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Perfect coherent transfer in an on-chip reconfigurable nanoelectromechanical network
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Realizing a controllable network with multiple degrees of interaction is a challenge to physics and engineering.
Here, we experimentally report an on-chip reconfigurable network based on nanoelectromechanical resonators
with nearest-neighbor (NN) and next-nearest-neighbor (NNN) strong couplings. By applying different paramet-
ric voltages on the same on-chip device, we carry out perfect coherent transfer in NN and NNN coupled array
networks. Moreover, the low-loss resonators ensure the desired evolution to achieve perfect transfer and the
demonstration of the parity-dependent phase relation at transmission cycles. The realization of NNN couplings
demonstrates the capability of engineering coherent coupling beyond a simple model of a NN coupled array
of doubly clamped resonators. Our reconfigurable nanoelectromechanical network provides a highly tunable
physical platform and offers the possibilities of investigating various interesting phenomena, such as topological
transport, synchronization of networks, as well as metamaterials.

DOLI: 10.1103/PhysRevB.101.174303

I. INTRODUCTION

An oscillator network, made up of multiple individual
resonators and couplings between these nodes, has huge po-
tential in investigating collective phenomena, such as exotic
states [1], symmetry breaking [2], chimera states [3], an Ising
machine [4], and synchronization [5]. Recently, a nanoelec-
tromechanical system was proposed and utilized to explore
oscillator networks and the associated phenomena [1,6]. For
an ideal network, one of the most important targets is in-
creasing the number of individual nodes. Although there are
plenty of unit cells in some reported nanomechanical systems
[7-10], any cell of these networks cannot be individually
tuned once the fabrication is completed, which unfortunately
limits the realization of arbitrarily configurable graphs and
further integration.

Another challenge is the tunability of individual couplings
in a large oscillator network. For example, there are some
studies that investigated the quantum dot or the spin in a
mechanical resonator [11-18] and explored the possibility
of extending the resonators to a large network [19-21].
However, so far, strong coupling was demonstrated between
only two nanomechanical pillars [21]. Since the coupling
method between nanomechanical resonators is based on the
strain distribution, it is evident that the individual tunability
of manipulation will decrease as the number of resonators
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in networks increases. Therefore, realizing a reconfigurable
nanomechanical network with excellent individual tunability
is necessary, but it has thus far remained elusive.

Built upon our previous works [22,23], here we success-
fully extend the parametric coupling from one-dimensional
nearest-neighbor (NN) high-quality-factor resonators to next-
nearest-neighbor (NNN) ones, and we put forward an on-
chip reconfigurable nanoelectromechanical network. By con-
trolling external voltages, we first show that the couplings
of NN and NNN resonators can be independently changed,
and the strong-coupling regime can be reached. Then we
demonstrate perfect coherent transfer in NN as well as NNN
coupled networks in the same on-chip device. The state of
each resonator can be measured by lock-in amplifiers. The
experiment unambiguously shows that the input excitation is
perfectly transferred to the target resonator at transmission
cycles, which is consistent with the theoretical prediction.
Finally, we verify the phase coherence of the perfect coherent
transfer in different array networks.

II. PERFECT-TRANSFER SCHEME

The perfect-transfer scheme was first proposed in a spin
network with N qubits for transferring a quantum state [24],
and it was later generalized to a chain of N coupled harmonic
oscillators [25]. In the protocol, the Hamiltonian is

N-1
H=Y Cijulalaj +al, a1, (1)
J
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FIG. 1. On-chip reconfigurable nanoelectromechanical network
and perfect transfer scheme. (a) False-color scanning electron mi-
crography of the on-chip device, which includes eight nearly identi-
cal nanomechanical resonators. The space between adjacent doubly
clamped resonators is 500 nm. (b) Sketch map of the geometric
structure and the fundamental out-of-plane mode of a 200-pm-
long, 3-um-wide, and 100-nm-thick silicon nitride resonator. These
resonators are coated with a 10 nm thin layer of gold to enable
electrical manipulation. The magnetic field is applied along the y
axis for excitation and detection. (c) The reconfigurable nanoelec-
tromechanical network based on eight resonators with NN and NNN
couplings. (d) The couplings of perfect transfer fulfill the relationship
Cjj+1 % 4/J(N =) in an array. (e) Perfect coherent transfer from
the first site. The color bar stands for excitation amplitudes.

