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Normal modes of vibrations around Hubble flow in jellium
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A macroscopic Coulomb system of identical charged particles with or without a compensating background
charge can evolve maintaining spatial homogeneity and isotropy that mimic the cosmological evolution of
a universe with repulsive gravity. Here we study dynamics of small perturbations on the background of the
corresponding Hubble flow by analyzing its normal modes of vibrations. Arbitrary disturbance of the flow can
be resolved into two electroacoustic, two vortical, and one entropic modes whose dynamics is investigated.
Specifically, in the zero pressure or long-wavelength limits perturbations of density and velocity evolve in
a manner that is independent of the form of the initial disturbance. The same conclusion applies to vortical
perturbations of the velocity for arbitrary pressure while entropic perturbations are advected by the Hubble flow.
Without the background charge the underlying Hubble flow describes a Coulomb explosion whose stability with
respect to small disturbances is also demonstrated.
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I. INTRODUCTION

Jellium—a one-component plasma of interacting electrons
on the background of a uniform positive charge (representing
the effect of ions) [1]—is a paradigm of physics. The notion
first appeared in Thomson’s static plum pudding model of the
atom [2], in which the electrons are immersed inside a pos-
itively charged uniform ball representing the nucleus. While
Rutherford’s experiments ruled out this model as describing
the atom, it nevertheless continued to offer valuable insights
beyond its original purpose. For example, in condensed matter
systems, jellium has shaped our understanding of conductors
[3–5]. The model is also a starting point in describing artificial
atoms—systems of excess electrons confined in semicon-
ductor quantum dots—where confinement potential plays a
role of compensating background charge [6]. For example,
molecular dynamics simulations provide evidence that the
lowest energy configuration in the interior of a finite Coulomb
cluster changes from a shell structure to a bcc lattice as the
number of particles increases [7]. The jellium model also
successfully describes the interior of white dwarfs [8] where
the roles of the electrons and ions are reversed: nuclei move
in a uniform electron gas. The classical Thomson model is
additionally an inspiration to the surface Coulomb problem
[9] whose goal is to determine lowest energy configurations
of identical point charges on the surface of a sphere.

Recent analysis [10] has demonstrated that jellium can
also flow in a homogeneous and isotropic manner accord-
ing to equations that have the structure of the cosmological
equations of the general theory of relativity [11–13]. There
is a Hubble law, and the background charge (if present)
mimics the effect of a negative cosmological constant. Specif-
ically, evolutions without the background charge describing
Coulomb explosions imitate the nonsingular open cosmolo-
gies in negatively curved spaces, while breathing modes in
conductors model oscillatory universes including the anti-de

Sitter space. The analogy between Coulomb explosion and
Hubble flow was previously mentioned in Ref. [14].

The relationship between the flow of jellium and cosmo-
logical evolutions is antipodal: while gravity is attractive, jel-
lium is made of repulsive particles which leads to qualitatively
different physical properties of the two systems. An example
relevant to the present study is the problem of the gravitational
instability which is the root cause behind the formation of
galaxy clusters, galaxies, and stars [11–13]. The goal of this
work is to study the jellium counterpart to the problem of
gravitational instability. While it is clear from the outset that
repulsive Coulomb interactions do not promote an instability
of the underlying Hubble flow, there are two primary reasons
why the problem is relevant.

First of all, it is important to find out whether the jellium-
cosmology mapping [10] goes beyond homogeneous and
isotropic evolutions. In a nutshell, the answer is affirmative,
but the repulsive character of Coulomb interactions leads to
qualitatively different physics consequences.

Second, strict Hubble flows of jellium require homoge-
neous and isotropic initial conditions as well as lack of
disturbances in the course of evolution which in laboratory
experiments are challenging to avoid. Understanding how
inhomogeneities evolve is important for the interpretation of
experimental observations.

