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Dynamics of an open double quantum dot system via quantum measurement
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We study the dynamics of a double quantum dot (DQD) system interacting with a Gaussian white noise
(GWN) environment which is measured by a quantum point contact (QPC) device. With both the transverse
and longitudinal noise taken into account, we utilize an effective method by adding an additional Bloch vector to
calculate the cumulant generating functions of the electron transfer in the QPC detector based on the full counting
statistics. We study the average detector current, Fano factor, and average waiting time of the electron transfer in
the presence of decoherence effects of the DQD system caused by both the QPC and the GWN environment. It
indicates that the decoherence effects arising from the QPC and the GWN environment have obviously different
influences on the electron transfer detected by the QPC device in both short-time and long-time limits. It is shown
that the measurement process would localize the electron in a DQD in a short time and that the distribution of the
average current and Fano factor versus level displacement in long-time limit are broadened due to the interaction
between the system and GWN environment, which provides a reliable method to explore the dynamical behavior
of an open quantum system and to extract the characteristics of the environment by analyzing the detector
outcome. Our results provide theoretical support for studies of quantum measurement in a semiconductor device
affected by a fluctuant environment.
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I. INTRODUCTION

Quantum measurement, which is the basis of understand-
ing the origin of decoherence and realizing quantum coherent
control in quantum information science, has always been a
hot research topic in the microscopic field [1–12]. It is still
an urgent problem and of abundant value to explore the
decoherence mechanism caused by the interaction between
the quantum system and its environments. To better detect
the decoherence processes induced by its environments, it is
necessary to relate the detector outcome to the dynamical be-
havior of open quantum systems [13–16]. Recently, the non-
Markovian dynamics of open quantum systems has drawn
much attention due to its important role in the community of
quantum physics [17–30], which has promoted a wide range
of applications in many excellent theoretical research areas
[31–35].

The double quantum dot (DQD) system provides a perfect
model for us to study the dynamical properties via quantum
measurement [15,36–48]. The quantum point contact (QPC)
device has been widely used as the main detector for mea-
surements of dynamical behavior in DQD systems. Many
useful dynamical properties of the open DQD system can
be obtained by analyzing the cumulants of the number of

*Corresponding authors: yhzhang@sdnu.edu.cn;
xiangjicai@foxmail.com

transferred electrons detected by the QPC device [46,47].
The method of full counting statistics (FCS) has been widely
used to clarify the distribution of the number of transferred
electrons. Recently, the first and second cumulants, related to
the average current and shot noise, respectively, were studied
as meaningful research objects induced by the interaction
between the system and its environments in the transport pro-
cess [49–51]. Another important physical quantity, the Fano
factor, can be identified numerically to F = 1, F < 1, and
F > 1, which correspond to the Poissonian, sub-Poissonian,
and super-Poissonian distributions for the shot noise.

It is very important to indicate the dynamical behavior
of an open quantum system and the characteristics of the
environment by analyzing the detector outcome. The noise
spectrum is the indicator of the current fluctuations, which
can effectively show the dynamical characteristics of the
system influenced by the environmental noise [7,13,37,52].
Especially, the nonzero higher-order cumulants can character-
ize the non-Gaussian behavior of the system dynamics [53].
However, the short-time dynamical information of the system
may be lost via the method of FCS, which characterizes the
number of transferred particles in the long-time limit [54]. To
describe the crucial short-time dynamical information with
rapid detection, it is necessary to study the average waiting
time of the electron transfer in the detector device [35,54,55].

In general, the decoherence of the quantum system in-
duced by the environmental effects displays in two different
ways: relaxation and dephasing [5,15,47,56,57]. Quantum
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measurements of the DQD system coupled to its environments
with constant relaxation and dephasing rates have been well
studied by means of a QPC device as a detector [13,15,37].
However, the relaxation and dephasing rates induced by the
environments may not always be constant but time depen-
dent. In this situation, the effects of the environments on the
quantum system can be better described by stochastic envi-
ronmental noise, which provides profound insights to study
quantum decoherence, geometric phases [28,58], dynamical
decoupling [59,60], etc. Gaussian white noise (GWN) of a
stationary Ornstein-Uhlenbeck (OU) type has been widely
used to study and simulate the effect of the environments
on the open quantum system dynamics with time-dependent
decoherence rate [59,61]. Thus, it is very useful and ef-
fective to study the quantum measurement of a DQD sys-
tem in the presence of a GWN environment by a QPC
detector.

In this paper, we consider the dynamical properties of
a DQD system interacting with a stochastically fluctuating
GWN environment via quantum measurement detected by a
QPC device. The dynamical evolution of the reduced density
matrix of the open DQD system is governed by a time-
convolutionless master equation. By adding an additional vec-
tor to the Bloch vectors, we accurately calculate the detector
average current, the Fano factor, and the average waiting time,
which display the dynamical properties of the DQD system
and the characteristics of the environment. The Fano factor
always follows the super-Poissonian distribution, which can
be attributed to the cotunneling and the quantum coherence.
It is shown that the GWN parameters have a broadening
behavior on the distributions of average current and Fano
factor. Moreover, the Fano factor showed a higher sensitivity
to GWN than the average current for the small level dis-
placement. Additionally, the increase of the average waiting
time caused by the coupling between the DQD system and
QPC proves that frequent measurements enhance localization
of the electron in the short time. Our research not only
reveals the dynamical properties in the GWN environment but
also provides a theoretical reference for the development of
quantum measurement theory.

This paper is organized as follows. In Sec. II, we de-
scribe the measurement of a DQD by a QPC in the GWN
environment and derive the dynamical evolution equation of
the system. On this basis, we give the n-resolved density
matrix associated with the number of transferred electrons.
In Sec. III, we obtain the cumulant generating function of
electrons from the methods of the FCS and an additional
Bloch vector. In Sec. IV, we study the average current, the
Fano factor, and the average waiting time of the detector in
the open DQD system and discuss the dynamical significance
of these physical quantities, respectively. In Sec. V, we give
the conclusions of this paper.