where a! and a ; are the creation and annihilation operators
associated with the jth oscillator mode. The coupling C; 41
describe the interaction between the jth and the (j + 1)th
mode. As shown in Fig. 1(d), when the couplings C; j;i
satisfy the mirror-periodic condition

C
Cjj1 = 7°\/j<N . )

a quantum state of the jth qubit can be perfectly transferred to
the (N — j + 1)th qubit after a period T = 7 /Cy, where Cy is
the characteristic coupling strength.

To date, the transfer protocol has been demonstrated in
nuclear spins [26], optical waveguides [27-29], and supercon-
ducting qubits [30]. Actually, the core of this protocol ensures
the excited part in the single-excitation subspace, and there
is a phase factor (—1)"~! accumulated after a full cycle of
forward and backward transfer that only depends on the parity
of the number of nodes participating in the transfer protocol
[24]. However, the parity-dependent phase relation has not
been demonstrated experimentally so far.

III. ON-CHIP RECONFIGURABLE
NANOELECTROMECHANICAL NETWORK

In Fig. 1(a), the on-chip nanomechanical system is fabri-
cated by high-stress (1 GPa) silicon nitride, as is detailed in
Ref. [22]. Each unit cell of this network is a doubly clamped
resonator that is 200 um long, 3 um wide, and 100 nm thick.
The spacing of NN resonators is about 500 nm. The eight
resonators are nearly identical, except for a small difference
in the frequencies caused by the variation in length. Actually,
we take advantage of this small difference in the first vibration
frequencies to realize parametric couplings between adjacent
resonators [31]. As shown by the blue arrow in Fig. 1(b),
the fundamental mode used is out-of-plane along the x axis
for each resonator. To decrease the dissipation and stable
frequencies of these nanoelectromechanical resonators, we
put this chip in a vacuum chamber of 1.2 x 10~® mbar and
cool it to liquid-nitrogen temperature (77 K). Under this con-
dition, the frequency ranges from 860 to 902 kHz, and quality
factors Q reach about 1 x 10°. The detailed parameters of
eight resonators are listed in the Supplemental Material [32].

In Fig. 1(a) and the cross-section of resonators in Fig. 1(c),
the thin layer of gold (golden yellow) on the resonators plays
two important roles. First, the layer of gold is an electric
conductor for each resonator and it converts the radiofre-
quency voltages to mechanical oscillation and vice versa,
which ensures excitation and measurement in the magnetomo-
tive technique [33]. Second, it provides capacitive interaction
with the adjacent resonators and generates excitation hopping
between them, assisted by the parametric drive [31].

As shown in Fig. 1(c), all of the nodes (resonators) can
be linked by the NN as well as NNN parametric interactions.
In this on-chip nanoelectromechanical network, each node
can also be controlled and read out by external circuits.
We demonstrate this by realizing the linearly tunable cou-
plings and observing perfect coherent transfer in different
networks.

A. Nearest-neighbor couplings

As shown in Fig. 2(a), applying voltages V. together with
Vae in one of the NN resonators leads to the coupling between
them. Considering the first bias-tee in Fig. 2(a), here the
voltage V,c is the sum of Vi, cos(wf,t) with of, = w1 — w,
and Va3 cos(wh;1) with @h; = w; — w3. These voltages Vi, and
Va3 are used to control the NN parametric couplings Cj, and
C»3, respectively.