Past theoretical studies of Coulomb explosion [14–18]
have been motivated by applications in the context of in-
teraction of high power lasers with nanosized targets. Their
focus has been finite-size and spherically symmetric systems
with special emphasis on conditions underlying formation
of shock waves as well as effects of surfaces of finite non-
neutral plasma on density perturbations [19]. On the hand, the
results presented in this work may, in principle, be applied
to extended plasmas (both neutral and non-neutral). While the
theory given here is linear, no restrictions are made on the type
of perturbation of Hubble flows.
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II. STATEMENT OF THE PROBLEM

Our analysis is based on a classical macroscopic theory
that combines hydrodynamics and electrostatics [20]. In this
approach jellium is treated as an ideal charged liquid char-
acterized by the local position- and time-dependent number
density n(r, t ) and velocity v(r, t ) fields. These are related by
the continuity equation

∂n

∂t
+ ∇ · (nv) = 0. (1)

The equation of motion of the liquid is given by the Euler
equation of hydrodynamics

∂v
∂t

+ (v · ∇ )v = − e

m
∇ϕ − 1

mn
∇P, (2)

where m is the particle mass, e is its charge, ϕ is the electro-
static potential, and P(n, s) is the pressure which is a function
of the number density n and the entropy per unit mass s. The
latter obeys the equation

∂s

∂t
+ v · ∇s = 0 (3)

expressing the adiabatic character of the motion. The charged
liquid is accelerated both by the bulk electric force, the first
term on the right-hand side in Eq. (2), and by the gradient
of the pressure ∇P. The electrostatic potential ϕ in turn is
determined by the Poisson equation

∇2ϕ = −4πe(n − n0), (4)

where n0 is the number density of the oppositely charged
background. It is assumed that the motion is nonrelativistic
and thus magnetic effects are neglected.

We finally note that the validity of the continuum descrip-
tion has been recently verified by comparing conclusions of
Newtonian cosmology with expansion dynamics of a system
of point masses [21]. There is no doubt that hydrodynamic
approach adopted in this paper to investigate the Coulomb
counterpart of the problem is also an adequate description.

A. Summary of Hubble evolutions in jellium

The system of equations (1)–(4) admits a class of exact
spatially homogeneous and isotropic evolutionary solutions
with the following properties [10]:

(1) Relative velocity v of any two particles of the liquid
and their separation vector r are related by Hubble’s law

v = H (t )r, (5)

where H (t ) is the Hubble parameter. Hubble’s law can be
written in an equivalent form

r = a(t )x, (6)

where x is a time-independent relative comoving coordinate
vector defining the particle pair considered. The universal
function a(t ), the scale factor, is defined in terms of the
Hubble parameter as

H (t ) = ȧ

a
, (7)

where the dot is a shorthand for the derivative with respect to
time.

(2) For an observer at r = 0 the electrostatic potential at
position r is given by

ϕ = −2πe

3
[n(t ) − n0]r2. (8)

The evolving density n(t ) and Hubble’s parameter H (t ) are
related by the two equations

ṅ = −3H (t )n, (9)

Ḣ + H2(t ) = 4πe2

3m
(n − n0). (10)

Equations (9) and (10) combined with the definition of the
scale factor a(t ) (7) can be integrated resulting in relationships

n(t ) = β

a3(t )
, (11)

mȧ2

2
+ U (a) = E ,

U (a) = 4πe2

3

(
β

a
+ n0a2

2

)
, (12)

where β > 0 and E are integration constants. Equation (12)
can be integrated resulting in a t (a) dependence

t =
√

m

2

∫ a da√
E − U (a)

. (13)

(3) The character of the flow can be visualized by viewing
Eq. (12) as a statement of conservation of energy for a particle
of energy E and position a � 0 moving in the field of the
potential energy U (a). For n0 finite U (a) is a potential well
with a minimum at a = a0 = (β/n0)1/3 which according to
Eq. (11) corresponds to the state of local neutrality n = n0.
In the vicinity of a = a0, the potential energy function can be
approximated as

U (a) = 2πe2(n0β
2)1/3 + mω2

p(a − a0)2

2
, (14)

where ωp is the plasma frequency defined as [20]

ω2
p = 4πn0e2

m
. (15)

The implication is that Eq.(12) has solutions if E �
2πe2(n0β

2)1/3, and that for E = 2πe2(n0β
2)1/3 + 0 the flow

has the character of a harmonic breathing oscillation with the
plasma frequency (15).

