
PHYSICAL REVIEW B 101, 174307 (2020)

Photoinduced η pairing in the Kondo lattice model
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The previous theoretical study has shown that pulse irradiation to the Mott insulating state in the Hubbard
model can induce the enhancement of superconducting correlation due to the generation of η pairs [Kaneko
et al., Phys. Rev. Lett. 122, 077002 (2019)]. Here, we show that the same mechanism can be applied to the
Kondo lattice model, an effective model for heavy electron systems, by demonstrating that the pulse irradiation
indeed enhances the η-pairing correlation. As in the case of the Hubbard model, the nonlinear optical process
is essential to increase the number of photoinduced η pairs and thus the enhancement of the superconducting
correlation. We also find the diffusive behavior of the spin dynamics after the pulse irradiation, suggesting that
the increase of the number of η pairs leads to the decoupling between the conduction band and the localized
spins in the Kondo lattice model, which is inseparably related to the photodoping effect.
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I. INTRODUCTION

Recent extensive studies of photoinduced states of strongly
correlated materials have paved the way to find new states
of matter [1–3]. Indeed, they have observed many intriguing
phenomena, including the photoinduced transient supercon-
ducting behavior [4–8] and the photoinduced insulator-to-
metal transition [9–13]. These experimental observations have
stimulated theoretical studies on nonequilibrium dynamics of
strongly correlated electrons, mostly focusing on photoexcited
states in Hubbard-like models [14–17].

In this context, we have previously studied a photoexcited
state after pulse irradiation onto the Mott insulating state in
the Hubbard model and found the strong enhancement of
superconducting correlation due to η pairing [18], which is
a pair density wave with phase π and is associated with
the transverse components of pseudospin 1/2 operators, first
introduced by C. N. Yang [19]. We have also shown that the
η pairs are preferentially excited by the optical pulse field
because of the selection rule forced by the symmetry of the
η-pairing operators [18,20,21].

In this paper, we report that the same mechanism can be
applied to another class of models, the Kondo lattice model,
known as an effective model to describe electronic states in
heavy electron systems [22,23]. The Kondo lattice model is
composed of a conduction band with mobile electrons and
localized spins coupled to each conduction site antiferromag-
netically. Because the presence of the exchange interaction
induces a nontrivial scattering between the mobile electrons
and localized spins, the Kondo lattice model is studied in the
context of many-body quantum systems [22].

We demonstrate numerically that the pulse irradiation onto
the Kondo insulating ground state induces the enhancement of
the η-pairing correlation. The enhancement of the η-pairing
correlation is due to the increase of the number of η pairs that

are selectively generated by the pulse optical field because
the Kondo lattice model possesses the pseudospin 1/2, i.e.,
η-SU(2), symmetry under which the current operator is a
rank-1 tensor operator. This implies that a nonlinear optical
process is essential to increase the number of η pairs and
thus the enhancement of the superconducting correlation.
Moreover, we find that the spin dynamics changes drastically
and becomes diffusive after the pulse irradiation. This can
be understood because the generation of η pairs by the pulse
irradiation is equivalent to in situ doping of carriers for spin
dynamics.

The rest of this paper is organized as follows. We first
introduce the Kondo lattice model on a bipartite lattice and
the η-pairing operators in Sec. II. We also explain how to
introduce the pulse optical field into the model and discuss the
effect with the time-dependent perturbation theory. We then
show our numerical results in Sec. III and conclude this paper
with a brief discussion in Sec. IV. The numerical details are
supplemented in the Appendix.

II. η PAIRING IN KONDO LATTICE

In this section, we describe the η-pairing and the photoex-
citation in the Kondo lattice model. We first introduce the
Kondo lattice model on a bipartite lattice in Sec. II A. We
next introduce the pseudospin 1/2 operators, i.e., η-pairing
operators, defined for the Kondo lattice model in Sec. II B.
We then show that the Kondo lattice model possesses the
η-SU(2) symmetry and discuss its consequences. In Sec. II C,
we introduce two kinds of tensor operators relevant to the
photoexcitation process. We describe how to introduce the
time-dependent field into the model in Sec. II D and analyze
the effect with the time-dependent perturbation theory in
Sec. II E.
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A. Model

The Kondo lattice model is described by the following
Hamiltonian:

Ĥ = Ĥt + ĤJ , (1)

where

Ĥt = −t
∑
〈 j, j′〉

∑
σ=↑,↓

(ĉ†jσ ĉ j′σ + ĉ†j′σ ĉ jσ ) (2)

and

ĤJ = J
∑

j

Ŝ j · M̂ j . (3)

Here ĉ jσ (ĉ†jσ ) denotes the annihilation (creation) operator of
a mobile electron with spin σ (=↑,↓) at site j. The first sum
in Eq. (2) indicated by 〈 j, j′〉 runs over all pairs of nearest-
neighbor sites j and j′ in the lattice. We assume that the lattice
is bipartite in which sites can be divided into two sublattices
A and B such that there is no connection (i.e., bond) within
the same sublattice. Namely, all nearest-neighbor sites j′ of
site j ∈ A are j′ ∈ B and vice versa. We also assume that the
numbers LA and LB of sites in sublattices A and B, respectively,
are the same, i.e., LA = LB = L/2, where L is the number of
sites in the whole lattice and is assumed to be even.

Ŝ j = (Ŝx
j , Ŝy

j , Ŝz
j ) in Eq. (3) denotes the spin operator of a

mobile electron given by

Ŝμ
j = 1

2 ĉ†jσμĉ j, (4)

where

ĉ†j = (ĉ†j↑ ĉ†j↓), (5)

ĉ j =
(

ĉ j↑
ĉ j↓

)
, (6)

and σμ (μ = x, y, z) is the μ component of the Pauli matrix.
M̂ j = (M̂x

j , M̂y
j , M̂z

j ) denotes the spin-1/2 operator for the lo-
calized spin at site j, which is coupled to the mobile electrons
via the antiferromagnetic exchange interaction J (>0).

In this paper, we consider the half-filling case with the
number of mobile electrons N = L. In this case, the ground
state of the Kondo lattice model is insulating. However, the
symmetry properties discussed in this section are not limited
to the half-filling case and can be easily extended to the case
away from half filling.