The experimental result of typical NN parametric coupling
is shown in Fig. 2(b), which is measured from the frequency
response of the first resonator R1. In the measurement, all
voltages Vy. are chosen as 4 V to keep the frequency difference
o', unchanged. When Vi, =0 V, the frequency response
suggests the frequency w; /27 = 884.951 kHz and damping
rate y;/2m = 8.17 Hz for the first resonator. It is clear that
the coupling strength increases linearly with the voltage V),
in Fig. 2(b). The coupling reaches about the linewidth when
Vi =0.05 V and about 18y; when Vi, = 0.8 V [32]. The
strong-coupling region (Vi > 0.05 V) is indicated by the
white line in Fig. 2(b). Based on this coupling, we can
implement an array network with eight coupled resonators.
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FIG. 2. Perfect coherent transfer in the nearest-neighbor coupled
nanomechanical network. (a) Equivalent circuit diagram of con-
trolling NN parametric couplings. The eight resonators are labeled
from R1 to RS along the y axis. The dc voltage Vy. is combined
with an ac voltage V,. by a bias tee, where V,. is used to control
neighboring couplings C; ;4i. The other end of the resonator (along
the z axis) is in series with a high resistance (1 M) to make the
entire resonator at high potential. (b) Typical parametric coupling
between two adjacent resonators under Vg, =4 V. It is measured
from the first resonator. The coupling strength increases linearly with
the ac voltage V,.. (¢) The frequency response (dark blue line) at fifth
resonator RS under the eight coupled resonators. The gray lines give
the theoretical prediction. (d) The pulse sequence in the experiment.
(e) The experimental result of the perfect coherent transfer from the
first resonator. The color bar denotes normalized amplitudes. The
dashed white line marks the moment 7 = 33.3 ms.

B. Next-nearest-neighbor couplings

We extend the NN parametric couplings to NNN resonators
in the same device. As described in Fig. 3(a), we realize the
coupling between the (j — 1)th and (j + 1)th resonators by
applying voltages in the jth resonator. We show a typical
NNN coupling in Fig. 3(b), where V4. and Vs; cos[(ws — w7)t]
are combined by a bias-tee and applied to R6. Because
the capacitance of NNN resonators is smaller than that of
NN ones, we set Vg = 5.5 V to increase the electrostatic
force. This typical NNN coupling is measured at the seventh
resonator R7. Similar to the NN coupling, the NNN cou-
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FIG. 3. Perfect coherent transfer in the next-nearest-neighbor
coupled nanomechanical network. (a) Equivalent circuit diagram of
controlling NNN parametric couplings. The ac voltages Va4, Ve, and
Ves are used to control R2 — R4, R4 — R6, and R6 — R8 couplings,
respectively. (b) Typical NNN coupling between RS and R7 under
Vae = 5.5 V. The measurement from the seventh resonator. (c) The
frequency response (dark blue line) of the sixth resonator R6 under
the four coupled resonators R2 — R4 — R6 — R8 with Cy =27 x
52 Hz. The gray bars show the theoretical prediction. Experiment
(d) and simulation (e) of excitation evolution in the time-dependent
network. The first period 7; = 19.2 ms and the second period 7, =
33.3 ms represent coupling Cy = 2w x 52 Hz and 27 x 30 Hz,
respectively.

pling strength also increases linearly with the voltage Vs,
and it can reach the strong-coupling region when Vs; >
0.05 V. For example, the strength reaches about 18y; when
Vs; = 0.8 V. The realization of NNN couplings makes it
possible to implement an array network with NNN coupled
resonators.

IV. EQUATION OF MOTION

The motion of the jth resonator in the one-dimensional
coupled nanoelectromechanical array is described by

X+ yikj + 05x; = P (x40 — X))
+ P j(O)xj—1 — x;), 3)

where w; and y; is the eigenfrequency and the damping

rate of the jth resonator. P; j11(t) = C;j j11 cos(a);jﬂt)/m is
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the dynamic parametric field with coupling strength C; ;i
between the jth and (j + 1)th resonators. According to the
electrostatic force parametric coupling, the coupling C; ;1 is
proportional to the product of Vy. and V; ;11 [31].