(4) For E > 2πe2(n0β
2)1/3 the Hubble flow is an an-

harmonic breathing oscillation limited by the two turning
points a1 and a2 � a1, solutions to the equation U (a1,2) = E ,
corresponding to the largest and the smallest densities of
jellium, respectively. A notable special case of this regime
that mimics the anti-de Sitter space corresponds to the E �
2πe2(n0β

2)1/3 condition. Then a1 → 0 and

a(t ) = a2

∣∣∣∣sin
ωpt√

3

∣∣∣∣, a2 =
(

6E

mω2
p

)1/2

, (16)
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which is a series of the frequency 2ωp/
√

3 sinusoidal bounces.
Equation (16) applies provided

a(t ) � a1 = 4πe2β

3E
. (17)

(5) In the absence of the background charge n0 = 0, the
motion described by Eq. (12) is infinite, a2 = ∞, and the
Hubble flow corresponds to a Coulomb explosion:

a = a1

2
(cosh ξ + 1),

t = 1

4

(
3ma3

1

2πe2β

)1/2

(sinh ξ + ξ ), (18)

where ξ is a parameter varying between minus and plus
infinity; at ξ = 0 jellium has its largest density. This is when
a contraction or implosion (t < 0) changes to an expansion or
explosion (t > 0). The Coulomb explosion is asymptotically
ballistic

a(|t | → ∞) =
√

2E

m
|t |, (19)

which can be also seen directly from Eq. (12).
(6) Equations (9)–(12) are Coulomb counterparts of the

cosmological equations of the general theory of relativity
which can be recovered via the Coulomb-Newton mapping
correspondence relation

e2 → −Gm2, (20)

where G is the universal gravitational constant.

B. Preview

In what follows we will be studying dynamics of small
perturbations away from the solutions described by Eqs. (9)–
(12). It is known that in hydrodynamics all possible small
oscillations of the liquid about the state of rest or motion with
constant velocity may be divided into oscillations of acoustic,
vortical, and entropic types with significant differences in
character [22,23]. A similar division applies to the discussion
of the oscillations about the Hubble flow, Eqs. (5)–(12), as
will become clear shortly.

In our analysis we are guided by the accounts of the
problem of gravitational instability [11–13] modifying the
reasoning as needed for the problem at hand.

III. STATIC BACKGROUND

Equations (1)–(4) have a trivial static solution n = n0,
v = 0 that corresponds to the state of local neutrality. This
is a special E = 2πe2(n0β

2)1/3 case of the general time-
dependent solution (5)–(12) when the Hubble parameter H (t ),
Eq. (5), is identically zero. Analysis of the dynamics of small
disturbances away from this state is equivalent to the theory
of sound that takes into account Coulomb interactions. Even
though no original conclusions will be reached, it is instructive
to analyze this problem first with a greater degree of generality
than is usually done [20] as it exhibits many of the features of
the case of interest when the background flows according to
Eqs. (5)–(12).

A. Linearized equations of motion

Let us suppose that small perturbations of the density δn,
velocity δv, potential δϕ, pressure δP, and entropy δs are
superimposed onto the state of local neutrality n = n0, v = 0,
ϕ = 0, and s = const. Substituting n = n0 + δn, v = 0 + δv,
etc., into Eqs. (1)–(4) and omitting the nonlinear terms we find

∂h

∂t
+ ∇ · δv = 0, (21)

∂δv
∂t

= − e

m
∇δϕ − 1

mn0
∇δP, (22)

∂δs

∂t
= 0, (23)

∇2δϕ = −4πen0h, (24)

where the dimensionless density contrast

h(r, t ) = δn(r, t )

n0
(25)

is employed instead of δn [11–13].

B. Entropic mode

Equation (22) has a static solution

eδϕ + δP

n0
= 0 (26)

expressing the condition of mechanical equilibrium of the
Coulomb and pressure forces. Corresponding density contrast
h(r) can be found by employing the relationship

δP =
(

∂P

∂n

)
s

δn +
(

∂P

∂s

)
n

δs ≡ mc2δn + σδs, (27)

where c is the adiabatic speed of sound. Combining the last
two equations and eliminating the potential δϕ with the help
of the Poisson equation (24) one finds

(
ω2

p − c2
0∇2

)
h = σ0

mn0
∇2δs, (28)

where ωp is the already mentioned plasma frequency (15), and
the subscript 0 refers to the system’s parameters evaluated at
n = n0. Equation (28) implies that the source of the density
contrast is the disturbance in the entropy δs. Indeed, Eq. (23)
has a static solution