II. THEORETICAL FRAMEWORK

We begin by considering a DQD system weakly detected
by a QPC device, as shown in Fig. 1. The basis of the system
can be denoted by |L〉 and |R〉, representing an electron local-
ized in the left or right dots, respectively. The Hamiltonian of

FIG. 1. A double quantum dot two-level system and a QPC
detector; EL and ER are the energy levels of the left and right quantum
dots, respectively. μl,r denote the chemical potentials in the left
and right reservoirs, and V = μl − μr is the bias voltage. T and
T ′ represent the transparency in the QPC detector for an electron
localized in the left or right dot.

the whole system can be described as

H = H0 + HPC + HI , (1)

where H0, HPC , and HI are, respectively, the Hamiltonians of
the DQD, the QPC, and the interaction between the DQD and
QPC [13]:

H0 = h̄

2
(�0σz + �0σx ),

HPC =
∑

l

Ela
†
l al +

∑
r

Era†
r ar +

∑
l,r

(Ta†
r al + H.c.), (2)

HI =
∑
l,r

δT σz(a†
r al + a†

l ar ).

Here σz and σx denote the Pauli matrices in terms of the basis
{|L〉, |R〉}, and �0 and �0 refer to the level displacement and
stationary coupling of the DQD. El and Er are quantum states
in the left and right reservoirs of the detector, and a†

l (al ) and
a†

r (ar) are the creation (annihilation) operators of the left and
right reservoirs in the QPC [13,15]; δT = T − T ′ depends on
which dot of the DQD system is occupied by the electron
[5]. We assume that the transparency is weakly dependent on
states l, r in the detector. Thus, it can be represented by its
average value, namely, T = T0 and T ′ = T0 − δT0.

We consider the DQD system to simultaneously interact
with a stochastically fluctuating environment. The environ-
mental effect on the quantum system could be described
by means of stochastic fluctuations in some system observ-
able based on the Kubo-Anderson spectral diffusion process
[62–64]. Due to the environmental effect, the stochastic fluc-
tuations in the Hamiltonian of the DQD system can be written
as

H (t ) = H0 + Hδ (t ) = h̄

2
[�(t )σz + �(t )σx], (3)

where the energy difference �(t ) and coupling strength �(t )
of the two-level system fluctuate stochastically as

�(t ) = �0 + δ�(t ), �(t ) = �0 + δ�(t ). (4)
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Here δ�(t ) and δ�(t ) are the longitudinal noise and trans-
verse noise of the system induced by the environment, respec-
tively [58].

By tracing out the QPC detector and taking the average
over the environmental noise, the dynamical evolution of the
reduced density matrix of the system ρ(t ) generally satisfies a
generalized master equation [65]. The reduced density matrix
can be resolved to ρ(t ) = ∑∞

n=0 ρ (n)(t ), with the component
ρ (n)(t ) associated with the number of transferred electrons
n. The n-resolved density matrix of the system is formally
governed by a generalized master equation as [33,34]

d

dt
ρ (n)(t ) =

∑
n′

∫ t

0
dt ′W (n − n′, t − t ′)ρ (n′ )(t ′) + γ (n, t ),

(5)

where the memory kernel W (�n, dt ) accounts for the in-
fluence of both the detector and environmental noise on the
dynamical evolution of the system and γ (n, t ) describes the
correlations induced by the detector and environmental noise
initially. The memory effect and initial correlations vanish
when the memory kernel W (�n, dt ) is proportional to a δ

function and there are no initial correlations between the
system and the detector and environmental noise, respectively.

In the following, we derive the dynamical evolution of
the reduced density matrix of the system weakly detected
by a QPC device and coupled to a GWN environment. We
consider a general case in which the fluctuation noises in
the longitudinal and transverse directions are both GWN of
a stationary OU type and independent of each other. First,
we consider that the DQD system is only weakly coupled to
the QPC detector. In the limit in which a large bias voltage
applies to the QPC device, namely, eV � T0ρd , where ρd is
the density of states in the reservoir of the QPC, the effect of
the detector leads to the decay of the off-diagonal elements
of the reduced density matrix, and the dynamical evolution of
the reduced density matrix satisfies

d

dt
ρ(t ) = L0ρ(t ) + Ldρ(t ), (6)

where L0ρ(t ) = − i
h̄ [H0, ρ(t )] is the Liouville operator that

describes the unitary evolution of the system and Ld describes
the decoherence caused by the QPC detector with the de-
coherence rate �d = D + D′ − 2

√
DD′, where D = T (μl −

μr )/2π is the rate of electron hopping from the left to the
right reservoir [5]. Using a column vector representation for
the reduced density matrix of the system

ρ(t ) = [ρLL(t ), ρRR(t ), ρRL (t ), ρLR(t )]†, (7)

the operators L0 and Ld can be respectively written as

L0 =

⎛
⎜⎜⎜⎝

0 0 i �0
2 −i �0

2

0 0 −i �0
2 i �0

2

i �0
2 −i �0

2 −i�0 0

−i �0
2 i �0

2 0 i�0

⎞
⎟⎟⎟⎠,

Ld =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 −�d

2 0
0 0 0 −�d

2

⎞
⎟⎟⎠. (8)

The time evolution for the n-resolved density matrix can be
derived within the Born-Markov approximation as [66]

d

dt
ρ (n)(t ) = Lρ (n)(t ) + LJρ

(n−1)(t ), (9)

where L and LJ respectively describe the continuous evolution
of the system and the quantum jumps of the electron transfer
to the collector. The corresponding operators L and LJ can be
expressed as

L =

⎛
⎜⎜⎜⎝

−D 0 i �0
2 −i �0

2

0 −D′ −i �0
2 i �0

2

i �0
2 −i �0

2 −i�0 − D+D′
2 0

−i �0
2 i �0

2 0 i�0 − D+D′
2

⎞
⎟⎟⎟⎠,

LJ =

⎛
⎜⎜⎝

D 0 0 0
0 D′ 0 0
0 0

√
DD′ 0

0 0 0
√

DD′

⎞
⎟⎟⎠. (10)

The n-resolved density matrix within the Born-Markov ap-
proximation in Eq. (9) is a special case of Eq. (5) with no
memory effect and an initial correlation between the DQD
system and QPC device.

