝ σ 2
�2t4 + O(t6) (29)

at short times, for any model, so the same kind of non-self-
averaging behavior found in Sec. IV emerges here also.

At large times, we study the ensemble average of

IPR(t ) =
∑

n

∑
α,β,γ ,δ

e−i(Eα−Eβ+Eγ −Eδ )t

× c0
αcn∗

α cn
βc0∗

β c0
γ cn∗

γ cn
δc0∗

δ (30)

and of IPR2(t ) using the same arguments employed in Sec. IV,
namely that the eigenstates of GOE matrices imply that 〈cα〉 ∼
0, 〈|cα|2〉 ∼ 1/D, and 〈∑α,β e−i(Eα−Eβ )t 〉 ∼ 0 unless α = β.
One finds that

RGOE
IPR (t > tR) ∝ 1

D
. (31)

Thus, unlike the survival probability, IPR(t ) is actually self-
averaging at large times. Not all eigenstates of realistic chaotic
models are close to normalized Gaussian random vectors, but
they are the majority, so we should expect a similar behavior
for the realistic spin model as well.

In Fig. 3, we plot the numerical data for RGOE
IPR (t ) in panel

(a) and for Rspin
IPR (t ) in panel (d). In both cases, the lack of self-

averaging at short times and the very strong self-averaging at
large times are clearly visible. This is shown quantitatively
in the other panels. In Figs. 3(b) and 3(e), we plot the short
time coefficient limt→0 RIPR(t )/t4 for the GOE and the spin
model, respectively. In Figs. 3(c) and 3(f), we show the value
of RIPR(t ) for a long time t � tR. In all four cases, the
numerical values (circles) agree very well with our analytical
estimates (dashed lines) in Eqs. (29) and (31), except for a
small noticeable deviation for the spin model with L = 18 in
Fig. 3(f).

At intermediate times, in the region of the power-law
decay of PS (t ) and similarly to the behavior of RPS (t ), the
relative variance of the inverse participation ratio oscillates
and reaches its largest values, as seen in Figs. 3(a) and 3(d).
Beyond this region, the curves are pretty much flat and RIPR

is unaware of the correlation hole.

FIG. 3. Relative variance of the inverse participation ratio for the
GOE (a) and spin model (d). The system sizes are indicated in (a) and
(d). From the top curve to the bottom curve (at large times), the sizes
of the matrices are D = 252, 924, 3 432, 12 870 (orange, red, green,
blue) and also D = 48 620 (purple) in (d). In (b) and (e): coefficient
limt→0 RIPR(t )/t4 as a function of D for the GOE model (b) and as a
function of L for the spin model (e). In (c) and (f): values of RIPR(t �
tR) at long times as a function of D for the GOE (c) and spin model
(f). In (b), (c), (e), and (f), the circles are for numerical data and they
agree well with theoretical estimates (dashed lines).

B. Rényi entropies

Similarly to the behavior of the inverse participation ratio,
the second-order Rényi entropy is super self-averaging at long
times and non-self-averaging at the time scales of the power-
law decay of PS (t ) [see figures for RS (t ) in Appendix B]. The
two quantities differ, however, at short times. This happens,
because for t 	 1/�,

S(t ) = 2�2
0t2 + O(t4), (32)

so S(t ) → 0 for t → 0, while the inverse participation ratio
goes to 1 for t → 0 [see Eq. (28)]. Contrary to RIPR(t ), the
time dependence of RS (t ) cancels out at the lowest order in t ,

RS (t ) = σ 2
�2〈

�2
0

〉2 + O(t2). (33)

Using Eq. (10), Eq. (11), and Eq. (23), one finds that the
second-order Rényi entropy is self-averaging at short times
for both random matrices and physical models,

RGOE
S (t ) = 2

D
+ O(t2), Rspin

S (t ) = 1

L
+ O(t2). (34)

The difference in the behavior of IPR(t) and − ln[IPR(t)]
is somewhat reminiscent of what happens in the Anderson
model, where the transmission amplitude, which scales multi-
plicatively with the system size, is not self-averaging, while its
logarithm, which scales additively, is self-averaging [11]. The
fact that S(t ) is self-averaging at short times makes it more
appealing for experiments than IPR(t).

From the point of view of self-averaging properties,
whether one uses the second-order Rényi entropy or the
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Shannon entropy is indifferent. We verified that both RS (t )
and RSh(t ) exhibit equivalent behaviors.