δs(r, t ) = δs(r), (29)

where δs(r) is the entropic perturbation at the moment of time
t = ti when it was created. Equation (28) can then be solved
via a Fourier transform

h(k) = − σ0

mn0

k2

c2
0k2 + ω2

p

δs(k), (30)

where h(k), the Fourier transform of h(r), is defined accord-
ing to the convention

h(k) =
∫

d3rh(r)e−ik·r, (31)
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and similarly for other quantities of interest. Inverting the
Fourier transform in Eq. (30) one finds

h(r) = −σ0δs(r)

mn0c2
0

+ σ0ω
2
p

4πmn0c4
0

∫
dV ′ δs(r′)

|r − r′|e−|r−r′ |/d0 ,

(32)
where

d0 = c0

ωp
=

(
mc2

0

4πn0e2

)1/2

(33)

is the Debye screening length. For perturbations whose spa-
tial scale is significantly smaller than the Debye screening
length d0, Coulomb effects are negligible and h(r) approaches
the first term in (32). On the other hand, for sufficiently
smooth perturbations Coulomb interactions dominate and
h(r) = (σ0/mn0ω

2
p)∇2δs(r) as can be seen from Eq. (28).

Equations (29)–(33) summarize the properties of the en-
tropic mode of the system. Once created, it remains frozen in
time; if thermal conduction would be included, the entropic
mode would become diffusive.

C. Potential and vortical modes

We now proceed to Eqs. (21) and (22) and divide the ve-
locity disturbance into the potential (longitudinal) and vortical
(transverse) parts δv(l ) and δv(t ) [22,23] defined by

δv = δv(l ) + δv(t ), ∇ × δv(l ) = 0, ∇ · δv(t ) = 0. (34)

Only the longitudinal part of the velocity disturbance enters
the continuity equation (21)

∂h

∂t
+ ∇ · δv(l ) = 0, (35)

while the Euler equation (22) separates into the two equations

∂δv(t )

∂t
= 0, (36)

∂δv(l )

∂t
= − e

m
∇δϕ − c2

0∇h − σ0

mn0
∇δs, (37)

where we also employed Eq. (27).

1. Vortical modes

The equation for the vortical velocity (36) is independent
of the other equations; its solution is

δv(t )(r, t ) = δv(t )(r), (38)

where δv(t )(r) is the vortical perturbation at the moment of
time t = ti when it was created. Since ∇ · δv(t ) = 0, only two
out of the three components of δv(t )(r) are independent. They
are vortical modes of the system. A vortical perturbation does
not perturb the density and once created remains frozen in
time; if shear viscosity was included, vortical modes would
become diffusive.

2. Electroacoustic modes

If the operation of divergence is applied to both sides of
Eq. (37), one can employ the linearized continuity (35) and the
Poisson (24) equations to eliminate the potential δϕ, resulting

in the equation

∂2h

∂t2
+ (ω2

p − c2
0∇2)h = σ0

mn0
∇2δs, (39)

which generalizes Eq. (28). In the long-wavelength limit (or
if P = 0), the ∇2 terms in (39) can be omitted. Then Eq. (39)
simplifies to the form

∂2h(r, t )

∂t2
+ ω2

ph(r, t ) = 0 (40)

without explicit dependence on the position r. This describes
simple harmonic motion with the plasma frequency ωp:

h(r, t ) = A(r) cos ωpt + B(r) sin ωpt . (41)

The functions A(r) and B(r) can be determined given the
density contrast h(r) and the velocity disturbance δv(r) at
some initial moment of time t = ti.

Looking beyond the long-wavelength limit, Eq. (39) can be
turned into an ordinary differential equation via the Fourier
transform:

d2h(k, t )

dt2
+ ω2(k)h(k, t ) = − σ0

mn0
k2δs(k), (42)

where

ω2(k) = ω2
p + c2

0k2 (43)

determines the spectrum of the plasma waves [20]: in the long-
wavelength limit

kd0 	 1 (44)

one finds ω(k) = ωp returning back to Eq. (40) while in the
acoustic limit kd0 � 1 one recovers the spectrum of the sound
waves ω(k) = c0k. The general solution of the differential
equation (42) is the sum of the particular solution (30) and

h(k, t ) = C(k) cos[ω(k)t] + D(k) sin[ω(k)t], (45)

which describes the adiabatic δs = 0 disturbance; the func-
tions C(k) and D(k) are determined by the initial conditions.

The two independent solutions for the density contrast
in Eqs. (41) and (45) correspond to the two independent
longitudinal electroacoustic modes of the problem; they are
the focus of the classic treatments of small fluctuations in
jellium [20].