Now, we consider that the system interacts only with the
GWN environment and assume there is no coupling between
the DQD and the QPC detector. The Hamiltonian in Eq. (3)
can be divided into two parts as

H (t ) = H0 + Hδ (t )

= h̄

2
(�0σz + �0σx ) + h̄

2
[δ�(t )σz + δ�(t )σx], (11)

where H0 is the intrinsic Hamiltonian of the DQD system and
Hδ (t ) is the fluctuation term caused by the longitudinal and
transverse noises coupled to the DQD system. The statistical
properties of the longitudinal and transverse OU-type GWN
are described by the correlation functions

〈δ�(t )δ�(t ′)〉δ = σ 2
�e−τ�(t−t ′ ),

〈δ�(t )δ�(t ′)〉δ = σ 2
�e−τ�(t−t ′ ), (12)

where σ� and σ� are the amplitudes of the noise in the
transverse and longitudinal directions, respectively, and τ�

and τ� are the damping coefficients.
The dynamical evolution for the reduced density matrix

ρ(t ) of the open DQD system can be determined by taking
an ensemble average over the environmental noise as ρ(t ) =
〈ρ(t ; δ(t ))〉δ , with ρ(t ; δ(t )) being the total density matrix
depending on the GWN. The evolution of the total density
matrix yields the Liouville equation,

∂

∂t
ρ(t ; δ(t )) =[L0 + Lδ (t )]ρ(t ; δ(t )), (13)

where the superoperator Lδ (t )ρ(t ) = − i
h̄ [Hδ (t ), ρ(t )] de-

scribes the fluctuation effect of the environmental noise on
the density matrix. Using the representation for the reduced
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density matrix in Eq. (7), the operator Lδ (t ) can be written as

Lδ (t ) =

⎛
⎜⎜⎜⎝

0 0 i δ�(t )
2 −i δ�(t )

2

0 0 −i δ�(t )
2 i δ�(t )

2

i δ�(t )
2 −i δ�(t )

2 −iδ�(t ) 0

−i δ�(t )
2 i δ�(t )

2 0 iδ�(t )

⎞
⎟⎟⎟⎠. (14)

In the presence of a general environment, the dynam-
ical evolution of the reduced density matrix formally fol-
lows two types of equations, namely, time-convolution and
time-convolutionless quantum master equations, as derived in
Appendix A. In a GWN environment, based on the statistical

property of the noise and taking an ensemble average over the
environmental noise, the dynamical evolution of the system
is governed by a time-convolutionless master equation as
(see Appendix A)

d

dt
ρ(t ) = L0ρ(t ) +

∫ t

0
dt ′〈Lδ (t )eL0(t−t ′ )Lδ (t ′)〉δe−L0(t−t ′ )ρ(t ).

(15)

Such a dynamical equation (15) is exact for an environment
with a GWN statistical property. In terms of the operators
L0 and Lδ (t ) expressed above, the evolution of the elements
of the reduced density matrix in Eq. (15) can be written as
(see Appendix B)

ρ̇LL(t ) = −�0

{
i

2
+ �0σ

2
�

2�2
L

[
1(

τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )] − (1 − e−τ�t )

τ�

]}
ρRL(t )

+�0

{
i

2
− �0σ

2
�

2�2
L

[
1(

τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )] + (1 − e−τ�t )

τ�

]}
ρLR(t )

− σ 2
�

2�2
L

[
�2

0(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )] + �2
0

τ�

(1 − e−τ�t )

]
[ρLL(t ) − ρRR(t )],

ρ̇RL(t ) =
[
−i

�0

2
− i

�0σ
2
�

2�L
(
τ 2
� + �2

L

) [�L − τ�e−τ�t sin(�Lt ) − �Le−τ�t cos(�Lt )]

− �0�0σ
2
�

2�L
(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + e−τ�t�L sin(�Lt )] + �0�0σ
2
�

2�2
Lτ�

(1 − e−τ�t )

]
[ρLL(t ) − ρRR(t )]

−
[

�2
0σ

2
�

2τ��2
L

(1 − e−τ�t ) + �2
0σ

2
�

2�2
L

(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )]

]
[ρRL(t ) − ρLR(t )]

+ i�0σ
2
�

2�L
(
τ 2
� + �2

L

) [�L − τ�e−τ�t sin(�Lt ) − �Le−τ�t cos(�Lt )][ρRL(t ) + ρLR(t )]

+
[

i�0 − �2
0σ

2
�

�2
Lτ�

(1 − e−τ�t ) − �2
0σ

2
�

�2
L

(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + e−τ�t�L sin(�Lt )]

]
ρRL(t ), (16)

where ρRR(t ) = 1 − ρLL(t ), ρLR(t ) = ρ∗
RL(t ), and �2

L = �2
0 +

�2
0. The diagonal terms ρLL(t ) and ρRR(t ) are the probabilities

of finding the electron in the left and right dots, respectively.
The off-diagonal terms ρLR(t ) and ρRL(t ) describe the coher-
ences between states |L〉 and |R〉.

Considering the QPC detector is large voltage biased,
both the couplings between the system and QPC device and
between the system and the GWN environment are very weak.
Based on the methods used in Refs. [4,5], we can derive the
dynamical evolution of the reduced density matrix in the pres-
ence of both the QPC detector and the GWN environment as

d

dt
ρ(t ) = L0ρ(t ) + Ldρ(t )

+
∫ t

0
dt ′〈Lδ (t )eL0(t−t ′ )Lδ (t ′)〉δe−L0(t−t ′ )ρ(t ), (17)

where the first term on the right-hand side describes the
unitary evolution of the system, the second term represents
the decoherence induced by the QPC detector, and the third

term is the influence caused by the GWN environment. The
form of the dynamical evolution of the reduced density matrix
in Eq. (17) is consistent with that derived by second-order
cumulant expansion for the case of a non-Gaussian Markovian
environment [36,37,40].

As a consequence, the n-resolved density matrix associated
with the number of transferred electrons is governed by

d

dt
ρ (n)(t ) = Lρ (n)(t ) + LJρ

(n−1)(t )

+
∫ t

0
dt ′〈Lδ (t )eL0(t−t ′ )Lδ (t ′)〉δe−L0(t−t ′ )ρ (n)(t )

(18)

in terms of the operators defined in Eqs. (8), (10), and (14).

III. ADDITIONAL BLOCH VECTOR AND FULL
COUNTING STATISTICS

We relate the n-resolved density matrix to the physical
quantities detected by the QPC via the cumulant generating
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function as [15]

ρ(x, t ) =
∞∑

n=0

ρ (n)(t )e−nx, (19)

where x is the extra factor to manifest the counting parameter of the electrons.
In order to study the dynamical properties of the system more conveniently, we introduce the Bloch vectors and an additional

vector to simplify the calculations [15,67],

U (x, t ) = ρLR(x, t ) + ρRL(x, t ),

V (x, t ) = 1

i
[ρLR(x, t ) − ρRL(x, t )],

W (x, t ) = ρLL(x, t ) − ρRR(x, t ).