VI. EXPERIMENTAL LOCAL QUANTITIES

The two experimental quantities considered, the spin au-
tocorrelation function and the connected spin-spin correlation
function, are local in space. Since for random matrices, the
notion of locality is meaningless, we study these quantities
for the spin model only.

The main difference between the two observables is that
the connected spin-spin correlation function is also local
in time, while the spin autocorrelation function is not. In
this sense, the spin autocorrelation function is the spatially
local counterpart of the survival probability, since both are
measured with respect to the state of the system at t = 0,
and the connected correlation function is the spatially local
counterpart of the inverse participation ratio, both involving
only the state at t and both dealing also with averages over all
unperturbed many-body states.

The differences between these quantities are reflected in
their self-averaging properties. At short times, spatial locality
ensures that both observables are self-averaging. Their dy-
namics involve only a finite number of spins, and the spatial
averages ensure that the relative variances are reduced as the
system size increases. At long times, on the other hand, the
spin autocorrelation function, just as the survival probability,
is not self-averaging, while the connected correlation func-
tion, similarly to the inverse participation ratio, is.

A. Spin autocorrelation function

At short times, t 	 1/�, one can expand the spin autocor-
relation function in the following way,

I (t )=1 − �2
0t2 + 4t2

L

L∑
k=1

S00
k

∑
n �=0

|〈n|H |�(0)〉|2Snn
k + O(t4),

(35)

where Snn
k = 〈n|Sz

k|n〉. The third term on the right-hand side
of Eq. (35) is zero, unless |n〉 is directly coupled with |�(0)〉.
These states |n〉 differ from |�(0)〉 by two neighboring sites
only. Therefore, using the definition of �2

0 in Eq. (9), one finds
that

L∑
k=1

S00
k

∑
n �=0

|〈n|H |�(0)〉|2Snn
k = L − 4

4
�2

0,

which gives

I (t ) = 1 − 4�2
0t2

L
+ O(t4). (36)

From this expansion, we obtain the relative variance,

RI (t ) = 16σ 2
�2t4

L2
+ O(t6) ∝ J4t4

L
, (37)

where we used that σ 2
�2 ∝ L [see Eq. (23)].

FIG. 4. Relative variance of the spin autocorrelation function
(a) and connected spin-spin correlation function (d) for the spin
model. The system sizes are indicated in (a) and (d): From the top
curve to the bottom curve (at short times), the sizes of the matrices
are D = 252, 924, 3 432, 12 870, 48 620 (orange, red, green, blue,
purple). This changes for the spin autocorrelation function at long
time. Panels (b) and (e) depict, respectively, the short time coeffi-
cient 102 × limt→0 RI (t )/t4 and 102 × limt→0 RC (t ) as a function
of system size L. The numerical data (circles) are compared with a
fitting curve ∝1/L (dashed line). Panels (c) and (f) show numerical
data (circles) for RI (t ) and RC (t ) for a time t > tR as a function of
the dimension D; in (f): fitting curve ∝1/D0.8 (dashed line).

The estimates above provide us with two important results
about the spin autocorrelation function at short times: (i) Its
mean value 〈I (t )〉 is independent of system size, since ac-
cording to Eq. (11), 〈�2

0〉 ∝ L, and (ii) the quantity is strongly
self-averaging, since the relative variance decays as 1/L. Both
these features are a consequence of the local structure of the
observables and of the Hamiltonian, and not of any peculiar
property of I (t ). As a consequence, we can claim that the
local quantities studied here, or any other involving only sums
of local operators and evolving under local Hamiltonians, are
self-averaging for short times.

The relative variance RI (t ) is plotted in Fig. 4(a). At
short times, we observe the expected power-law behavior
∝ t4, with a coefficient limt→0 RI (t )/t4 ∝ 1/L, as shown in
Fig. 4(b). The self-averaging behavior persists up to times
currently reachable experimentally, so self-averaging can be
safely assumed in real experiments.