B. η-pairing operators for Kondo lattice model

C. N. Yang noticed that, in addition to the usual SU(2) ro-
tational symmetry in the spin space, there exists an additional
SU(2) pseudospin symmetry for the Hubbard model [19]. A
similar symmetry structure is also found in the Kondo lattice
model [22]. The pseudospin symmetry is described by the
η-pairing operators defined as

η̂x = 1

2

∑
j

eiφ j (ĉ†j↑ĉ†j↓ + ĉ j↓ĉ j↑), (7)

η̂y = 1

2i

∑
j

eiφ j (ĉ†j↑ĉ†j↓ − ĉ j↓ĉ j↑), (8)

η̂z = 1

2

∑
j

(ĉ†j↑ĉ j↑ + ĉ†j↓ĉ j↓ − 1), (9)

where φ j is a phase factor given by

φ j =
{

0 (mod 2π ) for j ∈ A
π (mod 2π ) for j ∈ B,

(10)

and hence eiφ j = e−iφ j = 1 or −1. The exact form of φ j is
determined once the geometry of the bipartite lattice is fixed.
For example, for the two-dimensional square lattice, φ j = q ·
r j with q = (π, π ), where r j indicates the position of site j
in the lattice. It is easy to show that these η-pairing operators
η̂ = (η̂x, η̂y, η̂z ) satisfy the SU(2) commutation relations:

[η̂μ, η̂ν] = i
∑

λ

εμνλη̂λ (11)

for μ, ν, λ = x, y, z, where εμνλ is the Levi-Civita symbol.
We can also easily show that the η-pairing operators

commute with the spin operators of mobile electrons, Ŝ j =
(Ŝx

j , Ŝy
j , Ŝz

j ), i.e., [
η̂μ, Ŝμ

j

] = 0, (12)

as well as the kinetic part of the Hamiltonian, i.e.,

[η̂μ, Ĥt ] = 0. (13)

Since the η-pairing operators also commute with the localized
spins M̂ j = (M̂x

j , M̂y
j , M̂z

j ), we find that the η-pairing opera-
tors commute with the Hamiltonian:

[η̂μ, Ĥ] = 0. (14)

This implies that the Kondo lattice model is symmetric under
the SU(2) pseudospin rotation, which is referred to as the
η-SU(2) symmetry. Note that Eq. (14) is satisfied for all
the components of η-pairing operators at any concentration
of mobile electrons, while the corresponding commutation
relations for the x and y components are fulfilled only at half
filling for the Hubbard model [19].

In the Kondo lattice model, the total spin operators of
mobile electrons,

Ŝμ =
∑

j

Ŝμ
j , (15)

for μ = x, y, z do not commute with the Hamiltonian but the
total spin operators including the localized spin operators

Ŝμ
tot =

∑
j

(
Ŝμ

j + M̂μ
j

)
(16)

commute with the Hamiltonian Ĥ. The η-pairing operators
characterize the symmetry related to the charge degrees of
freedom, which is frozen for the localized spins in the Kondo
lattice model.

Noticing that the total pseudospin operator squared that is
defined as

η̂2 = η̂2
x + η̂2

y + η̂2
z (17)

commutes with each component of the η-pairing operators,

[η̂μ, η̂2] = 0, (18)
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Eq. (14) suggests that we can block diagonalize an eigenstate
of Ĥ by quantum numbers (η, ηz ) for operators η̂2 and η̂z. Let
|n, η, ηz〉 be a simultaneous eigenstate for Ĥ, η̂2, and η̂z:

Ĥ|n, η, ηz〉 = Enη|n, η, ηz〉, (19)

η̂2|n, η, ηz〉 = η(η + 1)|n, η, ηz〉, (20)

η̂z|n, η, ηz〉 = ηz|n, η, ηz〉. (21)

Note here that an energy eigenvalue Enη is independent of ηz,
unlike the case of the Hubbard model [19]. This is because of
the fact that

[η̂±, Ĥ] = 0, (22)

where

η̂± = η̂x ± iη̂y, (23)

i.e., η̂+ = ∑
j eiφ j ĉ†j↑ĉ†j↓ and η̂− = ∑

j e−iφ j ĉ j↓ĉ j↑, and thus
[η̂+, η̂−] = 2η̂z.

A simple example of simultaneous eigenstates is the vac-
uum state of mobile electrons, corresponding to (η, ηz ) =
(L/2,−L/2). Here, the vacuum state can be represented as

|vac〉 ≡ |0〉 f ⊗ |σ〉S, (24)

where |0〉 f indicates the vacuum of mobile electrons in the
conduction band and |σ〉S with

σ = {σ1, σ2, . . . , σ j, . . . , σL} (σ j = ±1/2) (25)

denotes a spin configuration of the localized spins. Indeed,
we can readily find that

Ĥ|vac〉 = 0, (26)

η̂2|vac〉 = L

2

(
L

2
+ 1

)
|vac〉, (27)

η̂z|vac〉 = −L

2
|vac〉. (28)

Therefore, we can conclude that

|vac〉 = |n, L/2,−L/2〉, (29)

where n can be used to label the states for different spin
configurations σ. Note that the vacuum states are macroscopi-
cally degenerate due to the spin configurations of the localized
spins, and thus the localized spins behave paramagnetic with
no effective interaction mediated via mobile electrons.

By applying the η̂+ operator sequentially onto |vac〉, we
can obtain an energy eigenstate for the different number of
mobile electrons,

(η̂+)N/2|vac〉 ∝ |n, L/2,−L/2 + N/2〉, (30)

which contains N mobile electrons in the conduction band.
Since the energy is independent of ηz, the states with η = L/2
are degenerate macroscopically and paramagnetic. The state
given in Eq. (30) can also be obtained by applying the number
projection to a BCS-type wave function,

|n, L/2,−L/2 + N/2〉 ∝ P̂N |BCS〉 (31)

with

|BCS〉 = exp[η̂+]|0〉 f ⊗ |σ〉S, (32)

where P̂N denotes the projection operator onto the subspace
with N mobile electrons. It is now clear that the state given in
Eq. (30) exhibits the off-diagonal long-range order character-
ized by the pair correlation function Pη given by

Pη = 1

L

∑
j, j′

ei(φ j−φ j′ )〈ĉ†j↑ĉ†j↓ĉ j′↓ĉ j′↑〉 = 1

L
〈η̂+η̂−〉, (33)

where 〈· · · 〉 = 〈ψ | · · · |ψ〉 indicates the expectation value for
a given state |ψ〉. We can easily verify that, for the state given
in Eq. (30),

Pη = N (2L − N + 2)

4L
. (34)

This implies that Pη ∝ L, provided that N ∝ L for L → ∞,
suggesting the long-range ordering. Finally, we note that these
states are not the ground state but energetically higher for a
given ηz. Thereby, these properties are usually masked by the
thermal average [21].