(20)

The additional Bloch vector is

Y (x, t ) = ρLL(x, t ) + ρRR(x, t ), (21)

which makes it more convenient to obtain the statistical information of the number of transfer electrons in the detector.
It is easy to acquire these new Bloch-type differential equations for the generating functions,

U̇ (x, t ) =
[
− �0�0σ

2
�

�2
L

(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + e−τ�t�L sin(�Lt )] + �0�0σ
2
�

�2
Lτ�

(1 − e−τ�t )

]
W (x, t )

−
[

�2
0σ

2
�

�2
Lτ�

(1 − e−τ�t ) + �2
0σ

2
�

�2
L

(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + e−τ�t�L sin(�Lt )]

]
U (x, t )

+�0V (x, t ) +
[√

DD′e−x − D + D′

2

]
U (x, t ),

V̇ (x, t ) =
[
�0 + �0σ

2
�

�L
(
τ 2
� + �2

L

) [�L − τ�e−τ�t sin(�Lt ) − �Le−τ�t cos(�Lt )]

]
W (x, t )

−
[

�0σ
2
�

�L
(
τ 2
� + �2

L

) [�L − τ�e−τ�t sin(�Lt ) − �Le−τ�t cos(�Lt )] + �0

]
U (x, t )

−
[

�2
0σ

2
�

�2
Lτ�

(1 − e−τ�t ) + �2
0σ

2
�

�2
L

(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )]

]
V (x, t )

−
[

�2
0σ

2
�

�2
Lτ�

(1 − e−τ�t ) + �2
0σ

2
�

�2
L

(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )]

]
V (x, t )

−
[

D + D′

2
−

√
DD′e−x

]
V (x, t ),

Ẇ (x, t ) = −�0V (x, t ) −
[

�0�0σ
2
�

�2
L

(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )] − �0�0σ
2
�

�2
Lτ�

(1 − e−τ�t )

]
U (x, t )

− σ 2
�

�2
L

[
�2

0(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )] + �2
0

τ�

(1 − e−τ�t )

]
W (x, t )

− (1 − e−x )(D + D′)
2

W (x, t ) − (1 − e−x )(D − D′)
2

Y (x, t ),

Ẏ (x, t ) =
[
−D(1 − e−x )

2
+ D′(1 − e−x )

2

]
W (x, t ) −

[
D(1 − e−x )

2
+ D′(1 − e−x )

2

]
Y (x, t ). (22)

We discuss the statistical information in the transfer pro-
cess by differentiating Y (x, t ) with respect to x. The cumulant
generating function of electrons from the additional Bloch
vector can be written as

〈N (k)〉 = (−1)k ∂k

∂xk
Y (x, t )|x=0. (23)

The probability of n electrons transferred during the t interval
is

Pn(t ) = (−1)n ∂n

∂xn
Y (x, t )|x=∞. (24)

The average detector current is given by I (t ) = e d〈N〉
dt , and

〈N〉 is the average number of electrons that have arrived in the
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right reservoir. We set the charge of the electron as e = 1, so
the average detector current can be written as

I (t ) = 〈Ṅ〉 = − ∂

∂x
Ẏ (x, t )|x=0. (25)

In order to describe the dynamics of the electron transport in
more detail, we calculate the Fano factor to characterize the
distribution of the shot noise

F = 〈N2〉 − 〈N〉2

〈N〉 . (26)

Meanwhile, the crucial short-time dynamical information,
namely, the average waiting time, is determined by [54]

〈τ 〉 =
∫ ∞

0
P0(t )dt . (27)

IV. DYNAMICS OF AN OPEN DOUBLE
QUANTUM DOT SYSTEM

In this section, we show the numerical results of the phys-
ical quantities detected by a QPC device weakly coupled to
the DQD system in the presence of a GWN environment. By
analyzing the detector outcome, we study the environmental
influence on the detection behavior of the system and explore
the physical mechanism for the new effects induced by the
GWN environment.

Figure 2 shows the average current I and the occupation of
the left dot ρLL(t ) as functions of time t for different cases. As
shown in Fig. 2, the time evolutions of the average current I
and occupation of the left dot ρLL(t ) show good consistency in
behavior. In Fig. 2(b), we find that the occupying probability
ρLL(t ) increases with the enhancement of the decoherence rate
�d . The rate of the electron transfer from the left dot to the
right dot slows down due to the coupling with the detector for
small t , which indicates the measurement process localizes the
electron in the DQD system. In Figs. 2(d) and 2(f), we find
the analogous behavior of slowing down the electron transfer
with the increase of the noise amplitudes in both the transverse
and longitudinal directions. In a sense, the interaction with the
GWN environment would also localize the system for small
t . Moreover, as shown in Figs. 2(c) and 2(e), the detector
current allows us to distinguish the environment parameters
because the average current I would take less time to reach
its stationary value with the increase of the longitudinal noise
amplitude σ� than that with the increase of the transverse
noise amplitude σ�.

Figure 3 shows the average current I and Fano factor
F as a function of the level displacement �0 for different
decoherence rates �d in the long-time limit. It is worth noting
that the maximum value of the average current I presents
a platform distribution for small level displacement �0, as
shown in Fig. 3(a). The maxima of the average current I
and Fano factor F both increase with the enhancement of the
decoherence rate �d . Significantly, as shown in Fig. 3(b), the
Fano factor always follows the super-Poissonian distribution,
which is associated with the cotunneling mechanism and the
quantum coherence [49,68,69]. It is worth noting that the
Fano factor changes rapidly and has a high peak value (more
than 80). Due to the slow switching between different current
channels connecting with the left and right reservoirs of the

FIG. 2. Left: Time evolution of the average detector current I (t )
for different values of (a) the decoherence rate �d caused by the QPC
detector, with parameters σ� = 0.25�0 and σ� = 0.5�0, (c) the am-
plitude σ� of the transverse noise, with parameters �d = 0.05�0 and
σ� = 0.5�0, and (e) the amplitude σ� of the longitudinal noise, with
parameters �d = 0.05�0 and σ� = 0.25�0. Right: Time evolution
of the occupation of the left dot ρLL (t ) for different values of (b) �d ,
(d) σ�, and (f) σ�, where the values of the parameters are the same as
in the left column. We set the electron in the right quantum dot with
the initial condition ρLL (0) = 0 and ρRR(0) = 1, and the other fixed
parameters are chosen to be �0 = 2.5�0, τ� = �0, and τ� = �0.

