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Self-similar dynamics of order parameter fluctuations in pump-probe experiments
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Upon excitation by a laser pulse, broken-symmetry phases of a wide variety of solids demonstrate similar
order parameter dynamics characterized by a dramatic slowing down of relaxation for stronger pump fluences.
Motivated by this recurrent phenomenology, we develop a simple nonperturbative effective model for photoin-
duced dynamics of collective bosonic excitations. We find that as the system recovers after photoexcitation,
it shows universal prethermalized dynamics manifesting a power-law, as opposed to exponential, relaxation,
explaining the slowing down of the recovery process. For strong quenches, long-wavelength overpopulated
transverse modes dominate the long-time dynamics; their distribution function exhibits universal scaling in time
and space, whose universal exponents can be computed analytically. Our model offers a unifying description of
order parameter fluctuations in a regime far from equilibrium, and our predictions can be tested with available
time-resolved techniques.
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I. INTRODUCTION

The concept of universality plays a central role in the
theory of equilibrium phase transitions because it allows us to
reduce a plethora of experimentally studied systems to a few
fundamental classes [1]. For systems far from equilibrium, the
notion of universality [44] is relatively unexplored and has
recently emerged as an active field [2–10], partially motivated
by recent progress in ultracold-atom [11–14] and ultrafast
pump-probe experiments [15]. In a nonequilibrium context,
one of the dramatic manifestations of universality is the emer-
gence of the self-similar evolution of correlation functions
[16,53]. In particular, after a strong perturbation, the transient
equal-time two-point correlation function D(|x − y|, t ) might
depend only on a single evolving length scale ξ (t ) and two
universal functions:

D(|x − y|, t ) = g(t ) f (|x − y|/ξ (t )). (1)

Functional forms of f (x) and g(t ) depend neither on mi-
croscopic parameters nor on initial conditions. Typical equa-
tions of motion, often a complex system of partial integro-
differential equations, represent an interplay between many
degrees of freedom such as quasiparticles, order parameter
(OP), phonons, and/or magnons. If these equations allow for
the above self-similar form, the analysis might reduce to just
a few differential equations, which is particularly appealing
since it eases the interpretation of the involved evolution.
From a physical standpoint, the self-similarity suggests that
there exists a stabilization-like mechanism responsible for
this form.

Recent pump-probe experiments observed several recur-
rent phenomena that hint at the existence of universality
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in the out-of-equilibrium context. In particular, common
features have been observed in the dynamics of the OP
and low-energy collective excitations in charge-density-wave
(CDW) compounds [15,17–27], putative excitonic insulators
[28,29], magnetically ordered systems [30,31], and systems
that exhibit several intertwined orders [32,33]. Common phe-
nomenology in these materials includes the following: (i) The
recovery of a photosuppressed OP takes longer at stronger
pump-pulse fluence; (ii) the amplitude of the OP restores
faster than the phase, exhibiting a separation of timescales;
(iii) related to (ii), peaks in diffraction experiments remain
broadened compared to equilibrium shape long after pho-
toexcitation, showing prolonged suppression of long-range
phase coherence. For example, all of these features have been
observed in the same set of experiments [19] on LaTe3, an
incommensurate CDW material. Below, for concreteness, we
primarily focus our otherwise generic theoretical formalism
on this material, but we expect that our conclusions should
qualitatively apply to other systems as well. We note, however,
that quantitative results may be different depending on the
details of specific systems. For example, in the case of ferro-
magnetic systems, our analysis should be modified to include
the conserved character of the OP [44].

A common approach to describing many-body dynamics
in symmetry-broken states is based on the so-called three-
temperature model (3TM) [34–38]. In this framework, a
nonequilibrium state is characterized by assigning differ-
ent temperatures to different subsystems, such as electrons,
phonons, and OP degrees of freedom [39]. Upon photoex-
citation, most incoming light is absorbed by electrons, in-
stantaneously increasing the electronic temperature, Te. The
introduction of Te(t ) is justified provided we are only in-
terested in phononic timescales sufficiently exceeding the
fast electron-electron scattering time. Subsequent dynamics
corresponds to energy exchange between hot electrons and
the other two subsystems. In this process, it is often assumed
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FIG. 1. (a) Schematics of a nonequilibrium state: electrons (red)
and the phononic bath (blue) are thermal with temperatures Te(t ) and
T , respectively; the OP subsystem (mixed colors) is not assumed
to be thermal. (b) Time evolution of the Landau coefficient r(t )
[Eq. (13)]. It mimics a photoexcitation event in (a). (c) Schematics
of dynamical stages. During stages 3 and 4, the system exhibits
self-similarity. Green and orange distinguish the scaling exponents,
α and β [Eq. (15)], in these two stages.