C. Tensor operators

Next, let us explain the relation between the η-pairing
operators and the current operator. To this end, we introduce
the following set of operators:

Ĵ (0)
α = −it

∑
〈 j, j′〉

∑
σ=↑,↓

dα
j j′ (ĉ

†
jσ ĉ j′σ − ĉ†j′σ ĉ jσ ), (35)

Ĵ (1)
α = −

√
2it

∑
〈 j, j′〉

eiφ j dα
j j′ (ĉ

†
j↑ĉ†j′↓ + ĉ†j′↑ĉ†j↓), (36)

Ĵ (−1)
α = −

√
2it

∑
〈 j, j′〉

eiφ j dα
j j′ (ĉ j↓ĉ j′↑ + ĉ j′↓ĉ j↑). (37)

Here, dα
j j′ (= −dα

j′ j ) is a scalar and depends on sites j and j′.
dα

j j′ can be chosen arbitrary as long as sites j and j′ belong to
different sublattices of a bipartite lattice, implying that eiφ j =
−eiφ j′ . A practical choice of dα

j j′ is

dα
j j′ = (r j − r j′ ) · eα, (38)

where r j indicates the position of site j and eα denotes the unit
vector pointing to an arbitrary direction α. In this case, Ĵ (0)

α

corresponds to the current operator for the α direction. Note
that we define Ĵ (−1)

α so as to satisfy (Ĵ (+1)
α )† = −Ĵ (−1)

α . In
this case, we can show that these three operators satisfy the
following commutation relations:[

η̂±, Ĵ (q)
α

] =
√

(1 ∓ q)(1 ± q + 1)Ĵ (q±1)
α ,[

η̂z, Ĵ (q)
α

] = qĴ (q)
α , (39)

for q = −1, 0, 1. These relations in Eqs. (39) suggest that
the set of operators Ĵ (q)

α is a rank-1 tensor operator for the
pseudospin operators η̂μ (μ = x, y, z).

We can use the Wigner-Eckert theorem to evaluate a matrix
element of a tensor operator between two states |n, η, ηz〉 and
|n′, η′, η′

z〉 [24]. The theory states that, given the qth compo-
nent of a tensor operator T̂kq of rank k, there exists a constant
〈nη||T̂k||n′η′〉, referred to as a reduced matrix element, such
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that for all ηz, η′
z, and q,

〈n, η, ηz|T̂kq|n′, η′, η′
z〉 = 〈η′η′

zkq|ηηz〉〈nη||T̂k||n′η′〉, (40)

where 〈η′η′
zkq|ηηz〉 is the Clebsch-Gordan coefficient and

〈nη||T̂k||n′η′〉 is independent of ηz, η′
z, and q. Therefore, there

is a finite matrix element for the current operator Ĵ (0)
α only

when η′ = η ± 1 and η. As we shall show below, this selection
rule is essential when we discuss the photoexcitation.

Next, let us introduce the following kinetic energy operator
in the α direction:

K̂(0)
α = −t

∑
〈 j, j′〉

bα
j j′ (ĉ

†
jσ ĉ j′σ + ĉ†j′σ ĉ jσ ), (41)

where bα
j j′ (= bα

j′ j ) is a scalar and depends on sites j and j′
belonging to different sublattices of a bipartite lattice. We can
readily show that K̂(0)

α commutes with the η-pairing operators,[
η̂±, K̂(0)

α

] = 0,[
η̂z, K̂(0)

α

] = 0, (42)

suggesting that K̂(0)
α is a rank-0 tensor operator for the pseu-

dospin operators η̂μ (μ = x, y, z). The kinetic term Ĥt in the
Hamiltonian Ĥ corresponds to the case when bα

j j′ = 1 and
thus it is a tensor operator of rank 0.

D. Time-dependent electric field

We introduce a time-dependent external field via the
Peierls substitution by replacing Ĥt in Eq. (2) with Ĥt (τ )
given by

Ĥt (τ ) = −t
∑
〈 j, j′〉

∑
σ=↑,↓

(
eiAj j′ (τ )ĉ†jσ ĉ j′σ + eiAj′ j (τ )ĉ†j′σ ĉ jσ

)
,

(43)
where Aj j′ (τ ) is the vector potential as a function of time τ ,

Aj j′ (τ ) = A(τ )(r j − r j′ ) · eα. (44)

For simplicity, the light velocity, the elementary charge, the
Planck’s constant, and the lattice constant are set to 1. In this
paper, we consider the pump pulse given by

A(τ ) = A0e−(τ−τc )2/(2τ 2
w ) cos[ωp(τ − τc)], (45)

with the amplitude A0, frequency ωp (>0), and pulse width τw

centered at time τc. This implies that a time-dependent electric
field is applied along the α direction.

E. Time-dependent perturbation theory

It is highly instructive to analyze the effect of the time-
dependent external field introduced above by using the
time-dependent perturbation theory. For this purpose, we
should first notice that the Hamiltonian Ĥ(τ ) with the time-
dependent external field can be decomposed as

Ĥ(τ ) = Ĥt (τ ) + ĤJ

= Ĥ + K̂(0)
α (τ ) + Ĵ (0)

α (τ ), (46)

where the two classes of perturbation terms are

K̂(0)
α (τ ) = −t

∑
〈 j, j′〉

∑
σ=↑,↓

(cos Aj j′ (τ ) − 1)(ĉ†jσ ĉ j′σ + ĉ†j′σ ĉ jσ )

(47)
and

Ĵ (0)
α (τ ) = −it

∑
〈 j, j′〉

∑
σ=↑,↓

sin Aj j′ (τ )(ĉ†jσ ĉ j′σ − ĉ†j′σ ĉ jσ ).

(48)
Since cos Aj j′ (τ ) [sin Aj j′ (τ )] is even (odd) under the ex-
change of j and j′, K̂(0)

α (τ ) is a form of the kinetic energy
operator defined in Eq. (41) and thus a tensor operator of
rank 0, while Ĵ (0)

α (τ ) is a form of one of the three operators
introduced in Eqs. (35)–(37) and thus a tensor operator of
rank 1. This implies that the time-dependent external field can
excite a state to other states with η different at most by 1 in
each order of the perturbation.

To explore this more explicitly, let us analyze the effect
of the time-dependent external field using the time-dependent
perturbation theory in the limit of τw → ∞. Here we also set
τc = 0, for simplicity. The similar analysis has been described
briefly in Supplemental Material of Ref. [18]. In the limit
of τw → ∞, we can simply Fourier expand the τ -dependent
parts of the perturbations K̂(0)

α (τ ) and Ĵ (0)
α (τ ) as

cos Aj j′ (τ ) − 1 =
∞∑

n=−∞
e−i2nωpτ f (2n)

j j′ ,

sin Aj j′ (τ ) =
∞∑

n=−∞
e−i(2n+1)ωpτ g(2n+1)

j j′ , (49)

where n is integer, and f (n)
j j′ and g(n)

j j′ are the Fourier coefficients
given by

f (n)
j j′ = 1

2π

∫ ∞

−∞
dτ

(
cos Aj j′ (τ ) − 1

)
einωpτ ,

g(n)
j j′ = 1

2π

∫ ∞

−∞
dτ sin Aj j′ (τ )einωpτ . (50)

Note that the integral can be performed explicitly and the
results are represented by using the Bessel functions Jn(x) [25]
as follows:

f (2n)
j j′ = (−1)n

(
J2n

(
A0dα

j j′
) − δn0

)
, (51)

g(2n+1)
j j′ = (−1)nJ2n+1

(
A0dα

j j′
)
, (52)

with dα
j j′ in Eq. (38) and f (2n+1)

j j′ = g(2n)
j j′ = 0. Using these

Fourier expansions, we obtain

V̂ (τ ) = K̂(0)
α (τ ) + Ĵ (0)

α (τ ) =
∞∑

n=−∞
e−inωpτ V̂n, (53)

where

V̂2n = −t
∑
〈 j, j′〉

∑
σ=↑,↓

f (2n)
j j′ (ĉ†jσ ĉ j′σ + ĉ†j′σ ĉ jσ ), (54)

V̂2n+1 = −it
∑
〈 j, j′〉

∑
σ=↑,↓

g(2n+1)
j j′ (ĉ†jσ ĉ j′σ − ĉ†j′σ ĉ jσ ). (55)
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Since f (2n)
j j′ = f (2n)

j′ j and g(2n+1)
j j′ = −g(2n+1)

j′ j , we find that the

even terms V̂2n are rank-0 tensor operators and the odd terms
V̂2n+1 are rank-1 tensor operators [see Eqs. (35) and (41)].