detector, which leads to a high value of the Fano factor [49],
we find that the slow switching between different current
channels would become more distinct because of the increase
of the coupling between the detector and the DQD, which is
plotted in Fig. 3(b).
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FIG. 3. (a) The average current I and (b) the Fano factor F in
the long-time limit vs the level displacement �0 for different values
of the decoherence rate �d . The noise parameters are chosen to be
σ� = σ� = 0.3�0 and τ� = τ� = �0.
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FIG. 4. (a) The average current I and (b) the Fano factor F vs
the level displacement �0 in the long-time limit for different values
of the transverse noise amplitude σ� with the transverse damping
coefficient τ� = �0. (c) The average current I and (d) the Fano factor
F vs the level displacement �0 in the long-time limit for different
values of the transverse damping coefficient τ� with the transverse
noise amplitude σ� = 0.3�0. The other fixed parameters are the
decoherence rate �d = 0.01�0, the longitudinal noise amplitude
σ� = 0.3�0, and the longitudinal damping coefficient τ� = �0.

Figure 4 shows the influence of the transverse noise on the
average current I and Fano factor F as a function of the level
displacement �0 for different values of the amplitude σ� and
damping coefficient τ�. We find that both the average current
I and Fano factor F show the broadening behavior with the
increase of the amplitude σ� and damping coefficient τ� of the
transverse noise. However, the maxima of the average current
I and Fano factor F do not depend on the transverse noise.
We find that the level displacements �0 that correspond to
the inflection point of the average current’s platform and the
two symmetrical peak points of the Fano factor are identical.
This is an interesting dynamical feature to extract the noise
parameters to define the environment according to the station-
ary detector current I and Fano factor F , which rely on the
transverse noise. In the region of |�0| < 50�0, it is hard to
accurately obtain the characteristics of the transverse noise by
observing the detection current I . However, the Fano factor
F is still sensitive to noise parameters in this region. The
modulations of the Fano factor by noise parameters depend
on the level displacement �0 of different numerical ranges.
When |�0| < |�top| (�top is the level displacement when
the Fano factor reaches its maximum value and the value of
|�top| increases with the enhancements of the transverse noise
parameters σ� and τ�), the increases of the amplitude σ� and
damping coefficient τ� cause a reduction of the Fano factor
in the long-time limit. If |�0| > |�top|, we could observe the
opposite result. The sensitivity of the Fano factor at a small
level displacement provides a more accurate way to acquire
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FIG. 5. (a) The average current I and (b) the Fano factor F vs
the level displacement �0 in the long-time limit for different values
of the longitudinal noise amplitude σ� with the longitudinal damping
coefficient τ� = �0. (c) The average current I and (d) the Fano factor
F vs the level displacement �0 in the long-time limit for different
values of the longitudinal damping coefficient τ� with the longi-
tudinal noise amplitude σ� = �0. The other fixed parameters are
the decoherence rate �d = 0.01�0, the transverse noise amplitude
σ� = 0.3�0, and the transverse damping coefficient τ� = �0.

the environment information from the detector outcome in
experiments.

Figure 5 shows the influence of the longitudinal noise on
the average current I and Fano factor F as a function of
the level displacement �0 for different values of the amplitude
σ� and damping coefficient τ�. Increasing the amplitude
σ� would cause a weak broadening behavior of the average
current I and Fano factor F in Figs. 5(a) and 5(b). However,
different from the strong dependence of the damping coeffi-
cient of transverse noise τ�, there are no obvious distinctions
from the increases of the damping coefficient τ� which are
plotted in Figs. 6(c) and 6(d). It is not optimal to obtain the

FIG. 6. The average waiting time 〈τ 〉 vs the level displacement
�0 for different values of the decoherence rate �d . The other fixed
parameters are chosen to be σ� = σ� = 0.3�0 and τ� = τ� = �0.
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environmental effects in the longitudinal direction by means
of average current I and Fano factor F . We consider that
one needs to calculate higher-order cumulants of electron
transfer to more accurately observe the effects of longitudinal
noise on the system dynamics due to the insensitivity of the
average current I and Fano factor F to the longitudinal noise.
The higher-order cumulant reveals additional information
concerning the dynamics of electron transfer. It may contain
information about the non-Gaussian behavior [70].

According to the above numerical results, we find that the
value of the Fano factor gradually tends to the Poissonian limit
F = 1 under the large level displacement �0. This dynamical
feature can be attributed to the following explanation. When
the level displacement �0 is large (more than 100�0), the
average current I is very small, and electrons sparsely tunnel
through the barrier, there is no correlation among successive
tunneling events [49]. Hence, the correlations between trans-
ferred electrons would gradually disappear, which forms a
Poissonian distribution (F = 1) as �0 increases to a large
value. The Poissonian limit for large �0 was observed in many
studies, such as the three-dot system [49], pure dephasing
environment [15], strong Coulomb blockade regime [50], etc.

The average current I and Fano factor F both show
symmetrical behavior. This symmetrical distribution also ap-
peared in our previous work [15]. Based on the method of
Refs. [5,13], there are no high-order terms of the coupling T0

considered between left and right reservoirs in the detector,
regardless of whether the DQD is symmetrical, and the proba-
bility of an electron occupying both sides of the DQD is equal
to 0.5 when the system is in a steady state after a long period
of evolution. However, if we consider the high-order terms
of the coupling in the detector, the probability of electron
occupancy in the DQD in the steady state should be related
to the symmetry property of the DQD [42,71,72].

Figure 6 shows the average waiting time 〈τ 〉 as a function
of the level displacement �0 for different decoherence rates
�d . The electron’s state is represented by the reduced density
matrix ρi j (t ). We set the electron in the right dot at the initial
time (ρRR(0) = 1). In the short-time limit, the electron would
transfer from the right dot to the left dot, namely, ρRR(0) =
1 → ρLL(t1) = 1, t1 > 0. We find that there is a downward
shift of the average waiting time 〈τ 〉 due to the increase of
the decoherence rate �d . It implies the decoherence caused by
the frequent measurements would promote the transfer of a
single electron in the detector. This is due to the restriction
of electron transfer from the right dot to the left dot in
the DQD, which causes a reduction of the barrier of the
detector (the electron that in the right dot is away from the
detector in Fig. 1). This localized effect would become more
pronounced as the decoherence rate �d increases. From this
dynamical property of the average waiting time 〈τ 〉, we realize
that measurement enhances localization of the electron in the
short-time limit.