At large times, however, an inversion happens, and RI (t )
starts growing with system size, as seen in Fig. 4(a) and
Fig. 4(c). This happens at times of the order of the Thouless
time, when 〈I (t )〉 enters the correlation hole [see Fig. 1 (e)],
and the dynamics crossover from a model-dependent regime
at short times, to a universal regime at long times [65]. After
this point, self-averaging is lost, and in an even stronger sense
than for the survival probability, for which RPS (t ) for t > tTh

is system size independent. At these very long time scales, the
spin autocorrelation function presents positive and negative
values very close to zero, which results in large fluctuations.
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B. Connected spin-spin correlation function

Using a short-time expansion for the connected spin-spin
correlation function, one finds that,

C(t ) = 4t2

L

L∑
k=1

∑
n �=0

(
S00

k S00
k+1 − 2S00

k Snn
k+1 + Snn

k Snn
k+1

)
× |〈n|H |�(0)〉|2 + O(t4) = −2�2

0t2

L
+ O(t4).

(38)

This implies that, as a consequence of space locality and
since 〈�2

0〉 ∝ L, the mean value of this quantity is system size
independent, just like the spin autocorrelation function, and it
is also self-averaging,

RC (t ) = σ 2
�2〈

�2
0

〉2 + O(t6) ∼ 1

L
. (39)

The main difference between the connected spin-spin cor-
relation function and the spin autocorrelation at short times is
that C(0) = 0, while I (0) = 1. Therefore, the relative variance
RC (t ) tends to a finite value as t → 0, while RI (t ) → 0. In
Fig. 4(d), we plot RC (t ) for the spin model. At short times, the
relative variance indeed saturates to a finite value. Figure 4(e)
confirms that this value decays as 1/L.

At large times, RC (t ) saturates to an asymptotic value that
decreases exponentially with L, as shown in Fig. 4(f). This is
similar to what happens for the inverse participation ratio, and
in contrast to the behavior of the spin autocorrelation function.
We conjecture that this very strong self-averaging behavior
at long times is associated to the fact that no memory of the
initial state is encoded in the connected spin-spin correlation
function.

VII. IMPACT OF LACK OF SELF-AVERAGING

Lack of self-averaging, and therefore not being able to
decrease the number of random realizations (or samples) as
the system size L increases, can make numerical and exper-
imental analysis quite challenging. It is also very dangerous
to assume self-averaging, as one often does when studying
chaotic systems, and then decrease the number of realizations
as L increases for a quantity that is in fact non-self-averaging.
The purpose of this section is to provide an example of this
case.

In Fig. 5, we show the survival probability for the chaotic
spin model (4) averaged over a number of random realiza-
tions. This number decreases as L increases in Fig. 5 (a) but
remains constant as L increases in Fig. 5(b). Main features
of the evolution of the survival probability are missed in
Fig. 5(a). There is a hint for the correlation hole for L = 10,
which is entirely lost for L = 18. There is an indication of
a power-law decay before the correlation hole for L = 14,
but this is also lost for L = 18. As a result, motivated by the
curve for the largest system size, one could assume that what
one sees for the smaller sizes are just finite size effects, and
that after the Gaussian decay, the dynamics simply saturates.
Worse still, since � ∝ √

L and the Gaussian decay e−�2t2
gets

faster as L increases, one could be led to conclude that the

FIG. 5. Survival probability averaged over a number of random
realizations that decreases (a) or remains constant (b) as the system
size increases. Two initial states in the middle of the spectrum
are considered in all cases. The system sizes are indicated in the
figure. In panel (a): 〈PS (t )〉 for L = 10 is averaged over 32 random
realizations, for L = 14 over 8 random realizations, and for L = 18
over 2 random realizations. In panel (b): all system sizes count with
32 random realizations. The horizontal dashed line marks the infinite
time average 〈PS〉.

relaxation time decreases as the chain grows, while in reality
the relaxation time for 〈PS (t )〉 increases exponentially with L
(see Sec. III and Ref. [65]).

In Fig. 5(b), both the power-law decay and the correlation
hole are visible for L = 14 and L = 18 confirming that these
features are indeed present. The results would be even more
convincing if instead of keeping the number of realizations
fixed, we would increase it.

A critical ongoing debate in the current literature about
nonequilibrium quantum dynamics is whether existing con-
clusions may be incomplete or even incorrect due to finite
size effects. Our results show that self-averaging is another
important element that needs to be taken into account. For
a quantity that is non-self-averaging, one can reach wrong
conclusions if one assumes self-averaging and decreases the
number of realizations.

VIII. CONCLUSIONS

This work analyzes the self-averaging behavior of many-
body quantum systems out of equilibrium. The focus is on
the chaotic regime, where self-averaging is often taken for
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granted. By examining different nonlocal and local quantities
in space, we bring forward a rich variety of behaviors and
deduce that self-averaging is not an intrinsic consequence of
quantum chaos but depends strongly on the quantity and on
the time scale.