The time-dependent wave function |ψ (τ )〉 is generally
expanded in terms of the eigenstates |ψm〉 of the unperturbed
Hamiltonian Ĥ with the energies Em:

|ψ (τ )〉 = 2π i
∑

m

cm(τ )|ψm〉, (56)

where m = 0, 1, 2, . . . and |ψ0〉 corresponds to the ground
state of Ĥ with E0 < E1 � E2 � . . . , assuming that the
ground state is not degenerate. In the perturbation theory, the
coefficient cm(τ ) is expanded by the order k of the perturba-
tion:

cm(τ ) =
∞∑

k=0

c(k)
m (τ ), (57)

with the initial condition that |ψ (τ = −∞)〉 = |ψ0〉, i.e.,
c(k=0)

m (τ = −∞) = 1
2π i δm0.

According to the time-dependent perturbation theory,
c(k)

m (τ ) is given as

c(k)
m (τ ) = (−i)k

2π i

∫ τ

−∞
dτk · · ·

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

∑
mk−1

· · ·

×
∑
m2

∑
m1

〈ψm|V̂I (τk )|ψmk−1〉 · · ·

× 〈ψm2 |V̂I (τ2)|ψm1〉 〈ψm1 |V̂I (τ1)|ψ0〉 , (58)

where V̂I (t ) = eiĤt V̂ (t )e−iĤt . Because of Eq. (53), we can
find the explicit τ dependance of each matrix element as

〈ψm|V̂I (t )|ψm′ 〉 =
∞∑

n=−∞
ei(Em−Em′ −nωp)τV (n)

m,m′ (59)

with

V (n)
m,m′ = 〈ψm|V̂n|ψm′ 〉. (60)

Therefore, taking τ → ∞, we obtain that

c(k=1)
m (∞) = −

∞∑
n=−∞

V (n)
m,0δ(Em − E0 − nωp), (61)

and for k > 1,

c(k)
m (∞) = (−1)k

∞∑
nk=−∞

· · ·
∞∑

n2=−∞

∞∑
n1=−∞

∑
mk−1

· · ·

×
∑
m2

∑
m1

V (nk )
m,mk−1

· · ·V (n2 )
m2,m1

V (n1 )
m1,0

×
k−1∏
k′=1

1

Emk′ − E0 − ( ∑k′
�=1 n�

)
ωp − iδ

×δ

(
Em − E0 −

(
k∑

�=1

n�

)
ωp

)
, (62)

where δ → 0+ is a convergence factor.
Equation (58) suggests that the transition from the initial

state |ψ0〉 to the final state |ψm〉 occurs via the intermediate

states |ψmk′ 〉 with k′ = 1, 2, . . . , k − 1. These intermediate
states (and also the final state) are generated by applying
the perturbations sequentially represented by V (nk′ )

mk′ ,mk′−1
in

Eq. (62), i.e, either by the rank-0 tensor operators when nk′

is even or by the rank-1 tensor operators when nk′ is odd.
Therefore, this forces the selection rule for the transition
between the two intermediate states |ψmk′−1

〉 and |ψmk′ 〉: �η =
ηmk′ − ηmk′−1

= 0 when nk′ is even and �η = ±1 or 0 when
nk′ is odd, where ηmk′ (ηmk′ + 1) is the eigenvalue of η̂2 for
|ψmk′ 〉. The denominators in Eq. (62) suggests that the k′th
intermediate state |ψmk′ 〉 contributes most when

Emk′ = E0 +
(

k′∑
l=1

nl

)
ωp = Emk′−1

+ nk′ωp, (63)

implying that the energy difference �E between the two in-
termediate states |ψmk′−1

〉 and |ψmk′ 〉 is �E = Emk′ − Emk′−1
=

nk′ωp. This is indeed the energy conservation condition
obtained by the first-order perturbation theory with taking
|ψmk′−1

〉 as the initial state [see Eq. (61)]. These rules are
schematically summarized in Figs. 1(a) and 1(b).

The delta function in Eq. (62) determines the final state
energy Em exactly as

Em = E0 +
(

k∑
l=1

nl

)
ωp. (64)

Therefore, the final state energy Em is larger than the initial
ground state energy E0 by (integer)×ωp, also implying that∑k

l=1 nl � 0. Since the final state is generated by applying the
perturbations k times through exciting the k − 1 intermediate
states, the same selection rule described above is also set to
the final state and is schematically illustrated in Fig. 1(c).

At half filling when ηz = 0, the selection rule is more
characteristic because there is an additional rule such that

〈n, η, 0|V̂2n+1|n′, η, 0〉 = 0, (65)

because the Clebsch-Gordan coefficient in Eq. (40) is

〈η010|η0〉 = 0, (66)

suggesting that the transitions between two states with the
same η value by the rank-1 tensor operators V̂2n+1 are pro-
hibited [also see Fig. 1(a)]. An important consequence of
this is that the final state with an odd (even) value of η is
excited at the excitation energy (odd (even) integer)×ωp, as
schematically shown in Fig. 1(c). This is because the final
state with an odd (even) value of η can be excited only by
involving the rank-1 tensor operators odd (even) times.

III. NUMERICAL CALCULATIONS

We first describe briefly the numerical setting of the calcu-
lations and numerical techniques used here, followed by the
numerical results.