Figure 7 shows the influence of the transverse noise on the
average waiting time 〈τ 〉 as a function of the level displace-
ment �0 for different values of the amplitude σ� and damping
coefficient τ�. It can be seen that the average waiting time 〈τ 〉
decreases with the increases of amplitude σ� and damping
coefficient τ�. We could understand that the increasing of
the amplitude σ� and damping coefficient τ� would slow the
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FIG. 7. (a) The average waiting time 〈τ 〉 vs the level displace-
ment �0 for different values of the transverse noise amplitude σ�

with the transverse damping coefficient τ� = �0. (b) The average
waiting time 〈τ 〉 vs the level displacement �0 for different values of
the transverse damping coefficient τ� with the transverse noise am-
plitude σ� = 0.3�0. The other fixed parameters are the decoherence
rate �d = 0.01�0, the longitudinal noise amplitude σ� = 0.3�0, and
the longitudinal damping coefficient τ� = �0.

transfer of a single electron in the detector at the same level
displacement. However, the transfer of a single electron in
the short-time limit is not sensitive to the damping coefficient
τ� when the level displacement is small (|�0| < 3�0). It is
worth noting that the peak value of the average waiting time
〈τ 〉 is not affected by the transverse noise, which is similar
to the dynamics in the long-time limit in Fig. 4. Roughly
speaking, we attribute this increasing behavior of the average
waiting time 〈τ 〉 to the suppression of electron transfer by the
transverse noise.

Figure 8 shows the influence of the longitudinal noise
on the average waiting time 〈τ 〉 as a function of the level
displacement �0 for different values of the amplitude σ� and
damping coefficient τ�. The presence of longitudinal noise
hinders the transfer of a single electron in the detector, as

FIG. 8. (a) The average waiting time 〈τ 〉 vs the level displace-
ment �0 for different values of the longitudinal noise amplitude σ�

with the longitudinal damping coefficient τ� = �0. (b) The average
waiting time 〈τ 〉 vs the level displacement �0 for different values
of the longitudinal damping coefficient τ� with the longitudinal
noise amplitude σ� = 0.3�0. The other fixed parameters are the
decoherence rate �d = 0.01�0, the transverse noise amplitude σ� =
0.3�0, and the transverse damping coefficient τ� = �0.
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shown in Fig. 8(a). Interestingly, a weak bimodal structure
appears with an increase in the noise amplitude σ�. The higher
amplitude of the longitudinal noise destroys the unimodal
distribution of the average waiting time 〈τ 〉. This is because
the fluctuation of the level displacement caused by the longi-
tudinal noise is higher than the level displacement itself for
the small �0. The dynamics in the short-time limit (average
waiting time 〈τ 〉) exhibits a higher dependence on longitudi-
nal noise amplitude than the long-time limit (average current
I and Fano factor F ) compared with Fig. 5. We could analyze
the longitudinal noise’s properties from the average waiting
time 〈τ 〉 of the detector in the short-time limit. However,
the change in damping coefficient τ� has no obvious effect
on the average waiting time 〈τ 〉 in Fig. 8(b). As discussed
above, studies of the average waiting time are conducive
to expanding the understanding of the dynamical behavior
in a short-time limit and providing theoretical support for
regulating electronic behavior.

V. CONCLUSIONS

In conclusion, we used the methods of the FCS and
the additional Bloch vector to inquire into the dynamics of
the weak interaction between the GWN environment and the
DQD system detected by the QPC. We obtained the exact
dynamical evolution equation of the system and, based on
this, studied the average current, the Fano factor, and the
average waiting time of the detector. It was shown that the
super-Poissonian distribution of the Fano factor is related to
the cotunneling and the quantum coherence. The Fano factor
exhibits an enhancement associated with decoherence caused
by the QPC in the long-time limit. Both the average current
and Fano factor show the broadening behavior due to the
coupling between the transverse noise and DQD. Moreover,
the coupling of a DQD to a GWN environment usually hinders
the transfer of a single electron in the detector. More dynamics
can be continued to be studied in semiconductors via the
innovative method of the additional Bloch vector, such as the
noise spectrum and higher-order cumulants. The research on
the dynamical evolution of the open system helps us to un-
derstand the decoherence process in a fluctuant environment
and provides a theoretical reference for exploring the noise
features in the non-Markovian dynamics.
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APPENDIX A: DERIVATION OF THE QUANTUM
MASTER EQUATION IN THE PRESENCE

OF A GWN ENVIRONMENT

In this Appendix we provide the derivation of Eq. (15)
in detail. We first formally derive two types of quantum
master equations for the dynamical evolution of the quantum

system in the presence of environmental noise described by
the Hamiltonian in Eq. (3).

1. Two types of quantum master equations

Transforming Eq. (13) into the interaction picture, the
dynamical evolution equation for the stochastic density matrix
reads

∂

∂t
ρI (t ; δ(t )) = LI

δ (t )ρI (t ; δ(t )), (A1)

where we have defined ρI (t ; δ(t )) = e−L0t ρ̂(t ; δ(t )) and
LI

δ (t ) = e−L0t Lδ (t )eL0t .
We define the projection operator P according to [2,17,29]

PρI (t ; δ(t )) = 〈ρI (t ; δ(t ))〉δ ≡ ρI (t ). (A2)

Furthermore, we define the complementary projector Q =
I − P ,

QρI (t ; δ(t )) = ρI (t ; δ(t )) − 〈ρI (t ; δ(t ))〉δ
≡ ρI (t ; δ(t )) − ρI (t ). (A3)

The two operators have the properties P2 = P , Q2 = Q, and
PQ = QP = 0. Typically, the environmental noise is the
stationary statistical property, namely, the vanishment of the
odd moments,

PLI
δ (t1)LI

δ (t2) · · · LI
δ (t2n+1)P = 0. (A4)

Performing the projection operators on Eq. (A1) gives

∂

∂t
PρI (t ; δ(t )) = P ∂

∂t
ρI (t ; δ(t )) = PLI

δ (t )ρI (t ; δ(t )),

∂

∂t
QρI (t ; δ(t )) = Q ∂

∂t
ρI (t ; δ(t )) = QLI

δ (t )ρI (t ; δ(t )). (A5)

On inserting the identity I = P + Q between the Liouville
operator and the density matrix and in terms of the condition
in Eq. (A4), Eq. (A5) can be rewritten as

∂

∂t
PρI (t ; δ(t )) = PLI

δ (t )QρI (t ; δ(t )),

∂

∂t
QρI (t ; δ(t )) = QLI

δ (t )PρI (t ; δ(t )) + QLI
δ (t )QρI (t ; δ(t )).