On the bright side, the local quantities studied here and
measured in experiments with cold atoms and ion traps,
namely the spin autocorrelation function and the connected
spin-spin correlation function, are self-averaging for the times
that are currently experimentally reachable. The same argu-
ments that we employ for these quantities can be extended
to any observable comprising only sums of spatially local
operators and evolving under local Hamiltonians, so they
should also be self-averaging at short times, a result that is
reassuring for experimentalists.

Numerical studies, on the other hand, where long times
and an array of quantities are available, should be cautious.
Autocorrelation functions, such as the survival probability and
the spin autocorrelation function, are not self-averaging at
long times, so one needs large statistics even when pushing
towards very large system sizes. In fact, as we showed analyt-
ically for full random matrices, the survival probability is not
self-averaging at any time scale. Extra care should therefore
be taken when dealing with this quantity, which has a central
role in studies of nonequilibrium quantum dynamics.

The time evolution of the fluctuations of observables is still
uncharted territory. There are multiple interesting directions
that the study initiated here could take, from the analysis of
nonchaotic models, such as those approaching many-body lo-
calization, to time-dependent Hamiltonians and open systems.
Our results lay the groundwork for such future analysis.
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APPENDIX A: ANALYTICAL EXPRESSION FOR 〈P2
S (t )〉

We provide here the analytical derivation for RGOE
PS

(t ). The
analytical expression for 〈PS (t )〉 is given in Eq. (18) and was
already obtained in Refs. [79,80]. It remains to show how we
obtain Eq. (27) for 〈P2

S (t )〉, which is a much more involved
derivation.

Before presenting the steps of the derivation, we compare
in Fig. 6 the expression from Eq. (27) (dashed lines) with the

FIG. 6. Evolution of the squared survival probability for the
GOE model. The system sizes are indicated in the figure. From
the top curve to the bottom curve, the sizes of the matrices are
D = 252, 924, 3 432, 12 870 (orange, red, green, blue). Numerical
results (solid lines) and the analytical expression (dashed lines) from
Eq. (27) are presented. Averages over 104 data.

numerical results (solid lines) for GOE matrices of different
sizes. The agreement is indeed perfect.

To obtain the relative variance of the survival probability,
we need to compute〈

P2
S (t )

〉 = �1 + �2 + �3 + �4, (A1)

where

�1 =
〈 ∑

α �=γ �=β �=δ

e−i(Eα−Eβ+Eγ −Eδ )t
∣∣c(0)

α

∣∣2∣∣c(0)
β

∣∣2|c(0)
γ |2∣∣c(0)

δ

∣∣2

〉
,

�2 =
〈 ∑

α �=β �=γ

e−i(2Eα−Eβ−Eγ )t
∣∣c(0)

α

∣∣2∣∣c(0)
β

∣∣4∣∣c(0)
γ

∣∣2

〉

+
〈 ∑

α �=β �=γ

e−i(Eα−2Eβ+Eγ )t
∣∣c(0)

α

∣∣4∣∣c(0)
β

∣∣2∣∣c(0)
γ

∣∣2

〉
,

�3 =
〈∑

α �=β

e−2i(Eα−Eβ )t
∣∣c(0)

α

∣∣4∣∣c(0)
β

∣∣4

〉

+ 4

〈∑
α �=β

e−i(Eα−Eβ )t
∣∣c(0)

α

∣∣2∣∣c(0)
β

∣∣2 ∑
γ

∣∣c(0)
γ

∣∣4

〉
,

�4 = 2

〈∑
α,β

∣∣c(0)
α

∣∣4∣∣c(0)
β

∣∣4

〉
.

Equation (A1) is obtained by splitting the sum in Eq. (25)
into all possible combination of equal indexes α, β, γ , δ. For
example, �1 contains the terms with all indexes different, �2

the terms with either α = γ or β = δ, and so on. We now
compute each one of these terms, starting from �4 and moving
upwards.