that the lattice heating is negligible because the lattice heat
capacity at room temperature is several orders of magnitude
larger than that of electrons. Even though the 3TM suggests
an intuitive picture about the interplay among different sub-
systems, it often lacks theoretical justification. A particularly
questionable assumption of the 3TM is that one may assign a
temperature to the OP degrees of freedom. Indeed, the laser
pulse can easily excite low-energy, low-momenta Goldstone
modes that interact weakly with each other and with other
degrees of freedom. It is thus essential to describe the transient
state of the OP degrees of freedom more accurately, without
assuming thermalization.

In the present paper, we go beyond the 3TM and formulate
a general theory of out-of-equilibrium OP correlations to ac-
count for potentially nonthermal states of the OP subsystem—
see Fig. 1(a). Our theory focuses on the nonlinear dynamics
of collective bosonic excitations. This should be contrasted to
earlier work on the relaxation of quasiparticles in supercon-
ductors, in which recombination dynamics can lead to faster
relaxation rates for higher quasiparticle densities [40–42] (see,
however, Ref. [43]). Within our effective bosonic model, we
find that upon photoexcitation, the system passes through
four dynamical stages outlined in Fig. 1(c). For a strong
quench, not only is the OP subsystem far from being thermal,
but overpopulated slow Goldstone modes fully dominate the
intrinsic evolution at long times. Even more strikingly, in the
last two dynamical stages in Fig. 1(c), the distribution function
of these modes exhibits self-similar evolution as in Eq. (1).
These findings provide an intuitive physical interpretation of
the mentioned phenomenology, as we elucidate below.

The paper is organized as follows. In Sec. II, we de-
velop the aforementioned model of pump-probe experiments.
Within this framework, the response to an applied laser pulse
and the four dynamical stages are elaborated in Sec. III.
Section IV is devoted to the universality present in the last
two dynamical stages. Section V contains further discussion
on the applicability of the present theory to real experiments.

II. THEORETICAL FRAMEWORK

Spontaneous symmetry breaking (SSB) is described by
the time-dependent Landau-Ginzburg formalism (model-A in
Ref. [44]):

dφα (x, t )

dt
= −�

δF
δφα (x, t )

+ ηα (x, t ). (2)

Here φα is an N-component vector of real fields representing
the OP. The free-energy functional reads

F[φ] =
∫

d3x
[

r

2
φ2

α + K

2
(∇φα )2 + u

(
φ2

α

)2
]
, (3)

and ηα represents the noise originating from the phononic bath
at temperature T :

〈ηα (x, t )ηβ (x′, t ′)〉 = 2T �δα,βδ(x − x′)δ(t − t ′). (4)

Here r, K, u, and � are the model parameters. For ho-
mogeneous quenches, without loss of generality, we as-
sume that SSB occurs along the first direction: φ(t ) =
〈φ1(x, t )〉. Associated with the OP are longitudinal (Higgs
modes) D‖

k(t ) ≡ 〈φ1(k; t )φ1(−k; t )〉c and transverse (Gold-
stone modes) D⊥

k (t ) ≡ 〈φα �=1(k; t )φα (−k; t )〉c correlation
functions. The model-A formalism in Eqs. (2)–(4) can be con-
veniently rewritten in terms of the Fokker-Planck equation:

∂tP = T �
∑
k,α

δ

δφα,k

[P
T

δF
δφα,−k

+ δP
δφα,−k

]
, (5)

where P ([φ], t ) is the probability distribution functional of
space-dependent field configurations φα (x). To leading order
in 1/N , P ([φ], t ) is Gaussian, implying that the OP φ(t ) and
the correlators D‖

k(t ), D⊥
k (t ) form a closed set of dynami-

cal variables. The self-consistent equations of motion read
[45,46] (see Appendix A for a derivation)

dφ(t )

dt
= −�reff φ, (6)

dD⊥
k (t )

dt
= 2T � − 2�(Kk2 + reff )D⊥

k , (7)

dD‖
k(t )

dt
= 2T � − 2�(Kk2 + reff + 8uφ2)D‖

k. (8)