A. Numerical setting and techniques

In what follows, we consider the one-dimensional (1D) pe-
riodic lattice composed of L sites with the antiferromagnetic
exchange interaction. In this case, the 1D Kondo lattice model
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FIG. 1. Schematic figures of possible transition processes by
(a) a rank-1 tensor operator and (b) a rank-0 tensor operator, and
(c) possible distribution of eigenstates for the final state. In (a) and
(b), the vertical axis is the quantum number difference �η and
the horizontal axis is the energy difference �E in unit of ωp (see
the main text). Open green squares indicate transitions allowed in
general while open green circles indicate transitions allowed only
away from half filling. In (c), the vertical axis is the value of η and
the horizontal axis is the energy Em (in unit of ωp) of eigenstates
distributed in the final state. Here, we assume the energy distribution
of the unperturbed Hamiltonian Ĥ as indicated by light-green shaded
bars. The initial ground state is indicated by a black solid circle. Open
blue squares indicate eigenstates allowed in general while open blue
circles indicate eigenstates allowed only away from half filling.

is described by the following Hamiltonian:

Ĥ(τ ) = Ĥt (τ ) + ĤJ ,

Ĥt (τ ) = −t
L∑

j=1

∑
σ=↑,↓

(e−iA(τ )ĉ†jσ ĉ j+1σ + eiA(τ )ĉ†j+1σ ĉ jσ ),

ĤJ = J
L∑

j=1

Ŝ j · M̂ j, (67)

with J > 0 and ĉL+1σ = ĉ1σ . At half filling (N = L), the
ground state of this model with A(τ ) = 0 is an insulating
state where both the spin and charge gaps open for any J/t
[26–29]. The presence of the spin gap is attributed to the
local singlet formation between the mobile electron and the
localized spin via the finite exchange interaction J . Note
that the finite spin gap suggests the finite correlation length
of the antiferromagnetic correlation. This is sharp contrast to
the two-dimensional case where there occurs the continuous
quantum phase transition between the antiferromagnetically
ordered and spin-gapped insulating phases with increasing J/t
[30]. We, however, note that although the spin gap is finite,
for small to moderate strength of the exchange interaction J ,
the antiferromagnetic correlation is dominant as compared to
other correlations because of the small spin gap [29].

We employ the exact diagonalization technique to perform
the time-dependent simulation. The initial state |ψ (τ = 0)〉 is
set to be the ground state of the Hamiltonian given in Eq. (67)
with A(τ ) = 0. We obtain |ψ (τ = 0)〉 by using the standard
Lanczos technique. We then calculate the time-evolved state
|ψ (τ )〉 by applying the time-evolution operator with the small
time step δτ sequentially:

|ψ (τ + δτ )〉 = e−iĤ(τ )δτ |ψ (τ )〉. (68)

To deal with the exponential form of the time-evolution oper-
ator, we simply use the Taylor expansion:

|ψ (τ + δτ )〉 =
K∑

k=0

|vk〉 (69)

with

|v0〉 = |ψ (τ )〉,

|vk〉 = − iδτ

k
Ĥ(τ )|vk−1〉 for k � 1. (70)

Note that, since the Hamiltonian is time dependent, one has to
take the time step δτ small enough to reduce the systematic er-
ror, for which the Taylor expansion converges rather quickly.
We set δτ = 0.01/t and determine K flexibly so as to satisfy
〈vK |vK〉 < 10−12. The results shown below are for L = 8 and
J = t at half filling.

B. Time evolution of correlation functions

Figure 2 shows typical results of the time dependence
of several correlation functions. These correlation functions
include the on-site pair correlation function,

P̃(q, τ ) = 1

L

L∑
j=1

L∑
j′=1

e−iq( j− j′ )〈ψ (τ )|ĉ†j↑ĉ†j↓ĉ j′↓ĉ j′↑|ψ (τ )〉,

(71)
the spin correlation function between mobile electrons,

S̃(q, τ ) = 1

L

L∑
j=1

L∑
j′=1

e−iq( j− j′ )〈ψ (τ )|Ŝz
j Ŝ

z
j′ |ψ (τ )〉, (72)

the spin correlation function between localized spins,

M̃(q, τ ) = 1

L

L∑
j=1

L∑
j′=1

e−iq( j− j′ )〈ψ (τ )|M̂z
j M̂

z
j′ |ψ (τ )〉, (73)
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FIG. 2. (a) Time-dependent external field A(τ ) used here with
A0 = 0.1, ωp = 2.05t , τc = 200/t , and τw = 50/t [31]. (b) Time
evolution of the on-site pair correlation function P̃(q = π, τ ), the
spin correlation function S̃(q = π, τ ) for mobile electrons, and the
double occupancy D(τ ) for the 1D Kondo lattice model with J = t
and L = 8 at half filling. Momentum dependence of the on-site
pair correlation function P̃(q, τ ) and the spin correlation functions
S̃(q, τ ) and M̃(q, τ ) at (c) τ = 0 and (d) τ = 400/t for the same
model parameters used in (b).

and the double occupancy,

D(τ ) = 1

L

L∑
j=1

〈ψ (τ )|ĉ†j↑ĉ j↑ĉ†j↓ĉ j↓|ψ (τ )〉. (74)

Notice first that since Ĥ(τ ) is spin SU(2) symmetric even
when A(τ ) �= 0, the spin correlation functions S̃(q = 0, τ )
and M̃(q = 0, τ ) defined above are exactly the same as those
calculated for other spin components. Second, P̃(q = π, τ )
corresponds to the correlation function for the η pairing be-
cause P̃(q = π, τ ) = 1

L 〈ψ (τ )|η̂+η̂−|ψ (τ )〉 = 1
L 〈ψ (τ )|(η̂2 −

η̂2
z + η̂z )|ψ (τ )〉. Third, S̃(q = π, τ ) and M̃(q = π, τ ) are the

correlation functions for the antiferromagnetic ordering.
As shown in Figs. 2(b) and 2(c), the η-pairing correlation

P̃(q = π, τ = 0) is exactly zero in the initial state. Since ηz =
0 at half filling, this implies that the initial state has η = 0.
In contrast, the antiferromagnetic correlation is dominant in
the initial state as we can observe in the correlation functions
S̃(q = π, τ = 0) and M̃(q = π, τ = 0). We can also notice in
Fig. 2(b) that the double occupancy D(τ = 0) in the initial
state is around 0.18, much less than 0.25 expected for free
electrons. The double occupancy is highly suppressed in

(a) P̃ (π, τ)

0

5
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15

0 1 2 3 4

(b)

0 1 2 3 4
ωp/t

0
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,τ
)/

A
0
,
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)

ωp/t, ω/t

χ(ω)

P̃ (π, τ)/A0, A0 = 0.02

FIG. 3. (a) Contour plot of the on-site pair correlation function
P̃(q = π, τ ) at τ = 400/t with varying ωp and A0. (b) On-site pair
correlation function P̃(π, τ = 400/t ) as a function of ωp for A0 =
0.02 and dynamical current correlation function χ (ω) for the initial
ground state. ε in χ (ω) is 0.01t . The results are obtained for the 1D
Kondo lattice model with J = t and L = 8 at half filling. We use the
external field A(τ ) with τc = 200/t and τω = 50/t .

the initial state because of the strong tendency toward the
formation of local singlets. As the pulse is irradiated [also
see Fig. 2(a)], the pair correlation function P̃(q = π, τ ) [the
spin correlation function S̃(q = π, τ )] gradually increases
(decreases), and by the time the pulse irradiation is terminated,
the pair correlation function P̃(q = π, τ ) becomes dominant
[see Figs. 2(b) and 2(d)]. Note that the crossing of P̃(q =
π, τ ), S̃(q = π, τ ), and D(τ ) at τ = 200/t in Fig. 2(b) is
simply accidental for this set of parameters.