1. Term �4

The fourth term in Eq. (A1) can be computed straightfor-
wardly, applying the results of Refs. [79,80]. Indeed, up to
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subleading corrections in D−1, one finds

2

〈∑
α,β

∣∣c(0)
α

∣∣4∣∣c(0)
β

∣∣4

〉
= 2〈PS〉2 + O(D−3). (A2)

Note that, at large times, this is the only term that does not
vanish. This is because it is the only term which does not
contain fluctuating phases in time. We can therefore compute
the asymptotic value of the relative variance already,

lim
t→∞RGOE

PS
(t ) = 2〈PS〉2 − 〈PS〉2

〈PS〉2
+ O(D−1)

= 1 + O(D−1). (A3)

This means that, as explained in Sec. IV, the relative variance
is system size independent at large times, and self-averaging
is not present.

2. Term �3

Let us first compute the following term of �3,

4

〈∑
α �=β

e−i(Eα−Eβ )t
∣∣c(0)

α

∣∣2∣∣c(0)
β

∣∣2 ∑
γ

∣∣c(0)
γ

∣∣4

〉
. (A4)

In order to do this, let us define the time dependent part of the
survival probability

P̃S (t ) = PS (t ) − PS =
∑
α �=β

e−i(Eα−Eβ )t
∣∣c(0)

α

∣∣2∣∣c(0)
β

∣∣2
, (A5)

which tends to zero as t → ∞. From Eq. (18), one gets for its
average value

〈P̃S (t )〉 = 1 − 〈PS〉
D − 1

[
Db2

1(�t ) − b2

(
�t

2D

)]
. (A6)

As a consequence, one finds, up to subleading corrections in
D−1, that

4

〈∑
α �=β

e−i(Eα−Eβ )t
∣∣c(0)

α

∣∣2∣∣c(0)
β

∣∣2 ∑
γ

∣∣c(0)
γ

∣∣4

〉
= 4〈PS〉〈P̃S (t )〉 + O(D−2). (A7)

We now compute the other term of �3,〈∑
α �=β

e−2i(Eα−Eβ )t
∣∣c(0)

α

∣∣4∣∣c(0)
β

∣∣4

〉
. (A8)

For this, one needs to recall that for GOE matrices, eigenval-
ues, and eigenvectors are statistically independent [2]. This
means that the averages over the components and the eigenen-
ergies factorize. This fact will be used multiple times in this
derivation. For this particular term, it implies that〈∑

α �=β

e−2i(Eα−Eβ )t
∣∣c(0)

α

∣∣4∣∣c(0)
β

∣∣4

〉

=
〈∑

α �=β

∣∣c(0)
α

∣∣4∣∣c(0)
β

∣∣4

〉
〈e−2i(Eα−Eβ )t 〉

= 〈P̃S (2t )〉 〈PS〉2 + O(D−3)

1 − 〈PS〉
∼ 〈P̃S (2t )〉(〈PS〉2 + O(D−2)). (A9)

3. Term �2

We now need to compute �2,〈 ∑
α �=β �=γ

e−i(2Eα−Eβ−Eγ )t
∣∣c(0)

α

∣∣2∣∣c(0)
β

∣∣4∣∣c(0)
γ

∣∣2

〉

+
〈 ∑

α �=β �=γ

e−i(Eα−2Eβ+Eγ )t
∣∣c(0)

α

∣∣4∣∣c(0)
β

∣∣2∣∣c(0)
γ

∣∣2

〉
. (A10)

Using again the statistical independence of eigenvalues and
eigenvectors, we get for the components of the initial state,〈 ∑

α �=β �=γ

∣∣c(0)
α

∣∣2∣∣c(0)
β

∣∣4∣∣c(0)
γ

∣∣2

〉
= 〈PS〉 + O(D−2). (A11)

It remains to obtain the following function,

g3(t ) = 〈e−i(2Eα−Eβ−Eγ )t + e−i(Eα−2Eβ+Eγ )t 〉. (A12)

Following Refs. [79,80,85], we write this average as

g3(t ) = (D − 3)!

D!

∫
dEe−iEt

∫
dEαdEβdEγ R3(Eα, Eβ, Eγ )

× [δ(E − (2Eα − Eβ − Eγ ))

+ δ(E − (Eα − 2Eβ + Eγ ))],

where R3(Eα, Eβ, Eγ ) is the three-point spectral correlation
function [2]. It can be written as

R3(Eα, Eβ, Eγ ) = R1(Eα )R1(Eβ )R1(Eγ ) − R1(Eα )T2(Eβ, Eγ ) − R1(Eβ )T2(Eα, Eγ ) − R1(Eγ )T2(Eα, Eβ ) + T3(Eα, Eβ, Eγ ).