By using the complex amplitude X;(¢) to characterize the
dynamics of x; = Re(X;e™") in Eq. (3), we can simplify the
dynamical evolution of mechanical oscillation [22]. Under
the rotating-wave approximation, X;(¢) obeys the following
equation:

.d
2i - Xj() = Cjmy jXj1 () + Cj i Xjn (). “

Here, the coupling strength C; ;; is described by angular fre-
quency, and X; denotes the complex amplitude of the jth res-
onator. Because all damping of resonators is nearly identical
(i.e., 1 ® y» & --. = y), it only introduces an overall scaling
of exp[—yt/2] of the amplitudes. We can directly compare
the normalized amplitudes X = (X, X5, X, ... , X)T at every
moment in experiment with theory. Therefore, we map the
dynamical evolution of coupled nanoelectromechanical res-
onators to a Schrodinger-like equation, which describes the
single-excitation tight-binding model in a one-dimensional
lattice. For perfect transfer, the period becomes T = 27 /Cy
because of the factor in Eq. (4).

V. PERFECT COHERENT TRANSFER IN A
NEAREST-NEIGHBOR COUPLED
NANOMECHANICAL NETWORK

In experiment, by tuning the ac voltage, the NN couplings
Cj j+1 can satisfy the condition C; j1 = Co/j(N — j)/2 in
Fig. 1(d). Specifically, we choose Cy =2m x 30 Hz and
N =8 in this work. While applying the seven individual
NN couplings, we measure the global frequency response
at RS to make sure the particular network was realized. As
shown in Fig. 2(c), the measured profile of frequency response
(dark blue line) is in good agreement with the equidistant
theoretical prediction (gray bars), which is crucial for the
perfect excitation transfer [25].

Figure 2(d) shows the pulse sequences for measuring ex-
citation transfer. In the whole experimental procedure, all Vg,
(black line) are high enough to ensure that their frequencies
are stable. First, the resonator R1 is excited via applying a
radiofrequency pulse signal Vg (red line). Then, we switch off
the excitation source and turn on all V,., which induces excita-
tion transfer across the eight coupled resonators. The measure-
ment is divided into two parts, specifically. The amplitudes
of odd resonators are measured when applying voltages into
even ones. Similarly, the amplitudes of even resonators can be
measured when applying voltages into odd ones [22].

For each part of the dynamical evolution, the amplitudes
are demodulated by standard lock-in amplifiers at fixed fre-
quencies of these resonators. To make the results distinct
in the whole time domain, we normalize all the amplitudes
at each moment; see Fig. 2(e). Obviously, the initial excita-
tion from R1 perfectly transfers to R8 at the moment T =
33.3 ms. Comparing with Fig. 1(e), the experimental result
is in agreement with numerical simulation. The minor differ-
ence between Figs. 2(e) and 1(e) is caused by ignoring the
difference in decay rates of resonators. The original oscillation

amplitudes in this process also suggest perfect excitation
transfer [32].

VI. PERFECT COHERENT TRANSFER IN A
NEXT-NEAREST-NEIGHBOR COUPLED
NANOMECHANICAL NETWORK

According to the circuit diagram shown in Fig. 3(a),
we apply voltages in R3, RS, and R7 to configure a one-
dimensional NNN coupled network R2 — R4 — R6 — R8. To
meet the condition of Eq. (2) for a chain of four resonators, we
set Cyy = 2 x 45 Hz, C4 = 21m x 52 Hz, and Cgg = 27m X
45 Hz by tuning ac voltages Va4, Vi, and Veg, respectively.
This is in accordance with the situation of Cy = 27 x 52 Hz.
To confirm the realization of a NNN coupled network, one
can check the frequency response of any resonator in the
experiment. Figure 3(c) plots the frequency response, which
is measured at the sixth resonator R6. The dark blue line
shows four distinct peaks, in agreement with the equidistant
theoretical prediction labeled by gray bars.