To find the optimal parameter set for the enhancement of
the η-pairing correlation, we show in Fig. 3(a) the contour
plot of P̃(q = π, τ ) after the pulse irradiation at τ = 400/t
with different values of A0 and ωp. As shown in Fig. 3(b), for
small A0, we find that P̃(π, τ = 400/t ) as a function of the
frequencies ωp almost coincides with the dynamical current
correlation function χ (ω) for the initial ground state |ψ (0)〉 =
|ψ0〉 defined as

χ (ω) = 〈ψ (0)|Ĵ δε(ω − Ĥ + E0)Ĵ |ψ (0)〉, (75)

where Ĵ is the current operator given as

Ĵ = −it
L∑

j=1

∑
σ=↑,↓

(ĉ†jσ ĉ j+1σ − ĉ†j+1σ ĉ jσ ) (76)
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and

δε(X̂ ) = 1√
2πε2

exp[−X̂ 2/2ε2] (77)

for operator X̂ , indicating that δε(X̂ ) approaches to the delta
function in the limit of ε → 0+. We calculate χ (ω) by using
the method described in the Appendix. The coincidence of
these two quantities is expected from the facts that Ĵ |ψ (0)〉
has to be a state with η = 1, because Ĵ is a rank-1 tensor
operator and the enhancement of P̃(q = π, τ = 400/t ) for
small A0 is essentially determined by the first-order perturba-
tion theory with cos A(τ ) ≈ 1. Indeed, the ωp dependence of
P̃(q = π, τ = 400/t ) for large A0 no longer follows χ (ω) and
the broad enhancement of the η-pairing correlation is found in
a range of 0.3t � ωp � 4t .

C. Distribution of η-pairing eigenstates

To investigate the distribution of η-pairing eigenstates in
the photoexcited state |ψ (τ )〉, let us calculate the spectral
function P(η, ω, τ ) given by

P(η, ω, τ ) = 〈ψ (τ )|Êδ (η)δε(ω − Ĥ + E0)Êδ (η)|ψ (τ )〉,
(78)

where Êδ (η) is the projection operator onto the subspace with
a given value of η, i.e.,

Êδ (η) = exp[−(η̂2 − η(η + 1))2/δ2] (79)

in the limit of δ → 0. For a practical value of δ in the
numerical calculations, we set δ as small as 1/

√
5. The detail

of the numerical implementation is described in the Appendix.
Figure 4 shows typical results of the spectral function

P(η, ω, τ ) calculated at τ = 400/t . We find that finite inten-
sities appear at ω ∼ 2nωp for η even and ω ∼ (2n + 1)ωp

for η odd, where n is non-negative integer. This is in good
accordance with the result for the time-dependent perturbation
theory described in Sec. II E. Notice that the finite contribution
with η > 1 cannot be explained by the first-order perturbation
process since the rank-1 tensor operator can change the value
of η by 1, indicating the importance of the nonlinear pro-
cesses. These eigenstates with η finite are responsible for the
enhancement of the η-pairing correlation in the photoinduced
state.

D. Dynamical spin correlation

To examine the effects of the photoinduced η pairs on the
localized spins, here we calculate the dynamical correlation
function for the localized spins defined as

Mj′ j (τ
′, τ ) = 〈ψ (τ )|M̂z

j′ (τ
′)M̂z

j |ψ (τ )〉, (80)

where

M̂z
j (τ ) = eiĤτ M̂z

j e
−iĤτ . (81)

Here, Mj′ j (τ ′, τ ) is a quantity indicating how the spin M̂z
j

for the state |ψ (τ )〉 is correlated to the spin M̂z
j′ after the

time τ ′. Figures 5(a) and 5(c) show the results of Mz
j′ j (τ

′, τ )
for the initial state at τ = 0, which is the ground state of
the half-filled 1D Kondo lattice model Ĥ. Recalling that the
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FIG. 4. Spectral function P(η, ω, τ ) in the photoexcited state
|ψ (τ )〉 at τ = 400/t for the half-filled 1D Kondo lattice model with
J = t and L = 8 under the external field A(τ ) with (a) A0 = 0.1 and
ωp = 2.05t , and (b) A0 = 0.3 and ωp = 3t . The other parameters
for A(τ ) are τc = 200/t and τω = 50/t . For visibility, the spectral
functions with different values of η are shifted vertically. Black solid
lines indicate the energy region where the eigenstates of Ĥ exist for
each η. Red arrows indicate the excitation energy of the vacuum state
|vac〉. Crossing points between dashed lines and black solid lines
indicate ω = 2nωp for η even and ω = (2n + 1)ωp for η odd, where
n = 0, 1, 2, . . ..

ground state is an insulating state with a finite spin gap due to
the formation of local singlets, the low-lying spin excitations
are described by the triplonlike excitations similar to the
excitations in the valence bond solids [32–34]. In the Kondo
lattice model, the triplon is a local object composed of a
conduction electron and a localized spin, and this picture is
more preferable for large J/t because for a small or moderate
value of J/t the triplon is likely a spatially more extended
object. Therefore, in a small J/t region, we expect the spin
excitations similar to those found in the case where the antifer-
romagnetic correlation is dominant. However, these different
behaviors are not distinguishable in our simulation using the
limited size of clusters. Instead, we only find in Fig. 5(a)
that the correlation is antiferromagnetic at τ ′ = 0 and starts
to oscillate gradually from the nearest to distant sites, which
is characteristics for the ballistic dynamics in systems with
strong antiferromagnetic correlation.

In contrast, we find in Figs. 5(b) and 5(d) that Mj′ j (τ ′, τ )
after the pulse irradiation behaves more diffusive. The dynam-
ical correlations not only for the same site j = j′ but also for
the distant sites decrease in time, and the oscillatory behavior
is no longer remarkable. Such a diffusive nature indicates
the softening of the spectral function because the diffusive
nature suggests a quadratic form of the energy dispersion with
respect to momentum. In Fig. 5(c), we display the frequency-
dependent dynamical correlation function M̃ j j (ω, τ ) obtained
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FIG. 5. (a), (b) Real part of dynamical correlation functions
Mj′ j (τ ′, τ ) for (a) the initial state at τ = 0 and (b) the time-evolved
state after the pulse irradiation at τ = 400/t . (c), (d) Imaginary
part of Mj′ j (τ ′, τ ) for (c) the initial state τ = 0 and (d) the time-
evolved state after the pulse irradiation at τ = 400/t . (e) Frequency-
dependent dynamical correlation function M̃ j j (ω, τ ) at τ = 0 and
400/t . The results are obtained for the half-filled 1D Kondo lattice
model with J = t and L = 8 under the external field A(τ ) with
A0 = 0.38, ωp = 3/t , τw = 50/t , and τc = 200/t .

by the Fourier transform of Mj j (τ ′, τ ), i.e.,

M̃ j j (ω, τ ) = 1

T

∫ T

0
dτ ′g(τ ′)Mj j (τ

′, τ )eiωτ ′
, (82)

where we set T = 200/t and multiply the integrand by a
contour g(τ ) = (1 + cos(πτ/T ))/2 which makes delta peaks
broad, for obtaining a smooth function [35]. We find that
the main peaks in M̃ j j (ω, τ ) after the pulse irradiation at
τ = 400/t shift to lower energies as compared to the spectrum
before the pulse irradiation at τ = 0.