Here the self-consistent “mass” term is defined as

reff (t ) = r(t ) + 4u(φ2 + n‖
tot + (N − 1)n⊥

tot ), (9)

where n⊥(‖)
tot ≡ ∫ 
 d3q

(2π )3 D⊥(‖)
q , and 
 is the UV cutoff. Note

that quantities such as energy or total number of excitations
are not conserved due to the external bath.

The bath, cf. Eq. (4), will also always result in the ther-
malization of the system, in contrast to quenches in the
isolated O(N ) model, where, to leading in 1/N order, the
system does not demonstrate equilibration [47–51]. In that
case, thermalization occurs only after subleading corrections
are taken into consideration [52]. As such, the presence of
the external bath in our case motivates us to disregard these
subleading corrections here.
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From the equations of motion, we obtain the equilibrium
correlators:

D‖
k = T

Kk2 + 8uφ2 + reff
, D⊥

k = T

Kk2 + reff
. (10)

This result is a manifestation of the equipartition theorem. In
the symmetry-broken phase, where reff = 0 and φ �= 0, we
observe that the OP equilibrium value φ is affected by the
thermal fluctuations; cf. Eq. (9). The transverse correlation
length ξ⊥ ∝ r−1/2

eff is divergent. In the disordered phase, reff �=
0 and φ = 0, the transverse and longitudinal correlations are
not distinguishable.

A useful point of view on the above approximations is as
follows. The equations of motion (6)–(9) are equivalent to

dδφ⊥
k (t )

dt
= −�(Kk2 + reff )φ⊥

k + η⊥
k (t ), (11)

dδφ
‖
k(t )

dt
= −�(Kk2 + reff + 8uφ2)φ‖

k + η
‖
k(t ), (12)

where δφα
k represents the fluctuating part of the corresponding

Fourier mode φα
k . We observe that each of the fluctuating

modes lives in an effectively parabolic potential, 〈δφα
k 〉 = 0,

and the noise term establishes the equilibrium variances given
by Eq. (10).

We now formulate the quenching protocol. For simplicity,
we assume that the electronic temperature Te cools down to
the equilibrium value T with a constant rate τQP defined by the
electron-phonon coupling. This assumption seems to be not
too crude for LaTe3, where the Fermi surface is only partially
gapped, and the electrons excited by the laser pulse can relax
through a gapless channel [19,37]. For a different situation,
our framework should be straightforwardly extended. In the
usual Landau-Ginzburg theory, the coefficient r(Te) depends
linearly on Te. To mimic a photoexcitation event, we therefore
impose the following dynamics on r(t ) [Fig. 1(b)]:

r(t ) = ri + θ (t ) exp (−t/τQP)(r f − ri ), (13)

where θ (t ) is the Heaviside theta function, ri is the prepulse
value chosen such that φ �= 0, and (r f − ri) characterizes
the pulse strength. Below we focus on time delays much
beyond τQP.

In the next section, we apply the above theoretical frame-
work to investigate the intrinsic dynamics after the arrival
of a laser pulse. Our conclusions are not specific to the
choice of model parameters, but in the numerical simulations
below, we fix them to roughly mimic the experimental results
in Ref. [19]. There, the values of � and τQP are expected
to be similar.

III. EVOLUTION AFTER PHOTOEXCITATION

Upon photoexcitation, cf. Eq. (13), the system passes
through four dynamical stages [Fig. 1(c)]: (i) depletion, (ii)
inflation, (iii) mode decoupling, and (iv) relaxation to the
thermal equilibrium. We cover each of them below.