We also carry out perfect coherent transfer in the real-time
reconfigurable NNN coupled nanomechanical network. More
specifically, we configure two structures in the time domain,
namely the coupled structure with Cy = 2w x 52 Hz for a
one-transmission cycle 7, and then another structure with
Co = 2 x 30 Hz for 7,. To complete the initial excitation
in the edge site, we apply a radiofrequency pulse signal
Ve at R2. After that, all NNN couplings are established by
turning on the time-dependent voltages V,.. We then measure
the dynamical evolution. Lock-in amplifiers demodulate the
real-time oscillation amplitudes of R2, R4, R6, and R8. As
shown in Fig. 3(d), the behavior of excitation evolution meets
the perfect-transfer scheme. It is clear that the excitation
initially from R2 is transferred to R8 at time 77 = 19.2 ms and
returns to R2 at 7} + T = 52.5 ms. The experimental result
is in agreement with the numerical simulation [as shown in
Fig. 3(e)].

VII. VERIFICATION OF THE PARITY-DEPENDENT
PHASE RELATION

In Fig. 4, we experimentally verify the phase coherence
associated with the perfect transfer from different initial ex-
citation. After a full cycle of forward and backward transfer,
the excitation will reappear at the launching site, with a phase
change that depends on the number of oscillators, N. In
Figs. 4(a) and 4(b), we measure the dynamical evolution for
the input excitation at R2 (R4) in the NNN coupled network
with N =4 resonators. At time 7 the forward transfer is
completed, with excitations transferred to the targeted mirror-
symmetric site R8 (R6). At time 27, a full cycle of forward
and backward transfer is completed, with all excitations reap-
pearing at the launching site. Moreover, we also measured a &
phase shift for an oscillator network with N = 4 in Figs. 4(c)
and 4(d), regardless of the launching site of the excitation,
which is consistent with the theoretical prediction of phase
accumulation of (—1)¥~! [24].

Figures 4(e) and 4(f) show the perfect coherent transfer for
initial excitation at R1 and R3 in the NN coupled network
with N =5 resonators, respectively. At time 27, there is
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FIG. 4. Dynamics of perfect coherent transfer for the NNN

coupled network with N =4 (a)—(d) and the NN coupled network
with N = 5 (e)-(h). The evolution of amplitude distribution over the
relevant oscillator nodes (a,b,e,f) and the phase evolution at the ex-
citation launching site (c,d,g,h), with different choices of launching
sites. At time 27", we observe a 7 phase shift for an oscillator network
with even N = 4 (c,d), while we see no phase shift for odd N =5
(g,h), regardless of the choice of the launching site. Error bars show
one standard deviation for 500 repetitions of the experiment. All gray
lines are numerical results of quantum mechanics. We choose the
same Cy = 2w x 52 Hz for the two networks. The light orange lines
stand for the moment s = T and t = 2T .

no phase shift when excitations reappeared at the launching
site, consistent with the theory prediction of phase change
of (—1)V~! that is trivial for odd N. Thanks to the fact that
the target resonator is the same as the initially excited one in
Fig. 4(f), we can further confirm that the phase variation is
zero at time T from Fig. 4(h). Because the initial demodu-
lation of lock-in amplifiers leads to unreliable data, there are
deviations at initial milliseconds in Figs. 4(c), 4(d) 4(g), and
4(h). Other than this, the experimental data are consistent with
the numerical simulation.

VIII. CONCLUSION

In conclusion, we realize a reconfigurable nanoelectrome-
chanical network and demonstrate perfect coherent transfer in
this on-chip device with different array networks. The system
exhibits excellent reconfigurability to engineer various energy
bands in the same on-chip device, which is crucial to the
development of multifunctional and integrative nanomechani-
cal metamaterials [34]. Moreover, the electrically controllable
NNN coupling breaks the hamper of spatial dimensions,
which makes this platform more feasible to study pattern
recognition [35] and explore topology at high dimensions
[36-39]. Finally, the coupling method presented in this work
shows outstanding tunability in oscillator networks, and this
may also be employed in hybrid quantum computing archi-
tectures [19].
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