(A13)

In the above,

R1(E ) = 1

π

√
2D − E2 (A14)

is the density of states, while T2 and T3 are the two- and three-point cluster functions, respectively. T3 represents the connected
part of the three-point correlation function, while all other terms of R3 represent all possible disconnected contributions.
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We first compute the term which depends on the density of states only,

(D − 3)!

D!

∫
dEe−iEt ×

∫
dEαdEβdEγ R1(Eα )R1(Eβ )R1(Eγ )[δ(E − (2Eα − Eβ − Eγ )) + δ(E − (Eα − 2Eβ + Eγ ))]

= (D − 3)!

D!

∫
dEαe−2iEαt R1(Eα )

∫
dEβe−iEβ t R1(Eβ )

∫
dEγ e−iEγ t R1(Eγ ) + c.c.

= 2
(D − 3)!

D!
(2D)3b1(2�t )b2

1(�t ). (A15)

We now consider the terms containing both R1 and T2. As an example, let us compute

(D − 3)!

D!

∫
dEe−iEt ×

∫
dEαdEβdEγ R1(Eα )T2(Eβ, Eγ )[δ(E − (2Eα − Eβ − Eγ )) + δ(E − (Eα − 2Eβ + Eγ ))]

= (D − 3)!

D!

∫
dEαR1(Eα )e−2iEαt

∫
dEβdEγ T2(Eβ, Eγ )e−i(−Eβ−Eγ )t

+ (D − 3)!

D!

∫
dEαR1(Eα )e−iEαt

∫
dEβdEγ T2(Eβ, Eγ )e−i(−2Eβ+Eγ )t . (A16)

From Ref. [2], we know that, for any n � 2, integrals of the form∫
dE1dE2···dEnTn(E1, E2,··· En)e−i

∑n
j=1 k j E j (A17)

are nonvanishing if and only if
∑n

j=1 k j = 0. Since this is not the case in the integrals of Eq. (A16), all terms in g3 containing
both R1 and T2 vanish.

Finally, we consider the term containing the T3 connected correlation function,

(D − 3)!

D!

∫
dEe−iEt ×

∫
dEαdEβdEγ T3(Eα, Eβ, Eγ )[δ(E − (2Eα − Eβ − Eγ )) + δ(E − (Eα − 2Eβ + Eγ ))]

= (D − 3)!

D!

∫
dEαdEβdEγ T3(Eα, Eβ, Eγ )[e−i(2Eα−Eβ−Eγ )t + e−i(Eα−2Eβ+Eγ )t ]. (A18)

We perform the change of variables ξα = Eα/R1(0), and similarly for Eβ and Eγ . This corresponds to rescale the energies by
their mean level spacing. Calling Y3(ξα, ξβ, ξγ ) = R3

1(0)T3(Eα, Eβ, Eγ ), this integral becomes

(D − 3)!

D!

∫
dξαdξβdξγY3(ξα, ξβ, ξγ )[e−i(2ξα−ξβ−ξγ )R1(0)t + ei(ξα−2ξβ+ξγ )R1(0)t ], (A19)

which can be computed using the following formula, found in Ref. [2],∫
dξ1dξ2···dξnYn(ξ1, ξ2,··· , ξn)e−i

∑n
j=1 ξ jτ j = δ(τ1 + τ2 +··· +τn)

∫ ∞

−∞
dτ

[∑
P

f (τ ) f (τ + τP(1) )··· f (τ + τP(1) +··· +τP(n−1))

]
(0)

.

In this formula, P labels all permutations of the indexes 1, 2, 3, . . . n, and P(i) is the permuted counterpart of i, according to P.
f (τ ) is a matrix valued function, which reads

f (τ ) =
(

f2(τ ) τ f2(τ )
f2(τ )−1

τ
f2(τ )

)
, f2(τ ) =

{
1 |τ | < 1/2
0 |τ | � 1/2 . (A20)

With the notation [·](0), we mean the following: Taken a generic 2 × 2 matrix A, we call

[A](0) = A11 + A22

2
, (A21)

where A11 and A22 are the diagonal entries of A. In particular, for Eq. (A19), we have τ1 = 2R1(0), τ2 = τ3 = −R1(0) for the
first term and τ1 = τ3 = R1(0), τ2 = −2R1(0) for the second. Thus, we obtain for Eq. (A19),

(D − 3)!

D!