In Fig. 2(a), we show numerical results for the dynamics
of the OP, φ(t ). For a weak pump, φ(t ) becomes slightly
suppressed and then quickly recovers to the initial value φ0.
This should be contrasted to the case of a strong pulse, for
which initially the OP becomes strongly suppressed and then

FIG. 2. Intrinsic dynamics for different quench strengths,
(r f − ri ). (a) Time dependence of the OP, φ(t ), normalized by its
prepulse value φ0. At long times, [φ(t ) − φ0] ∼ t−dφ with dφ = 3

2 .
(b) OP recovery time τrec. (c) Dynamics of reff (t ). Initially, large
positive reff is suppressed and becomes negative; then it slowly
restores as reff ∼ t−dr with dr = 5

2 to zero. Inset: zoomed-in view on
the long-time tails. (d) Evolution of D⊥

k0
, where k0 = 2π

L is the lowest
wave vector used in our calculations (L = 1000). For a strong pulse,
initially D⊥

k0
is suppressed to almost zero; after reff changes sign,

it exponentially proliferates. Dotted line corresponds to D‖
k0

for the

strongest pulse considered. D‖
k0

and D⊥
k0

very soon merge into a single
curve, indicating that the OP is melted. Inset: longer time dynamics
for the strongest pulse; D‖

k0
and D⊥

k0
become distinguishable once

the OP value φ(t ) becomes appreciable. Throughout the paper, we
use the following parameters: K = u = 1, N = 4, 
 = π , � = 0.5,
τQP = 0.3, ri = −15, T = 0.1. All panels share the same color scale
in (b) for the quench strengths.

goes through a long recovery process. The recovery takes
longer for stronger pulses [Fig. 2(b)]. This slowing down is
due to the power-law dynamics δφ(t ) ≡ [φ(t ) − φ0] ∼ t−dφ

with dφ = 3
2 , which we further discuss in the next section.

In Fig. 2(c), we plot the evolution of reff (t ). Upon arrival
of a laser pulse, reff (+0) = (r f − ri ). This large initial value
first decreases due to the time evolution of the “bare value” of
r(t ), cf. Eq. (13), and later, at t � τQP, due to the dynamics
of the OP and collective modes described by Eqs. (6)–(8).
Even though r(t ) returns to its equilibrium value ri during
a relatively short time τQP, the dynamics of reff occurs over
much longer time scale where it even changes sign [Fig. 2(c)].
We find that long-time evolution of reff ∼ t−dr is power-law-
like with dr = 5

2 . For the fluctuating modes δφα
k , a large value

of reff implies that each of the effective parabolic potentials
becomes initially steeper, and, as such, the noise term in
Eq. (4) tends to depopulate these modes [Fig. 2(d)]. Therefore,
the first stage—depletion—is characterized by suppression of
the OP and correlations D⊥

k and D‖
k.

The second stage—inflation—starts when reff changes
its sign. A negative reff implies that each of the effective
parabolic potentials becomes shallower, or, as in the case
for the low-momenta transverse modes, can even become
inverted. Therefore, during the inflation, population in each
of the modes proliferates, most dramatically for the low-
momenta modes [Fig. 2(d)].
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FIG. 3. Separation of timescales. (a) Long-time dynamics of the
total population of longitudinal modes, n‖

tot (t ). (b) The same for
transverse modes, n⊥

tot (t ). When n‖
tot is nearly fully recovered, n⊥

tot

approaches its maximum.

For a strong quench and at the time when the OP becomes
completely suppressed, the longitudinal and transverse corre-
lations are no longer distinguishable [Fig. 2(d)]. This parallels
the disordered phase in an equilibrium situation. As the OP
develops, these modes start to separate. We will associate the
end of the inflation stage with the time when D‖

k=0 reaches its
maximum value [see the inset in Fig. 2(d), dashed curve].

Because of the additional correction to the quadratic term
for the longitudinal correlations in Eq. (8), the subsequent
evolution—mode decoupling—is very different for the lon-
gitudinal and transverse modes; see Fig. 3. The longitudinal
correlations start to relax back to the thermal equilibrium
value in Eq. (10), while the transverse modes continue to
proliferate, resulting in the exponent α, cf. Eq. (15), being
positive during the third dynamical stage. Moreover, by the
time n‖

tot is sufficiently recovered, n⊥
tot is about to reach its

maximum. Strong experimental evidence of this separation of
timescales was reported in Refs. [19,24,25].