The diffusive behavior of the dynamical spin correlation
function is understood as a consequence of the generation of
η pairs, which leads to the decoupling between the localized
spins and the mobile electrons, as discussed for Yang’s state
in Sec. II B. Here, we show that this picture is related to the
photodoping mechanism [36–40]. To this end, we introduce

|φα,η,ηz 〉 being a state for (η, ηz ) sector to decompose the
photoexcited state |ψ (τ )〉 as

|ψ (τ )〉 =
∑
α,η

cαη(τ )|φα,η,ηz 〉, (83)

where index α is introduced to distinguish states with the same
value of η. Note that ηz is fixed to be zero at half filling.

Let M
(α,η,ηz ),(α′,η′,η′

z )
j j′ (τ ′) be the dynamical correlation function

defined by

M
(α,η,ηz ),(α′,η′,η′

z )
j′ j (τ ′) = 〈

φα,η,ηz

∣∣M̂z
j′ (τ

′)M̂z
j

∣∣φα′,η′,η′
z

〉
. (84)

Notice that |φα,η,ηz 〉 is not necessarily an energy eigenstate of
Ĥ but an eigenstate of η̂2 and η̂z. Since η̂+ and η̂− commute
with M̂z

i as well as Ĥ, M̂z
j′ (τ

′)M̂z
j is considered as a rank-0

tensor operator for the pseudospin operators η̂μ (μ = x, y, z).
Therefore, applying the Wigner-Eckert theorem in Eq. (40),
we obtain

M
(α,η,ηz ),(α′,η′,η′

z )
j′ j (τ ′) = δη,η′δηz,η′

z
M (α,η,−η),(α′,η,−η)

j′ j (τ ′) (85)

because

〈η, ηz00|η′η′
z〉 = δη,η′δηz,η′

z
. (86)

Equation (85) suggests that the dynamical spin correla-
tion function M (α,η,ηz ),(α′,η′,ηz )

j′ j (τ ′) for electron number N =
L + 2ηz exactly coincides to that for N = L − 2η. Note
that |φα,η,ηz=−η〉 is a lowest weight state [41] because
η̂−|φα,η,−η〉 = 0, implying that there are no η pairs in
|φα,η,−η〉. Moreover, by using Eq. (85), the dynamical spin
correlation function after the pulse irradiation can be repre-
sented as

Mj′ j (τ
′, τ ) =

∑
α,α′,η

c∗
αη(τ )cα′η(τ )M (α,η,−η),(α′,η,−η)

j′ j (τ ′), (87)

suggesting that the spin dynamical correlation function at half
filling (i.e., ηz = 0) can be represented as a simple sum of
the spin dynamical correlation functions for the hole-doped
systems.

We thus find that the photogeneration of η pairs is in-
separably related to photodoping when we consider the spin
dynamics. This is expected because the energy eigenstate with
quantum number η = −ηz = 1

2 (N − 2Nη − L) span the sub-
space of the N − 2Nη electron system and the multiplication
of η̂+ operator by Nη times to this state replaces Nη empty sites
with doubly occupied sites, which is an energy eigenstate with
N electrons, having the same energy eigenvalue, and does not
affect the properties of spin degrees of freedom. Considering
that the ground state of the 1D Kondo lattice model varies
from a paramagnetic phase to a ferromagnetic phase with
increasing the hole concentration [42], we can understand that
the photogeneration of η pairs, which is essentially the in situ
doping, changes drastically the spin dynamics of the initial
ground state at half filling.

Finally, we also notice in Fig. 5(b) that the equal-time
correlation Mj′ j (τ ′ = 0, τ ) is less dependent on the distance
| j′ − j| ( �= 0). This tendency is explained by the dephasing
mechanism recently proposed in Ref. [43]. This mechanism
states that in a system with SU(2)×SU(2) symmetry, e.g,
having both spin and η-SU(2) symmetries, if we apply a
Floquet-type time-dependent perturbation that commutes with
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one of the SU(2) symmetries but breaks the other symme-
try, the correlation function composed of the local operators
represented by generators of the SU(2) symmetry that com-
mutes with the perturbation becomes spatially uniform in a
steady state. For example, in Ref. [43], they have demon-
strated in the Hubbard model that by applying the time-
dependent perturbation h(τ )

∑
j Ŝz

j , the correlation function

〈ĉ j↓ĉ j↑ĉ†j′↑ĉ†j′↓〉 in a steady state becomes spatially uniform.

Notice that h(τ )
∑

j Ŝz
j breaks the spin-SU(2) symmetry and

changes the quantum number of the total spin, but commutes
with ĉ j↓ĉ j↑. This dephasing mechanism can be applied to our
case. The time-dependent perturbation is V̂ (τ ) that breaks the
η-SU(2) symmetry and changes the quantum number of η̂2,
but commutes with M̂z

j . Therefore, the correlation function
Mj j′ (τ ′ = 0, τ ) becomes spatially uniform in a steady state,
as found in Fig. 5(b). We should note that the discussion given
above is not limited for the localized spins but is also applied
to the electron spins in the conduction band.

IV. SUMMARY AND DISCUSSION

By using the time-dependent exact diagonalization tech-
nique, we have shown that the pulse irradiation can generate
η pairs and thus induce the enhancement of the pair-density-
wave-like superconducting correlation in the ground state of
the 1D Kondo lattice model at half filling. The η-pairing
states are preferentially generated by the optical field be-
cause of the symmetry associated with the η-pairing operators
η̂ = (η̂x, η̂y, η̂z ) that satisfy the SU(2) commutation relations.
This was also analytically shown using the time-dependent
perturbation theory, by which the selection rule becomes
apparent. We have furthermore investigated the effect on the
localized spin degrees of freedom in the photoexcited state
and found that the spin dynamics becomes diffusive after the
pulse irradiation. This is understood because the generation
of η pairs decouple locally the exchange interaction, which is
essentially equivalent to the effective hole doping.

The numerical simulation in Sec. III is for the 1D Kondo
lattice model with the antiferromagnetic exchange interaction.
However, the symmetry analysis given in Sec. II is applicable
for any spatial dimension as long as the system is bipartite.
It is also obvious that the sign of the exchange interaction
does not affect the discussion in Sec. II. Moreover, since the
pseudospin operators η̂ = (η̂x, η̂y, η̂z ) are defined only for the
mobile electrons, the symmetry analysis given in Sec. II is
still correct even when we add any exchange interaction term
between the localized spins,∑

j, j′
J̄ j j′M̂ j · M̂ j′ , (88)

which are not necessarily in the bipartite structure. Therefore,
we can prepare various initial states with different spin struc-
tures, including the Haldane phase in the 1D system with
J < 0 as well as a quantum spin liquid for the frustrated
exchange coupling J̄ j j′ . We have implicitly assumed that the
localized spins M̂ j are spin 1/2. However, this assumption
is not necessary for the symmetry analysis in Sec. II. The
η-pairing operators η̂ = (η̂x, η̂y, η̂z ) and the η-pairing states

are still well defined even when we consider the Kondo lattice
model with the classical localized spins.

