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Non-Hermitian mobility edges in one-dimensional quasicrystals with parity-time symmetry
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We investigate the localization-delocalization transition in one-dimensional non-Hermitian quasiperiodic
lattices with exponential short-range hopping, which possess parity-time (PT ) symmetry. The localization
transition induced by the non-Hermitian quasiperiodic potential is found to occur at the PT -symmetry-breaking
point. Our results also demonstrate the existence of energy-dependent mobility edges, which separate the
extended states from localized states and are only associated with the real part of eigenenergies. The level
statistics and Loschmidt echo dynamics are also studied.
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I. INTRODUCTION

Ever since the seminal work of Anderson [1], Anderson
localization has become a fundamental paradigm for the study
of localization induced by random disorder in condensed-
matter physics. While all eigenstates are localized in the
presence of infinitesimal disorder strengths in one- and two-
dimensional noninteracting systems, localized and extended
states can coexist at different energies in three dimensions
with a single-particle mobility edge (SPME) [2–4], i.e., a
critical energy separating localized and delocalized energy
eigenstates. As an intermediate case between the disordered
and periodic systems, quasicrystals display very different
behaviors and may support a localization-delocalization tran-
sition even in one dimension. A well-known example is given
by a one-dimensional (1D) quasiperiodic system described
by the Aubry-André (AA) model [5,6], which undergoes a
localization transition when the strength of the quasiperiodical
potential exceeds a critical point determined by the self-
duality condition. The AA model has been experimentally
realized in bichromatic optical lattices [7–11]. By introducing
short-range or long-range hopping processes, some modified
AA models may support energy-dependent mobility edges
[12–18], which were found to appear in other quasiperiodic
models [19–25]. Experimental observation of mobility edge
and many-body localization in 1D quasiperiodic optical lat-
tices was also reported in recent works [26,27].

Recently, there has been growing interest in non-Hermitian
Hamiltonians from theory to experiment [28–35]. In gen-
eral, the non-Hermiticity is achieved by introducing nonre-
ciprocal hopping processes or gain and loss terms, which
may induce exotic phenomena without Hermitian counter-
parts, such as parity-time (PT ) phase transitions [28,36–38],
non-Hermitian skin effect [39–53], and exceptional points
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[54,55]. The dynamics associated with exception points in
non-Hermitian systems exhibits a lot of unexpected and inter-
esting results, such as the realization of dynamical encircling
of exceptional points [56,57], enhanced sensing for appli-
cation [58,59], and so on. The interplay of non-Hermiticity
and disorder was studied in terms of the Hatano-Nelson-type
models [60–64], in which the nonreciprocal hopping intro-
duced in the 1D Anderson model leads to a finite localization-
delocalization transition. and non-Hermitian Anderson mod-
els with complex on-site disorder potentials [65,66]. The
effects of non-Hermiticity on quasiperiodic lattices have
been studied in different contexts [67–73]. However, the
non-Hermitian effect on the mobility edges in quasicrystals
is still lacking. Since the eigenvalues of a non-Hermitian
system are generally complex, particularly interesting ques-
tions arise here: Are there any existing mobility edges in
the non-Hermitian quasiperiodic lattices with short-range or
long-range hopping? If so, how do we characterize the non-
Hermitian mobility edge?

In this work, we address these questions by studying a
non-Hermitian extension of the AA model with exponen-
tially decaying short-range hopping and PT symmetry. By
analyzing the spatial distribution of wave functions and spec-
tral information, we find that the increase of quasiperiodic
potential strength can lead a localization transition at the
PT -symmetry breaking point, and unveil that there exists an
intermediate regime with mobility edges, which separate the
extended states from localized states and are only relevant to
the real part of the spectrum. We also analyze the level statis-
tics and study the Loschmidt echo dynamics of the system.

II. GENERALIZED NON-HERMITIAN AA MODEL

We consider a 1D tight-binding model with short-range
hopping terms and a non-Hermitian quasiperiodic potential,
described by

Eun =
∑
n′ �=n

te−p|n−n′ |un′ + Vnun, (1)
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FIG. 1. Energy eigenvalues and eigenstates of Eq. (1) with lattice sites L = 1597, α = (
√

5 − 1)/2, p = 1.5, and h = 0.5 under PBC.
(a) The complex eigenenergies for systems with V/t1 = 0.4, 1.5, 1.9, and 3.0. Distributions of eigenstates corresponding to different
eigenvalues for the system with V/t1 = 1.9: (b1) Re(E ) > Re(Ec ) and the corresponding state is an extended state above the mobility edge,
(b2) Re(E ) ≈ Re(Ec ) and the state is a critical state near the mobility edge, (b3) Re(E ) < Re(Ec ) and the state is a localized state below
the mobility edge. (c) The shading of real energy curves indicates the magnitude of the IPR for the corresponding eigenstates, and the black
solid line represents the boundary given by Eq. (6), which separates the localized and extended states. (d) The corresponding imaginary
energies of (c).

where t is the hopping amplitude with the exponentially
decaying parameter p > 0 and the on-site potential Vn is
given by

Vn = V cos(2παn + φ). (2)

Here, V is the potential strength, α is an irrational number,
and φ = θ + ih describes a complex phase factor. When
h = 0, the model reduces to the Hermitian model studied in
Refs. [12,13], which is an exponential hopping generalization
of the AA model. The AA model only includes a nearest-
neighbor hopping term with the hopping amplitude

t1 = te−p, (3)

and manifests a localization-delocalization transition for all
eigenstates at the self-dual point V = 2t1. For a finite p > 0,
the generalized AA model has energy-dependent mobility
edges given by cosh(p) = E+t

V , which was determined by a
generalized self-dual transformation [12,13]. We note that the
transition point and mobility edges are independent of the
value of phase factor θ in the Hermitian limit.