Just after the mode decoupling, n⊥
tot starts to slowly de-

crease, cf. Eq. (16), suggesting that the system enters the
final relaxation stage. Note that even though lowest-momenta
modes D⊥

k continue to proliferate at very long times, their
relative contribution to n⊥

tot is suppressed by the reduced phase
space of these modes, which is proportional to k2. The under-
lying dynamics is reminiscent of an inverse particle cascade
in the theory of turbulence [8,53,54]. The main difference is
that in our system the dynamics is overdamped.

In the next section, we focus on the last two dynamical
stages, where we find that the system exhibits self-similar
scalings in time and space, manifesting power-law-like, as
opposed to exponential, behavior.

IV. UNIVERSALITY IN THE INTRINSIC DYNAMICS

Our discovery of self-similarity can be summarized in the
following equations. The distribution function of the Gold-
stone modes follows

δD⊥
k (t ) � g(t )

k2
f (k/k∗

⊥(t )), (14)

where δD⊥
k (t ) ≡ [D⊥

k (t ) − D⊥
k,eq], and D⊥

k,eq is the prepulse
equilibrium distribution given by Eq. (10). The form in
Eq. (14) is similar to the one in Eq. (1), though written in
momentum space; ξ⊥(t ) ≡ [k∗

⊥(t )]−1 represents the emergent
time-dependent length scale. We also identify the scaling

FIG. 4. Long-time self-similarity. (a) Time dependence of the
change in transverse momentum distribution δD⊥

k normalized by
the equilibrium value in Eq. (10). Quench strength is set to be
(r f − ri ) = 80. Dashed lines track the position of the peak, k∗

⊥(t );
g(t ) corresponds to the peak height. (b) Rescaled curves collapse
into f (x) [Eq. (14)]. (c) Evolution of k∗

⊥(t ) ∼ t− 1
2 at different quench

strengths. Note that k∗
⊥(t ) does not depend on quench. (d) The same

for the scaling function g(t ). From this figure we extract α ≈ 0.7 in
the third dynamical stage and α = −1 in the final stage [Eq. (15)].

relations

g(t ) ∼ tα, k∗
⊥ ∼ t−β. (15)

Both power-law exponents α, β and the function f (x) are
universal. We find that β = 1

2 ; α ≈ 0.7 at early times while
α = −1 in the final relaxation stage. The scaling functions
f (x), k∗

⊥(t ), and g(t ) are shown in Fig. 4. In a model
where one retains dissipation but neglects the noise com-
ing from the bath, an exponential behavior is expected
instead [55].

We first explore the implications of the self-similarity in
Eq. (14) on the experimental phenomenology. Prior to the
arrival of the pump pulse, the system possesses long-range
coherence manifested in the macroscopic homogeneous OP
φ and divergent transverse correlation length ξ⊥ = ∞. The
laser pulse depletes this coherence. Equation (14) suggests
that as the system evolves toward equilibrium, it develops a
finite correlation length ξ⊥(t ) that slowly grows in a diffusive
manner [56], ξ⊥(t ) ∼ √

t , consistent with recent experiments
[24,25]. This physical picture explains the broadening of
diffraction peaks observed long after the arrival of the pulse.
The slowing down of the OP recovery can also be deduced
from Eq. (14). The system enters the final dynamical stage
with g(t ) � AQt−1, where AQ is a constant of proportional-
ity that increases monotonically with the quench strength.
By contrast, as shown in Fig. 4(c), k∗

⊥(t ) does not depend
on the quench. Therefore, the cumulative effect, expressed
in the change of the population of transverse modes δn⊥

tot ,
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behaves as

δn⊥
tot ≡

∫
d3k

(2π )3
δD⊥

k (t ) ∼ AQt−3/2, (16)

i.e., as a power-law. Since the transverse modes dominate
the long-time dynamics, from Eq. (16) it follows that the
characteristic recovery time τrec ∼ A2/3

Q is a monotonically
increasing function of the quench strength [Fig. 2(b)].