With the help of the mapping (20) the analysis given
above recovers a treatment of the gravitational instability
of Einstein’s static universe [24]. Specifically, the spectrum
(43) turns into ω2(k) = c2

0k2 − 4πGmn0 with the implica-
tion that the system is unstable [ω2(k) < 0] with respect to
long-wavelength fluctuations k < kJ = √

4πGmn0/c0. Corre-
sponding length scale k−1

J , the Jeans length, is the gravita-
tional counterpart of the Debye screening length (33) of the
Coulomb problem.

D. Summary

To summarize, a generic small disturbance of jellium away
from the state of local neutrality n = n0 can be presented in
the form of a superposition of two vortical, two longitudinal
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electroacoustic, and one entropic perturbations which are the
normal modes of the system.

IV. HUBBLE FLOW AS A BACKGROUND

Analysis of the dynamics of disturbances away from the
state of local neutrality will be now used as a blueprint to
investigate the evolution of small inhomogeneities imprinted
on the Hubble flow described Eqs. (5)–(12). Substituting
n(r, t ) = n(t ) + δn(r, t ), v(r, t ) = H (t )r + δv(r, t ), etc., into
Eqs. (1)–(4), and omitting the nonlinear terms we find

∂δn

∂t
+ H (t )r · ∇δn + 3H (t )δn + n(t )∇ · δv = 0, (46)

∂δv
∂t

+ H (t )(r · ∇ )δv + H (t )δv = − e

m
∇δϕ − ∇δP

mn(t )
, (47)

∂δs

∂t
+ H (t )r · ∇δs = 0, (48)

∇2δϕ = −4πen(t )h, (49)

where the density contrast h is defined in a manner

h(r, t ) = δn(r, t )

n(t )
(50)

that encompasses Eq. (25) as a special case. Suggested by
Eq. (6), we seek a solution to the system of equations (46)–
(49) that has the functional form

h(r, t ) = h

[
r

a(t )
, t

]
≡ h(x, t ), (51)

and similarly for the remaining degrees of freedom of the
problem. This anticipates evolution of the background: in
the case of an expansion H (t ) > 0, perturbations will be
stretched out or “redshifted” while for contraction H (t ) < 0,
perturbations will be compressed or “blueshifted.” The ansatz
(51) is equivalent to a transformation into the reference frame
comoving with the Hubble flow (6):

∂

∂t
+ H (t )r · ∇ =

(
∂

∂t

)
x
, ∇ = 1

a(t )
∇x, (52)

where (∂/∂t )x stands for the partial time derivative for x fixed
while ∇x refers to the vector differential operator with respect
to the components of x. With this in mind Eqs. (46)–(49)
correspondingly transform into

ḣ + 1

a(t )
∇x · δv = 0, (53)

δ̇v + H (t )δv = − 1

a(t )

[
e

m
∇xδϕ + ∇xδP

mn(t )

]
, (54)

δ̇s = 0, (55)

1

a2(t )
∇2

xδϕ = −4πen(t )h, (56)

where the dot over dynamical variables is a shorthand for
(∂/∂t )x, and in arriving at Eq. (53) we employed Eqs. (9)
and (50).

It is instructive to compare Eqs. (53)–(56) with their n =
n0 counterparts, Eqs. (21)–(24). Returning to the laboratory
coordinates ∇x → a(t )∇, would make the two settings more

similar with time-dependent background density n(t ) replac-
ing the constant density n0 in Eqs. (54) and (56). Physically,
the most significant difference can be seen when comparing
corresponding Euler equations (22) and (54) because the latter
features an additional force of “Hubble friction” proportional
to −H (t )δv. Its effect on the evolution of inhomogeneities
depends on the character of the Hubble flow. Specifically,
if the background is expanding, H (t ) > 0, the Hubble fric-
tion suppresses the growth of inhomogeneities while if it
is contracting, H (t ) < 0, “Hubble antifriction” operates and
deviations away from uniformity grow.

A. Entropic mode

The two sets of equations (53)–(56) and (21)–(24) are
sufficiently different that a “comoving” counterpart of the
condition of mechanical equilibrium (26) no longer exists.