(A6)

The solution of QρI (t ; δ(t )) can be expressed as

QρI (t ; δ(t )) =
∫ t

0
dt ′g(t, t ′)QLI

δ (t ′)PρI (t ′; δ(t ′))

+ g(t, 0)QρI (0; δ(0)), (A7)

with the forward propagator

g(t, t ′) = T← exp

[∫ t

t ′
dτQLI

δ (τ )

]
, (A8)

where T← is the chronological time-ordering operator. The
propagator g(t, t ′) satisfies the differential equation

∂

∂t
g(t, t ′) = QLI

δ (t )g(t, t ′), (A9)

with the initial condition g(t ′, t ′) = I.
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Substituting the solution for QρI (t ; δ(t )) into Eq. (A6)
gives

∂

∂t
PρI (t ; δ(t )) =

∫ t

0
dt ′PLI

δ (t )g(t, t ′)QLI
δ (t ′)PρI (t ′; δ(t ′))

+PLI
δ (t )g(t, 0)QρI (0; δ(0)). (A10)

When there is no initial correlation between the quantum
system and environment, the initial state is given by
PρI (0; δ(0)) = ρI (0) = ρI (0; δ(0)) and QρI (0; δ(0)) = 0.

Therefore, the second term on the right-hand side of
Eq. (A10) vanishes; then

∂

∂t
PρI (t ; δ(t )) =

∫ t

0
dt ′PLI

δ (t )g(t, t ′)QLI
δ (t ′)PρI (t ′; δ(t ′)).

(A11)

Expanding the propagator g(t, t ′) in the Dyson series

g(t, t ′) = 1 +
∞∑

n=1

gn(t, t ′), (A12)

with gn(t, t ′) = ∫ t
t ′ dt1 · · · ∫ tn−1

t ′ dtnQLI
δ (t1) · · · QLI

δ (tn), and
based on the definition in Eq. (A2), we obtain the time-
convolution master equation for the dynamical evolution of
the quantum system

d

dt
ρI (t ) =

∫ t

0
dt ′K (t, t ′)ρI (t ′), (A13)

where the time nonlocal operator satisfies∫ t

0
dt ′K (t, t ′)ρI (t ′)

=
∞∑

n=2

∫ t

0
dt1 · · ·

∫ tn−2

0
dtn−1

〈
LI

δ (t ) · · · LI
δ (tn−1)

〉pc
δ

ρI (tn−1),

(A14)

in terms of the partial cumulants〈
LI

δ (t ) · · · LI
δ (tn−1)

〉pc
δ

=
∑

(−1)q−1
∏ 〈

LI
δ (t ) · · · 〉

δ

〈
LI

δ (t j ) · · · 〉
δ
· · · , (A15)

with q denoting the number of averages in the term and
the chronological order t > t1 > · · · > tn being maintained.
The integro-differential equation (A13) is equivalent to that
derived by Nakajima [73] and Zwanzig [74].

We further derive the time-convolutionless equation for the
dynamical evolution of the quantum system. Replacing the
stochastic density matrix on the right-hand side of Eq. (A10)
by

ρI (t ′; δ(t ′)) = G(t, t ′)ρI (t ; δ(t )), (A16)

where the backward propagator is expressed as

G(t, t ′) = T→ exp

[
−

∫ t

t ′
LI

δ (τ )dτ

]
, (A17)

with T→ indicating the antichronological time ordering, the
solution for QρI (t ; δ(t )) can be rewritten as

QρI (t ; δ(t )) =
∫ t

0
dt ′g(t, t ′)QLI

δ (t ′)PG(t, t ′)ρI (t ; δ(t )).

(A18)

Introducing the superoperator

�(t ) =
∫ t

0
dt ′g(t, t ′)QLI

δ (t ′)PG(t, t ′), (A19)

Eq. (A18) can be expressed as

QρI (t ; δ(t )) = [1 − �(t )]−1�(t )PρI (t ; δ(t )). (A20)

Substituting the solution of QρI (t ; δ(t )) into Eq. (A6) gives
the evolution

∂

∂t
PρI (t ; δ(t )) = PLI

δ (t )[1 − �(t )]−1PρI (t ; δ(t )). (A21)

Consequently, we obtain the time-convolutionless master
equation for the dynamical evolution of the quantum system

d

dt
ρI (t ) = K (t )ρI (t ), (A22)

where the time-local operator can be expressed as

K (t ) =
∞∑

n=1

∫ t

0
dt1 · · ·

∫ tn−2

0
dtn−1

〈
LI

δ (t ) · · · LI
δ (tn−1)

〉oc
δ

,

(A23)

with the time-order cumulants〈
LI

δ (t ) · · · LI
δ (tn−1)

〉oc
δ

=
∑

(−1)q−1
∏〈

LI
δ (t ) · · · LI

δ (ti )
〉
δ

× 〈
LI

δ (t j ) · · · LI
δ (tk )

〉
δ
· · · . (A24)

Here the sum is taken over all possible divisions by keeping
the chronological order t > · · · > ti, t j > · · · > tk , etc.

2. Weak-coupling limit and Markovian approximation

To solve the above two types of quantum master equations
exactly, we need to know the statistical characteristics of the
environmental noise. In most cases, we should also make
some approximations to obtain the solution.