In the following, we offer a formal derivation of all the
long-time power-law exponents: β = 1

2 , α = −1, dφ = 3
2 , and

dr = 5
2 . Reestablishing the long-range coherence, which is

depleted by the laser pulse, is the slowest process that happens
in the system, k∗

⊥ ∼ t−β . Motivated by the numerical results
in Figs. 2 and 4, let us assume that dr > 2β, which will turn
out to be consistent with the subsequent derivation. We note
that the most relevant transverse modes are the ones with
wave vectors close to k∗

⊥; cf. Fig. 4. For these modes, we
can safely neglect fast reff ∼ t−dr in Eq. (7) compared to slow
(k∗

⊥)2 ∼ t−2β , resulting in a simple diffusionlike equation
with the solution δD⊥

k = Ak exp(−2�k2t ), where Ak is yet an
unknown function of k. As supported by Fig. 2(d), δD⊥

k (t )
does not diverge for k → 0. One may then Taylor-expand Ak

as Ak = A0 + A2k2 + A4k4 + · · · . The relevant k vectors, the
ones in the vicinity of k∗

⊥(t ), are small at long times, and
thus it is safe to leave only the dominant harmonic A0 in this
expansion, i.e., δD⊥

k ∼ exp(−2�k2t ), consistent with β = 1
2

and α = −1; cf. also Fig. 4(b).
To extract the value of dr , we need to consider the interplay

between the OP and transverse correlations (longitudinal cor-
relations are discussed in Appendix B). Assuming that at long
times reff ∼ t−dr , the equation of motion (6) reads d

dt δφ =
−� reff (t ) φ ∼ t−dr , where we implied that φ(t ) = φ0 + δφ(t )
is already close to its equilibrium value φ0. By integrating the
above equation, we obtain φ2(t ) ≈ φ2

0 + Ct−dφ , where C is
some constant and dφ = dr − 1. Note that since φ2(t ) enters
the definition of reff (t ), cf. Eq. (9), the more dominant scaling
t−dr+1 from the OP must be compensated by the transverse
correlations. On the other hand, from the previous paragraph,
we deduce δn⊥

tot ∼ tα−β , and therefore

α − β = −dr + 1 ⇒ dr = 1 + β − α = 5
2 . (17)

This result also gives dφ = dr − 1 = 3
2 . The above analysis

has explained all long-time scalings. Note, however, that the
self-similarity in Eq. (14) settles much earlier than the final
relaxation stage. It is striking that the functional form of
f (x), cf. Eq. (14), is the same for the last two dynamical
stages (Fig. 4), an interesting feature that warrants further
investigation.

It is worth mentioning that there are two well-known
scenarios: (i) critical ageing dynamics [57–60] and (ii) phase-
ordering kinetics [45,46,56]—where self-similar dynamics is
well established in the overdamped O(N ) model. Scenario
(i) focuses on a temperature quench specifically to a critical
point, which is not applicable here. By contrast, scenario (ii)
shares some similarities with the above physical picture. The
usual phase-ordering kinetics is concerned with a quench from
the disordered phase to a temperature below Tc, which paral-
lels our quenching protocol, where the OP becomes initially
suppressed and then slowly recovers to its equilibrium value.

Another resemblance is that the two scenarios share the same
exponent β = 1

2 . However, in the phase-ordering kinetics, the
classical field expectation value cannot develop, as trivially
follows from Eq. (6), and the origin of the self-similarity
is due to the growth of large phase-coherent competing do-
mains. By contrast, the self-similarity in our case is due to
the interplay between the nonzero OP φ and proliferating
fluctuations, resulting in new exponents dφ = 3

2 and dr = 5
2 .

The initial conditions also seem to be very different: In the
phase-ordering case, one often starts from high temperatures
with profound thermal fluctuations, cf. Eq. (10); here, at the
time when the OP becomes suppressed, fluctuations become
depleted instead of proliferated.