On the other hand, Eq. (55) has a solution, a counterpart to
Eq. (29),

δs(x, t ) = δs[a(ti)x] ≡ δs

[
a(ti )

a(t )
r
]

(57)

that is static; in the laboratory reference frame the entropic
perturbation is advected by the Hubble flow. Since the back-
ground flow for n0 finite is an oscillation of the scale factor,
the entropic perturbation (57) is then an oscillation of the same
frequency. On the other hand, if the underlying flow describes
a Coulomb explosion, n0 = 0, then asymptotically the scale
factor diverges (19), and the entropic perturbation stretches
to a constant without observable consequences. Apart from
different explicit a(t ) dependencies, evolution of entropic
perturbations described by Eq. (57) is the same as that found
in cosmology [11–13].

B. Potential and vortical modes

Since ∇ ∝ ∇x, the velocity disturbance in Eqs. (53) and
(54) can be again divided according to Eq. (34) into the
longitudinal δv(l ) and vortical δv(t ) parts. Only the former
enters the continuity equation (53)

ḣ + 1

a(t )
∇x · δv(l ) = 0, (58)

while the Euler equation (54) separates into the two equations

˙δv(t ) + H (t )δv(t ) = 0, (59)

˙δv(l ) + H (t )δv(l )

= − 1

a(t )

( e

m
∇xδϕ + c2∇xh + σ

mn
∇xδs

)
, (60)

where we also employed Eq. (27); the parameters of the
equation of state c2 and σ are evaluated at n = n(t ), and are
now time dependent.

1. Vortical modes

Using the definition of the scale factor (7) Eq. (59) can be
integrated with the result

δv(t )(x, t ) = a(ti )

a(t )
δv(t )[a(ti )x] ≡ a(ti )

a(t )
δv(t )

[
a(ti )

a(t )
r
]
, (61)
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which means that as the vortical perturbation is advected by
the flow, its amplitude is modulated inversely proportional to
the scale factor. In the presence of a charged background, n0 �=
0, the evolution of the vortical velocity (61) is an oscillation
that has the same frequency as the background Hubble flow.

On the other hand, in the case of the Coulomb explosion
n0 = 0, the scale factor diverges (19), and the vortical pertur-
bation while stretching also falls off in magnitude as 1/t .

Apart from different explicit a(t ) dependencies, the evolu-
tion of the two vortical perturbations described by Eq. (61) is
the same as that found in cosmology [11–13].

2. Electroacoustic modes

Subjecting both sides of the Euler equation (60) to the
operation of vector differentiation ∇x, and employing the con-
tinuity (58) and Poisson (56) equations one arrives at the
equation

ḧ + 2H (t )ḣ +
(

4πne2

m
− c2

a2
∇2

x

)
h = σ

mna2
∇2

xδs. (62)

Apart from the Hubble friction 2H (t )ḣ term the structure of
Eq. (62) can be anticipated based on the appearance of its
n = n0 counterpart, Eq. (39). Indeed, if in the expression for
the square of the plasma frequency ω2

p (28) the constant back-
ground density n = n0 is substituted by its time-dependent
counterpart n = n(t ), similar replacements are made in the
remaining entries of Eq. (39), and the differential operator ∇
is replaced with ∇x/a, Eq. (62) would be largely recovered.
We also observe that in contrast to the case of the static
background n = n0, electroacoustic and entropic modes are no
longer decoupled. Specifically, the entropic perturbation (57)
that supplies the source term on the right-hand side of Eq. (62)
can generate the time-dependent density contrast h. Below we
limit our analysis to the two most practically relevant cases,
when this effect is either negligible or strictly zero.

(i) In the long-wavelength limit (or if P = 0) the ∇2
x terms

can be neglected, and Eq. (62) simplifies to the form

ḧ + 2H (t )ḣ + 4πn(t )e2

m
h = 0 (63)

without explicit dependence on x. This is a generalization of
Eq. (40) to the case when the background flows according to
Hubble’s law (5). Equation (63) has two linearly independent
solutions h1,2(t ) so that its general solution can be written in
the form

h(x, t ) = A(x)h1(t ) + B(x)h2(t ), (64)

which is a counterpart to Eq. (41); the functions A(x) and B(x)
are determined by initial conditions. The law of the evolution
of the density and velocity perturbations determined by the
functions h1,2(t ) is however independent of their initial shape.