Another model related to this study is the periodic Ander-
son model described by the following Hamiltonian:

ĤPA = Ĥt + ĤV + ĤU , (89)

where

ĤV = V
∑

j

∑
σ=↑,↓

(ĉ†jσ d̂ jσ + d̂†
jσ ĉσ ) (90)

and

ĤU = U
∑

j

(
d̂†

j↑d̂ j↑ − 1

2

)(
d̂†

j↓d̂ j↓ − 1

2

)
. (91)

Here, Ĥt is defined in Eq. (2) and d̂ jσ (d̂†
jσ ) denotes the

annihilation (creation) operator of a localized electron with
spin σ (=↑,↓) at site j. It is well known that the Kondo
lattice model is the effective low-energy model of the periodic
Anderson model in the limit of U → ∞. We should note that,
in this case, the η-pairing operators η̂ = (η̂x, η̂y, η̂z ) defined
in Eqs. (7)–(9) do not commute with ĤPA, but their definition
has to be extended as follows:

η̂(PA)
x = η̂x − 1

2

∑
j

eiφ j (d̂†
j↑d̂†

j↓ + d̂ j↓d̂ j↑), (92)

η̂(PA)
y = η̂y − 1

2i

∑
j

eiφ j (d̂†
j↑d̂†

j↓ − d̂ j↓d̂ j↑), (93)

η̂(PA)
z = η̂z + 1

2

∑
j

(d̂†
j↑d̂ j↑ + d̂†

j↓d̂ j↓ − 1). (94)

Notice that these operators satisfy the SU(2) commutation
relations and commute with ĤPA for any U , including the case
when U is negative.

The negative-U periodic Anderson model has been consid-
ered to discuss the charge Kondo effect for materials contain-
ing valence skipping elements [44]. The strong coupling limit
of the negative-U periodic Anderson model is described by
the charge Kondo lattice model:

ĤcKL = Ĥt + ĤJ̃ , (95)

where

ĤJ̃ = J̃
∑

j

η̂ j · η̂ jd . (96)

Here, η̂ j = (η̂x
j , η̂

y
j, η̂

z
j ) and η̂ jd = (η̂x

jd , η̂
y
jd , η̂

z
jd ) represent the

local η-pairing operators for the conduction and localized
electrons, respectively, given by

η̂x
j = 1

2
eiφ j (ĉ†j↑ĉ†j↓ + ĉ j↓ĉ j↑), (97)

η̂
y
j = 1

2i
eiφ j (ĉ†j↑ĉ†j↓ − ĉ j↓ĉ j↑), (98)

η̂z
j = 1

2
(ĉ†j↑ĉ j↑ + ĉ†j↓ĉ j↓ − 1), (99)

and

η̂x
jd = −1

2
eiφ j (d̂†

j↑d̂†
j↓ + d̂ j↓d̂ j↑), (100)
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η̂
y
jd = − 1

2i
eiφ j (d̂†

j↑d̂†
j↓ − d̂ j↓d̂ j↑), (101)

η̂z
jd = 1

2
(d̂†

j↑d̂ j↑ + d̂†
j↓d̂ j↓ − 1), (102)

and J̃ = 8V 2/|U |. Notice that these local η-pairing oper-
ators also satisfy the SU(2) commutation relations among
themselves, i.e., [η̂μ

j , η̂
ν
j′ ] = iδ j j′

∑
λ εμνλη̂

λ
j and [η̂μ

jd , η̂
ν
j′d ] =

iδ j j′
∑

λ εμνλη̂
λ
jd . In this case, even although the total charge

of the conduction electrons fluctuates, the extended η-pairing
operators in Eqs. (92)–(94) still commute with the charge
Kondo lattice Hamiltonian ĤcKL.

The photoexcitation of these systems are highly interesting
and the research along this line is now in progress.
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APPENDIX: TECHNICAL DETAILS OF NUMERICAL
CALCULATIONS

This Appendix summarizes the numerical methods to cal-
culate the dynamical current correlation function χ (ω) in
Eq. (75) and the spectral function P(η, ω, τ ) in Eq. (78).

Let us first describe the method to calculate the following
projected state:

|ψη(τ )〉 = Êδ (η)|ψ (τ )〉, (A1)

which appears in Eq. (78). We first divide the exponential
operator Êδ (η) in Eq. (79) into many slices:

Êδ (η) = [Ê√
Mδ (η)]M . (A2)

We then multiply Ê√
Mδ (η) sequentially to |ψ (τ )〉 as

|vm〉 = Ê√
Mδ (η)|vm−1〉 (A3)

for m = 1, 2, . . . , M with

|v0〉 = |ψ (τ )〉,
|vM〉 = |ψη(τ )〉. (A4)

At each step of m, we use the Taylor expansion of the
exponential operator Ê√

Mδ (η), similar to the case for the
time-evolution operator in Eqs. (68)–(70). We find that this
is numerically stable for any case studied here.

Next, we should notice that the dynamical current correla-
tion function χ (ω) and the spectral function P(η, ω, τ ) have
the following form:

S(ω) = 〈ψ |δε(Ĥ − ω + E0)|ψ〉, (A5)

where |ψ〉 = Ĵ |ψ (0)〉 for χ (ω) and |ψ〉 = Êδ (η)|ψ (τ )〉 for
P(η, ω, τ ). To calculate S(ω), we use the following formula:

S(ω) = 1√
2πε2

K∑
k=1

e−(ξk−ω+E0 )2/2ε2 |〈e1|ξk〉|2. (A6)

Here, |ek〉 with k = 1, 2, . . . , K is a set of the orthonormalized
bases (i.e., 〈ek|ek′ 〉 = δk,k′ ) generated by the Lanczos proce-
dure

|e1〉 = |ψ〉,
β1|e2〉 = Ĥ|e1〉 − α1|e1〉,
βk|ek+1〉 = Ĥ|ek〉 − αk|ek〉 − βk−1|ek−1〉 (for k � 2),

(A7)

where αk = 〈ek|Ĥ|ek〉. Notice that the coefficients αk and βk

correspond to the matrix elements of Hamiltonian Ĥ taken in
the reduced Hilbert space spanned by the basis set {|ek〉}. ξk

and |ξk〉 with k = 1, 2, . . . , K in Eq. (A6) are the approximate
eigenvalues and eigenstates of Ĥ, respectively, obtained by
diagonalizing the tridiagonal matrix constructed via the Lanc-
zos iteration in Eqs. (A7). Note that 〈e1|ξk〉 is the first element
of |ξk〉 represented in the basis set of {|ek〉}. ξk yields the
peak positions in the spectral function S(ω), which coincide
with the pole positions obtained by the continued fraction
technique [45].
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