V. DISCUSSION AND OUTLOOK

This section is devoted to addressing the applicability of
our results to real experiments. In Sec. I, we motivated our
study with recurring phenomenology observed in a wide vari-
ety of materials. We believe that our framework describes the
underlying physics of these systems qualitatively; however,
due to several features specific to each of these materials, it
may alter the quantitative description. Here are some sources
for potential quantitative disagreement. First, our theory is
based on (3+1) dimension, but most of those materials
are either quasi-one-dimensional, such as K0.3MoO3 [17,26],
or quasi-two-dimensional, including rare-earth tritellurides
[18–22], TiSe2 [23], and cuprates [15]. Second, in multiple
cases, such as Ni2MnGa [32], several distinct, potentially
competing orders are essential. Third, systems with additional
(often approximate) symmetries, such as magnetic Sr2IrO4

[31], are beyond the nonconserved OP evolution studied here.
Fourth, some experiments reported coherent Higgs-like oscil-
lations [17,19,26,32], which are neglected in the overdamped
dynamics considered here. A related point is that the model-
A formalism disregards the so-called short-time dynamical
slowing-down [21]. Given these complications, it seems quite
striking that these materials demonstrate similar behavior in
pump-probe experiments.

Our work suggests that behind this common phenomenol-
ogy is a simple, intuitive interpretation where slow over-
populated Goldstone modes dominate the system evolution
after photoexcitation. We make a few observations to address
the complications noted in the previous paragraph. First, in
quasi-1D or -2D systems, fluctuations are expected to be more
significant compared to 3D. Hence, we anticipate a similar, if
not more pronounced, proliferation of Goldstone modes. The
strong spatial anisotropy can lead, though, to a different scal-
ing exponent, as was recently observed in Ref. [15]. Second,
one can straightforwardly extend the present framework to
account for several orders [61,62], and it would be intriguing
to see how enhanced fluctuations enter the interplay between
different orders. Third, in ferromagnetic systems, conserva-
tion of the OP should lead to additional slowing-down of
the long-wavelength excitations. We leave the discussion of
the conserved OP dynamics for future work. Fourth, coherent
dynamics [63,64], such as Higgs-like oscillations, is not ex-
pected to dictate the evolution for a strong pulse because these
oscillations are expected to be overdamped. From a practical
point of view, the model-A dynamics should also be a good
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approximation to describe experiments that have an insuffi-
cient time resolution to detect oscillatory behavior. On the
experimental side, it is essential to verify our interpretation.

Finally, we note that a variety of time-resolved experi-
ments could be performed to test our predictions. Examples
include electron or x-ray diffuse scattering [65–67], resonant
inelastic x-ray scattering [15], and Brillouin scattering [68].
These experiments give access to momentum- and/or energy-
resolved dynamics of bosonic excitations related to OP, so
one may specifically search for signatures of (i) nonthermal
population of the transverse modes, (ii) the self-similarity
encoded in Eq. (14), and (iii) different dynamical stages after
photoexcitation [Fig. 1(c)].
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APPENDIX A: DERIVATION OF THE EQUATIONS
OF MOTION

Here we provide details of the derivation of the main
Eqs. (6)–(9).

1. Dynamics of φ

Evolution of the field φ = 1√
V
φ1,q=0 can be obtained from

∂t 〈φα,q〉t =
∫

D[φ]φα,q∂tP ([φ], t ) = −�

〈
δF

δφα,−q

〉
, (A1)

where in the last equality we used the Fokker-Planck Eq. (5),
and integration by parts. The latter derivative can be calculated
from Eq. (3):

δF
δφα,−q

= (r + Kq2)φα,q + 4u

V

∑
k1,k2

φβ,k1φβ,k2φα,q−k1−k2 .

(A2)

Using Wick’s theorem and leaving only terms up to the
leading order in 1/N , we obtain〈∑

k1,k2

φβ,k1φβ,k2φ1,−k1−k2

〉
≈ φ3

1,q=0

+φ1,q=0

∑
k

[D‖
k + (N − 1)D⊥

k ]. (A3)

Combining Eqs. (A1) and (A3), we arrive at Eq. (6) of the
main text.

2. Dynamics of the correlators

Applying the same trick as above, we derive

∂t 〈φα,kφα,−k〉c = 2T � − 2�

×
[〈

φα,k
δF

δφα,k

〉
− 〈

φα,k
〉〈 δF

δφα,k

〉]
. (A4)

For the case of the transverse component, in leading in 1/N
order we obtain〈

φα,k

∑
k1,k2

φβ,k1φβ,k2φα,−k−k1−k2

〉

≈ D⊥
k

(
φ2

1,q=0 +
∑

q

[D‖
q + (N − 1)D⊥

q ]

)
. (A5)

Combining Eqs. (A4) and (A5), we arrive at Eq. (7) of the
main text. For the case of the longitudinal component, similar
to the above discussion, we get∑

k1,k2

(〈φ1,kφβ,k1φβ,k2φ1,−k−k1−k2

〉
−〈φ1,k〉

〈
φβ,k1φβ,k2φ1,−k−k1−k2

〉)
≈ D‖

k

(
3φ2

1,q=0 +
∑

q

[D‖
q + (N − 1)D⊥

q ]

)
. (A6)

This equation leads to Eq. (8).