When the coupling between the system and its environment
is weak, such that the influence of the system on the envi-
ronment is small, the correlation time of the environmental
noise is shorter than the timescale of the quantum system.
In weak-coupling limit, the evolution equation of the system
can be simply truncated to second order. Correspondingly,
the time-convolution quantum master equation (A13) can be
reduced to

d

dt
ρI (t ) =

∫ t

0
dt ′〈LI

δ (t )LI
δ (t ′)

〉
δ
ρI (t ′), (A25)

and the time-convolutionless equation (A22) can be reduced
to

d

dt
ρI (t ) =

∫ t

0
dt ′〈LI

δ (t )LI
δ (t ′)

〉
δ
ρI (t ). (A26)

The simplified equation (A25) contains ρI (t ′) in the inte-
gral, and hence, the behavior of the system depends on its past
history. If we further make the assumption: ρ̇I (t ) depends only
on its present value ρI (t ). In other words, it is assumed that
the system loses all memory of its past, namely, Markovian
approximation. Hence, we can make the substitution ρ(t ′) →
ρ(t ), and Eq. (A25) can be further reduced to the same form
as expressed in Eq. (A26).
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3. Exact quantum master equation in the presence of GWN

We now derive the exact quantum master equation in the
presence of GWN of the stationary OU type in both the lon-
gitudinal and transverse directions. The two Gaussian noises
are fully described by their first average and second-order
cumulants,

〈δ�(t )〉δ = 0, 〈δ�(t )δ�(t ′)〉δ = σ 2
�e−τ�(t−t ′ ),

〈δ�(t )〉δ = 0, 〈δ�(t )δ�(t ′)〉δ = σ 2
�e−τ�(t−t ′ ), (A27)

and their higher time-order cumulants vanish [17]:

〈δ�(t )δ�(t1) · · · δ�(tn−1)〉oc
δ = 0,

〈δ�(t )δ�(t1) · · · δ�(tn−1)〉oc
δ = 0 (A28)

for n � 3. We further assume the longitudinal and transverse
noises are independent of each other:

〈δ�(t )δ�(t )〉δ = 〈δ�(t )〉δ〈δ�(t )〉δ = 0. (A29)

In terms of the above properties of the noise, we can find for
n � 3 〈

LI
δ (t ) · · · LI

δ (tn−1)
〉oc
δ

= 0. (A30)

As a consequence, the second-order time-convolutionless
equation describes the exact dynamical evolution of the sys-
tem in the presence of Gaussian white noise,

d

dt
ρI (t ) =

∫ t

0
dt ′〈LI

δ (t )LI
δ (t ′)

〉
δ
ρI (t ). (A31)

Transforming Eq. (A31) back to Schrödinger picture, the dy-
namical evolution of the system satisfies the quantum master
equation

d

dt
ρ(t ) = L0ρ(t ) + ∫ t

0 dt ′〈Lδ (t )eL0(t−t ′ )Lδ (t ′)〉δe−L0(t−t ′ )ρ(t ).

(A32)

APPENDIX B: DERIVATION OF EVOLUTION OF THE
ELEMENTS OF THE REDUCED DENSITY MATRIX

In this Appendix we provide the derivation of Eq. (B7)
in detail. In terms of the column vector representation

for the reduced density matrix of the system ρ(t ) =
[ρLL(t ), ρRR(t ), ρRL (t ), ρLR(t )]†, to obtain the expression of
the evolution of the elements of the reduced density matrix
in Eq. (15) we should express the matrix eL0 as

eL0 = S†eL′
0 S, (B1)

based on the diagonalization of the matrix L0 as

L′
0 = SL0S† =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 −i�L 0
0 0 0 i�L

⎞
⎟⎠, (B2)

where S is the transformation matrix

S =

⎛
⎜⎜⎜⎜⎝

1√
2

1√
2

0 0
�0√
2�L

− �0√
2�L

�0√
2�L

�0√
2�L

− �
2�L

�
2�L

�L+�0
2�L

−�L−�0
2�L

− �
2�L

�
2�L

−�L−�0
2�L

�L+�0
2�L

⎞
⎟⎟⎟⎟⎠. (B3)

The superoperator Lδ (t ) that describes the fluctuation effect
of the environmental noise on the density matrix can be
written as

Lδ (t ) = −i
δ�(t )

2
Lσz − i

δ�(t )

2
Lσx , (B4)

where we use the definitions Lσx ρ(t ) = [σx, ρ(t )] and
Lσzρ(t ) = [σz, ρ(t )] with the superoperators

Lσz =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 −2

⎞
⎟⎠,

Lσx =

⎛
⎜⎝

0 0 −1 1
0 0 1 −1

−1 1 0 0
1 −1 0 0

⎞
⎟⎠. (B5)

Because the longitudinal and transverse noises are inde-
pendent of each other, the second term on the right-hand side
of Eq. (15) satisfies

∫ t

0
dt ′〈Lδ (t )eL0(t−t ′ )Lδ (t ′)〉δe−L0(t−t ′ )ρ(t ) = −1

4

∫ t

0
dt ′〈δ�(t )δ�(t ′)〉Lσz S

†eL′
0(t−t ′ )SLσz e

−L0(t−t ′ )ρ(t )

− 1

4

∫ t

0
dt ′〈δ�(t )δ�(t ′)〉Lσx S

†eL′
0(t−t ′ )SLσx e

−L0(t−t ′ )ρ(t ). (B6)

In terms of the correlation functions of the longitudinal and transverse OU-type GWN defined in Eq. (12) and the superoperators
defined above, we obtain the expression of the evolution of the elements of the reduced density matrix as

ρ̇LL(t ) = −�0

{
i

2
+ �0σ

2
�

2�2
L

[
1(

τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )] − (1 − e−τ�t )

τ�

]}
ρRL(t )

+�0

{
i

2
− �0σ

2
�

2�2
L

[
1(

τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )] + (1 − e−τ�t )

τ�

]}
ρLR(t )

− σ 2
�

2�2
L

[
�2

0(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )] + �2
0

τ�

(1 − e−τ�t )

]
[ρLL(t ) − ρRR(t )],
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ρ̇RL(t ) =
[
−i

�0

2
− i

�0σ
2
�

2�L
(
τ 2
� + �2

L

) [�L − τ�e−τ�t sin(�Lt ) − �Le−τ�t cos(�Lt )]

− �0�0σ
2
�

2�L
(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + e−τ�t�L sin(�Lt )] + �0�0σ
2
�

2�2
Lτ�

(1 − e−τ�t )

]
[ρLL(t ) − ρRR(t )]

−
[

�2
0σ

2
�

2τ��2
L

(1 − e−τ�t ) + �2
0σ

2
�

2�2
L

(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + �Le−τ�t sin(�Lt )]

]
[ρRL(t ) − ρLR(t )]

+ i�0σ
2
�

2�L
(
τ 2
� + �2

L

) [�L − τ�e−τ�t sin(�Lt ) − �Le−τ�t cos(�Lt )][ρRL(t ) + ρLR(t )]

+
[

i�0 − �2
0σ

2
�

�2
Lτ�

(1 − e−τ�t ) − �2
0σ

2
�

�2
L

(
τ 2
� + �2

L

) [τ� − e−τ�tτ� cos(�Lt ) + e−τ�t�L sin(�Lt )]

]
ρRL(t ). (B7)
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