If the Coulomb-Newton mapping correspondence relation
(20) is applied to Eq. (63) one would recover the well-
known cosmological equation ḧ + 2H (t )ḣ − 4πmGn(t )h = 0
[11–13] that can be solved in closed form. The same applies
to Eq. (63). Specifically, one of its two independent solutions
is

h1(t ) ∝ H (t ). (65)

Indeed, differentiating both sides of Eq. (10) and combining
the outcome with the definition of the Hubble parameter (9)
we obtain Ḧ + 2H (t )Ḣ + [4πn(t )e2/m]H = 0. Comparing
with Eq. (63), we see that h1(t ) ∝ H (t ) is one of its solutions.
Equation (65) has exactly the same appearance as its cosmo-
logical counterpart [11–13].

The second independent solution to Eq. (63), h2(t ), can be
found with the help of the Wronskian

W ≡ ḣ1h2 − ḣ2h1 = const.

a2
. (66)

The right-hand side can be obtained by computing Ẇ , com-
bining the outcome with Eq. (63), employing the definition of
the scale factor (7) followed by solution of the resulting dif-
ferential equation Ẇ + 2H (t )W = 0. Substituting the ansatz
h2 = h1 f into the expression for the Wronskian (66) one then
obtains an equation for f that can be integrated. As a result,
the second independent solution to Eq. (63) is given by

h2 ∝ H (t )
∫ t dt

a2H2
= H

∫ a da

ȧ3
∝ H

∂t

∂E
, (67)

where in arriving at the last representation we employed
Eqs. (12) and (13). The first two representations in Eq. (67)
are the same as in cosmology [11–13]. The last representation
also implicit in the existing treatments [11–13] makes it
possible to avoid the integration in Eq. (67) and extract the
solution h2 from an explicit a(t ) dependence.

It is straightforward to verify that in the limit when the
Hubble flow is a harmonic oscillation of the plasma frequency
(13), the functions h1,2 given by Eqs. (65) and (67) are simply
the cosine and sine functions of ωpt .

Similarly, in the anti-de Sitter limit (16) one finds
h1(t ) ∝ | cot(ωpt/

√
3)| and h2(t ) ∝ const., both constrained

by Eq. (17).
The case when the background flow represents the

Coulomb explosion can be visualized in terms of the h1,2

dependencies on the scale factor a whose time dependence
is in turn given by Eqs. (18). Then the expression for h1

(65) follows from the n0 = 0 limit of Eq. (12) while ∂t/∂E
entering the expression for h2 (67) can be deduced from
Eqs. (18). As a result one finds

h1 ∝
√

α − 1

α3/2
, α = a

a1
,

h2 ∝ 1 − 3

α
− 3

√
α − 1

α3/2
ln(

√
α − √

α − 1), (68)

where a1, the scale factor corresponding to largest density of
jellium, is given by Eq. (17).

It is instructive to compare these expressions with their cos-
mological counterparts, h1 ∝ α−3/2

√
1 + α, h2 ∝ 1 + 3/α +

3α−3/2
√

1 + α ln(
√

1 + α − √
α), describing the evolution of

disturbances in an open, E > 0, cosmological model without
the cosmological constant [12]. In both cases as a → ∞ the
first solution (65) falls off as h1 ∝ 1/a ∝ 1/t while the second
solution (67) saturates, h2 ∝ const. The latter conclusion is
a consequence of the ballistic character of the late stage of
the expansion (19). Indeed, in this regime the Coulomb (or
gravitational) forces become negligible and the perturbation
ceases to evolve.
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FIG. 1. Evolution of the density contrast normal modes h1,2(t )
(arbitrary units) according to Eqs. (68) and (18) for a Coulomb
explosion with zero pressure equation of state or long-wavelength
perturbations and arbitrary equation of state. The unit of time is
(3ma3

1/2πe2β )1/2/4.

Equations (68) and (18) determine the h1,2(t ) dependen-
cies in parametric form; they are shown in Fig. 1. The
first, asymptotically decaying mode h1(t ) (bold curve), has a
maximum at an intermediate time. Although it is not easily
discernible from Fig. 1, the same is true regarding the second,
asymptotically saturating mode h2(t ) (bold broken curve) so
that the h2(t → ∞) → const. limit is approached from above.
In this case the solution (67) behaves as h(x, t → ∞) ∝
B(x) = B(

√
m/2Er/t ) where we employed Eq. (19).