APPENDIX B: LONGITUDINAL CORRELATIONS
AT LONG TIMES

During the evolution, the longitudinal correlation function
D‖

k remains bell-shaped with a maximum at k = 0 suggesting
to define g̃(t ) = D‖

k=0(t ) and k∗
‖ (t ) to be the wave vector corre-

sponding to the half-width at half-maximum in D‖
k. Notably,

both functions at long times behave as g̃(t ), k∗
‖ (t ) ∼ t−dφ —

see Fig. 5. We also observe that this power-law exponent
implies that the longitudinal correlations exhibit the leading
scaling, i.e., these modes should not be entirely ignored.

To explain the above observation, we note that at long
times, when the order parameter φ(t ) = φ0 + δφ is already
close to being recovered, the equation of motion (8) can be

FIG. 5. (a) Evolution of the scaling function δg̃(t ) ≡ g̃(t ) − g̃eq

for different quenches. (b) The same for the longitudinal wave vector
δk∗

‖ (t ) ≡ k∗
‖ (t ) − k∗

‖,eq. The second (inflation) and the third (mode
decoupling) stages of the overall dynamics are clearly seen. At long
times, both functions scale as δg̃(t ), δk∗

‖ (t ) ∼ t−dφ .
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approximated to (we set K = 1 for convenience)

dδD‖
k

dt
≈ −32�uφ0δφD‖

k,eq − 2�
(
k2 + 8uφ2

0

)
δD‖

k, (B1)

where D‖
k(t ) = D‖

k,eq + δD‖
k(t ) and we disregarded fast

reff (t ) ∼ t−dr compared to slow δφ(t ) ∼ t−dφ (0 < dφ < dr).
The above equation can be solved analytically. Indeed, substi-
tuting δD‖

k(t ) = e−2�(k2+8uφ2
0 )t hk(t ), we obtain the following

equation on hk(t ):

dhk

dt
= −32�uφ0δφD‖

k,eqe2�(k2+8uφ2
0 )t . (B2)

Integration of this equation gives

hk(t ) = hk(t0) + C

k2 + 8uφ2
0

∫ t

t0

dt ′ e
2�(k2+8uφ2

0 )t ′

(t ′)dφ
, (B3)

where C is some constant. We therefore conclude that

δD‖
k = δD‖,(1)

k + δD‖,(2)
k , (B4)

where δD‖,(1)
k (t ) = hk(t0)e−2�(k2+8uφ2

0 )t decays exponentially
in time, whereas

δD‖,(2)
k ∼ e−2�(k2+8uφ2

0 )t

k2 + 8uφ2
0

∫ t

t0

dt ′ e
2�(k2+8uφ2

0 )t ′

(t ′)dφ
(B5)

is potentially important.

At long times t → ∞, we observe that

F (t ) ≡
∫ t

t0

dt ′ eat ′

(t ′)b
∼ eat

t b
, a, b > 0. (B6)

Indeed, by differentiating F (t ) we note that it satisfies

dF

dt
= eat

t b
. (B7)

By substituting F (t ) = eat p(t ) we separate rapid exponential
growth from slow power-law-like dynamics encoded in p(t ):

d p

dt
+ ap = 1

t b
. (B8)

From this equation, we finally see that p ∼ t−b (as long as
a �= 0). Combining Eqs. (B5) and (B6), we conclude that

δD‖,(2)
k ∼ t−dφ

k2 + 8uφ2
0

, (B9)

i.e., indeed δD‖
k gets a power-law-like contribution with the

leading exponent. For completeness, we also note that

δn‖,(2)
tot =

∫
d3k

(2π )3
δD‖,(2)

k ∼ t−dφ (B10)

also exhibits the same scaling.
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