∫
dξαdξβdξγY3(ξα, ξβ, ξγ )[e−i(ξα−ξβ−ξγ )R1(0)t + ei(ξα−2ξβ+ξγ )R1(0)t ] = (D − 3)!

D!
Db3

(
�t

2D

)
, (A22)

with

b3(τ ) =
{

4[1 − 4τ + 3τ log(2τ + 1)] 0 < τ � 1
2

8
[
τ − 1 + 3

2τ log
(

4−τ
2+τ

)]
τ > 1

2

. (A23)
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Putting all these terms together, we get

g3(t ) = (D − 3)!

D!

[
16D3b1(2�t )b2

1(�t ) − Db3

(
�t

2D

)]
. (A24)

4. Term �1

Finally, we compute the term �1, 〈 ∑
α �=γ �=β �=δ

e−i(Eα−Eβ+Eγ −Eδ )t
∣∣c(0)

α

∣∣2∣∣c(0)
β

∣∣2∣∣c(0)
γ

∣∣2∣∣c(0)
δ

∣∣2

〉
. (A25)

Using again the independence of eigenvalues and eigenvectors, we factorize the average and compute the part depending on the
eigenvectors first, 〈 ∑

α �=γ �=β �=δ

∣∣c(0)
α

∣∣2∣∣c(0)
β

∣∣2∣∣c(0)
γ

∣∣2∣∣c(0)
δ

∣∣2

〉
= 1 − 6〈PS〉 + O(D−2) ∼ 1. (A26)

We now compute the average over the energy levels,

g4(t ) = 〈e−i(Eα−Eβ+Eγ −Eδ )〉
= (D − 4)!

D!

∫
dEe−iEt

∫
dEαdEβdEγ dEδR4(Eα, Eβ, Eγ , Eδ )δ(E − (Eα − Eβ + Eγ − Eδ )). (A27)

R4(Eα, Eβ, Eγ , Eδ ) is the four-point correlation function, which can be written as [2]

R4(Eα, Eβ, Eγ , Eδ ) = R1(Eα )R1(Eβ )R1(Eγ )R1(Eδ ) − R1(Eα )R1(Eβ )T2(Eγ , Eδ ) − R1(Eα )R1(Eγ )T2(Eβ, Eδ )

− R1(Eα )R1(Eδ )T2(Eβ, Eγ ) − R1(Eβ )R1(Eγ )T2(Eα, Eδ ) − R1(Eβ )R1(Eδ )T2(Eα, Eγ )

− R1(Eγ )R1(Eδ )T2(Eα, Eβ ) + T2(Eα, Eβ )T2(Eγ , Eδ ) + T2(Eα, Eγ )T2(Eβ, Eδ )

+ T2(E1, E4)T2(E2, E3) + R1(E1)T3(E2, E3, E4) + R1(E2)T3(E1, E3, E4)

+ R1(E3)T3(E1, E2, E4) + R1(E4)T3(E1, E2, E3) − T4(Eα, Eβ, Eγ , Eδ ). (A28)

Once again, this amounts to consider the connected correlation function T4(Eα, Eβ, Eγ , Eδ ) and all disconnected components.
We now study the resulting integrals, one by one.

We first consider the term containing R1 only:

(D − 4)!

D!
×

∫
dEαdEβdEγ dEδR1(Eα )R1(Eβ )R1(Eγ )R1(Eδ )e−i(Eα−Eβ+Eγ −Eδ )t

= (D − 4)!

D!

∣∣∣∣∫ dER1(E )e−iEt

∣∣∣∣4

= (D − 4)!

D!
(2D)4b4

1(�t ). (A29)

Next, we consider terms containing both R1 and T2, such as

(D − 4)!

D!

∫
dEαdEβdEγ dEδR1(Eα )R1(Eβ )T2(Eγ , Eδ )e−i(Eα−Eβ+Eγ −Eδ )t . (A30)

This term can be rewritten as

(D − 4)!

D!
×

∣∣∣∣∫ dER1(E )e−iEt

∣∣∣∣2 ∫
dEγ dEδT2(Eγ , Eδ )e−i(Eα−Eβ )t

= (D − 4)!

D!
(2D)2b2

1(�t )Db2

(
�t

2D

)
. (A31)

Note that this integral is nonzero only if the two energies in the T2 function come with opposite signs in the corresponding
exponential. For this reason, this term comes with a combinatorial factor equal to 4.