(ii) The entropic and electroacoustic modes are also de-
coupled if the equation of state is isentropic, P = P(n). Then
σ = 0 and the right-hand side of Eq. (62) vanishes. The re-
sulting partial differential equation can then be turned into an
ordinary differential equation via a Fourier transform relative
to the comoving coordinates x:

d2h(q, t )

dt2
+ 2H (t )h(q, t )

+
[

4πn(t )e2

m
+ c2(t )q2

a2(t )

]
h(q, t ) = 0, (69)

where h(q, t ), the Fourier transform of h(x, t ), is defined
according to the convention

h(q, t ) =
∫

d3xh(x, t )e−iq·x. (70)

Comparing with Eq. (31) we see that a perturbation of a
constant wave vector q in the comoving reference frame (6)
corresponds to a perturbation of a time-dependent wave vector

k(t ) = q
a(t )

(71)

in the laboratory reference frame [11–13].
Equation (69) is a second-order differential equation with

variable coefficients which has two linearly independent solu-
tions h1,2(q, t ). Its general solution can be written in the form

h(q, t ) = C(q)h1(q, t ) + D(q)h2(q, t ), (72)

which is a counterpart to Eq. (45); the functions C(q)
and D(q) are determined by initial conditions. In the

long-wavelength limit q → 0 Eqs. (69) and (72) reduce to
Eqs. (63) and (64). The range of applicability of the latter
can be written in a form that parallels the condition of the
long-wavelength limit when the background is static (44),
k(t )d (t ) 	 1, where k(t ) is given by Eq. (71) while d (t ), the
time-dependent counterpart of the Debye screening length, is
given by substituting c0 → c(t ) and n0 → n(t ) in Eq. (33).

If the Coulomb-Newton mapping correspondence relation
(20) is applied to the differential equation (69), one would
then recover the central result of the theory of gravitational
instability [24]. Specifically, the expression in the square
parentheses would become c2(t )q2/a2(t ) − 4πGmn(t ), and if
it would be negative, the mode of the wave vector q would be
unstable.

Similar reasoning applied to Eq. (69) rules out any in-
stability because the expression in the square parentheses is
always non-negative. Specifically, combining with our earlier
conclusions regarding the entropic and vortical modes, we
conclude that the Coulomb explosion is stable with respect
to all possible kinds of small perturbations. Our results dis-
prove the claim [14] that any perturbation away from Hubble
expansion would lead to formation of shock waves.

In order to gain more insight into the character of its
solutions, it is instructive to rewrite Eq. (69) in the form of
a Schrödinger-type equation

d2

dt2
[h(q, t )a(t )] + ω2(q, t )[h(q, t )a(t )] = 0, (73)

where

ω2(q, t ) = c2(t )q2

a2(t )
+ 8πe2

3m

[
n(t ) + n0

2

]
(74)

is the time-dependent counterpart of the dispersion law (43).
If the function ω(q, t ) varies adiabatically, ω̇(q, t ) 	

ω2(q, t ), the semiclassical approximation holds and the closed
form solutions to Eq. (73) could be given as [25]

h1,2 ∝ 1

a(t )
√

ω(q, t )
exp

[
±i

∫ t

ω(q, t ′)dt ′
]
. (75)

In the short-wavelength limit when the first term in Eq. (74)
dominates, the solution (75) simplifies to the form

h1,2 ∝ 1√
c(t )a(t )

exp

[
±iq

∫ t c(t ′)dt ′

a(t ′)

]
(76)

already given in cosmology [13].
Equation (76) also covers the asymptotic t → ∞ limit

of the Coulomb explosion problem. For example, for the
c(t ) = const. equation of state Eqs. (76) and (19) predict that
h1,2(t → ∞) ∝ t−1/2±iqc

√
m/2E .

V. CONCLUSIONS

To summarize, generic small disturbance around Hubble
flows in jellium can be resolved into a superposition of two
electroacoustic, two vortical, and one entropic perturbations
which are the normal modes of vibration of the system. One
of the distinctive features of the electroacoustic modes is that
they can only have a form of standing waves; traveling wave
solutions do not seem possible.
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It is the present author’s hope that the normal mode analy-
sis carried out in this work will stimulate experimental and nu-
merical studies of jellium-type systems. On the experimental
side, Hubble flows in conductors may be excited by passing an
electron beam through a metal nanosphere and then inferring
existence of the flow via electron energy loss spectroscopy, a
technology employed to detect plasmons. Indeed, there exists
an experimental evidence that breathing modes that resemble

Hubble flows can be excited this way in Silver nanodisks [26].
In Coulomb explosion setting relevant experiments should
involve extended plasmas.
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