Next are the terms containing T2 only,

(D − 4)!

D!

∫
dEαdEβdEγ dEδT2(Eα, Eβ )T2(Eγ , Eδ )e−i(Eα−Eβ+Eγ −Eδ )t

= (D − 4)!

D!

(∫
dEαdEβT2(Eα, Eβ )e−i(Eα−Eβ )t

)2

= (D − 4)!

D!
D2b2

2(�t ). (A32)

This term comes with a combinatorial factor equal to 2.
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Then come the terms with R1 and T3, such as

(D − 4)!

D!
×

∫
dEαdEβdEγ dEδ × R1(Eα )T3(Eβ, Eγ , Eδ )e−i(Eα−Eβ+Eγ −Eδ )t . (A33)

However, as explained for the g3(t ) function, all the integrals of this form vanish.
Finally, comes the term containing the T4 function:

(D − 4)!

D!
×

∫
dEαdEβdEγ dEδT4(Eα, Eβ, Eγ , Eδ ) × e−i(Eα−Eβ+Eγ −Eδ )t = (D − 4)!

D!
Db4

(
�t

2D

)
. (A34)

We compute the function b4 with a procedure analogous to the one used for b3. The result is

b4(τ ) =

⎧⎪⎨⎪⎩
4τ 3−20τ 2−4τ+3

2τ+1 + 6τ log(2τ + 1) τ � 1
2

2 2τ 3+8τ 2−2τ−3
2τ+1 + 3τ [2 log(2τ + 1) − 3 log(4τ − 1) + log 2] 1

2 < τ < 1

2 6τ 2−1
4τ 2−1 + 3τ log

(
2τ+1
2τ−1

) . (A35)

So the g4 function reads

g4(t ) = (D − 4)!

D!

[
16D4b4

1(�t ) − 16D3b2
1(�t )b2

(
�t

2D

)
+ 2D2b2

2

(
�t

2D

)
− Db4

(
�t

2D

)]
. (A36)

Combining all the terms together, one recovers Eq. (27) from
the main text.

APPENDIX B: PLOTS FOR THE RELATIVE VARIANCE
OF THE SECOND-ORDER RÉNYI ENTROPY

For completeness, we present in Fig. 7(a) the relative
variance of the second-order Rényi entropy as a function of
time. The behavior for the relative variance of the Shannon
entropy is very similar (not shown).

FIG. 7. Relative variance of the second-order Rényi entropy for
the spin model (a). The system sizes are indicated in (a): From the top
curve to the bottom curve (at large times), the sizes of the matrices
are D = 252, 924, 3 432, 12 870, 48 620 (orange, red, green, blue,
purple). In (b): coefficient limt→0 Rspin

S (t )/t4 as a function of L;
numerical values (circles) and theoretical estimate ∝1/L (dashed
line). In (c): numerical values (circles) of Rspin

S (t ) for t > tR as a
function of D and curve ∝1/D (dashed lines).

Contrary to the inverse participation ratio, the second-order
Rényi entropy is self-averaging at short times. Indeed, as
seen in Fig. 7(b), the relative variance follows very well the
prediction in Eq. (34) that Rspin

S (t ) ∝ 1/L, as we find also for
the spatially local quantities discussed in Sec. VI.

At long times, the second-order Rényi entropy behaves
similarly to the inverse participation ratio and the connected
spin-spin correlation function, being super self-averaging,
since Rspin

S (t ) ∝ 1/D, as shown in Fig. 7(c). The behavior of
Rspin

S (t ) for short and long times is therefore similar to that of
Rspin

C (t ).
Between the two extremes of short and long times, in the

region of the power-law behavior of 〈PS (t )〉, the second-order
Rényi entropy is not self-averaging. This means that the
relative variance of S (same for Sh) exhibits two crossing
points as time increases from zero, a feature that contrasts with
those of the other quantities studied in this paper, PS , IPR, I ,
and C.

We fitted Rspin
S (t > tR) in Fig. 7(c) and Rspin

IPR (t > tR) in
Fig. 3(f) with 1/D for making an analogy with the results
for the GOE model, but the exponent ν in the best fit 1/Dν

is 1 ± 0.2. In Fig. 4(f) for the connected spin-spin correlation
function, where we do not make a comparison with the GOE
model, we actually show the best fit. Independently of the
exact value of the exponent ν, the relative variance at long
times for any of these three quantities decreases exponentially
fast with L.
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