Now we consider the non-Hermitian case with h �= 0.
Particularly, we shall consider the case with θ = 0, for which
we have Vn = V ∗

−n and the non-Hermitian model fulfills PT
symmetry. In the following, we shall study the PT -symmetric
generalized AA (GAA) model with

Vn = V cos(2παn + ih), (4)

and take α = (
√

5 − 1)/2 in the whole paper. We note that
similar physics is found for α taking other values of irrational
numbers. Due to the existence of PT symmetry, one may
expect that all eigenvalues of the GAA model are real if the
PT symmetry is unbroken. In Fig. 1(a), we display all the
eigenvalues of the system with p = 1.5, h = 0.5 and various
V in the complex space of energies. For convenience, here we
take t1 as the unit of energy, and the periodic boundary condi-
tion (PBC) is considered. It is shown that all the eigenvalues
are real when V/t1 = 0.4. Further increasing the potential
strength V and exceeding a certain threshold Vc1/t1 = 0.702,

the eigenvalues with Re(E) below a critical value Ec become
complex accompanying the breakdown of PT symmetry,
whereas above a critical value Ec, they remain real, as shown
in Fig. 1(a) for V/t1 = 1.5 and 1.9. When V exceeds the
second threshold, Vc2/t1 = 2.02, all eigenvalues are complex,
as shown in Fig. 1(a) for V/t1 = 3.

By inspecting the spatial distribution of the eigenstates, we
find that all the states with complex eigenvalues are localized
states, whereas the states with real eigenvalues are extended
states distributing over the whole lattice. This suggests that the
localization transition is simultaneously accompanied by the
PT -symmetry-breaking transition. In Fig. 1(b), we display
the distributions of wave functions with the real part of
eigenvalues Re(E) above, close to, and below the critical value
Re(Ec) for the system with V/t1 = 1.9. It is clear that the state
with Re(E) above the critical value is an extended state and the
state below the critical value is a localized state. This clearly
indicates that there exists a regime where the localized and
extended states coexist and are separated by mobility edges,
when V is in the region Vc1 < V < Vc2 .

Next we determine the mobility edges numerically. In or-
der to characterize the localization properties of an eigenstate,
we calculate the inverse participation ratio (IPR) defined as

IPR(i) =
∑

n

∣∣ui
n

∣∣4( ∑
n

∣∣ui
n

∣∣2)2 , (5)

where the superscript i denotes the ith eigenstate of the
system, and n labels the lattice coordinate. Here the corre-
sponding complex energy Ei is indexed according to their real
part Re(Ei ) in ascending order. For a full localized eigenstate,
the IPR is finite and IPR � 1. For an extended state, the
IPR � 1/L and approaches zero when L tends to infinity. In
Figs. 1(c) and 1(d), we plot the real parts and imaginary parts
of the eigenvalues as well as the IPR of the corresponding
wave functions versus the potential strength V , respectively.
The black solid line in Fig. 1(c) marks the transition points,
which separate the extended and localized states, with the
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FIG. 2. Numerical results of mobility edges obtained from IPRs
and spectrum (red circles) for systems with L = 1597 and different
parameters (a1)–(a4) p = 1.5 and h = 3.5, 1.5, 0.5, and 0.2, and
(b1)–(b4) h = 1.5 and p = 2.0, 1.4, 1.1 and 0.8, respectively. The
black solid lines are obtained using Eq. (6).

values of IPR above which approach zero and below which
are finite. Such a line gives the mobility edge and is found to
be well described by a simple relation,

cosh(p) = Re(E ) + t

Ve|h| . (6)

Despite a lack of exact proof, the above analytical relation for
the mobility edge boundary agrees well with the numerical
results from IPR and spectrum calculations. As shown in
Figs. 2(a1)–2(a4), the numerical results of the mobility edges
for systems with p = 1.5 and various h are well described by
Eq. (6). In Figs. 2(b1)–2(b4), we display the numerical results
for systems with fixed h = 1.5 and various p. It is shown
that Eq. (6) agrees with the numerical results for systems
with p = 2.5 and 1.4, and deviation can be observed for
p = 1.1. From our numerical results, we find that Eq. (6) fails
to describe SPMEs of systems with p < 1 [see Fig. 2(b4)].
When p is small, the effect of long-range hopping becomes
more important. Although these systems still support mobility
edges, we are not able to get a simple analytical expression
for them. We have become aware of the existence of mobility
edges in the non-Hermitian GAA model. To distinguish the

region with SPMEs from the extended and localized regions,
it is convenient to consider the normalized participation ratio
(NPR) defined as [15–17],

NPR(i) =
[

L
∑

n

∣∣ui
n

∣∣4

]−1

, (7)

which is a complementary quantity for the IPR. Taking the
average over all eigenstates, we can get the averaged NPR
(〈NPR〉) and IPR (〈IPR〉), which provide complete com-
plementary information for the extended, intermediate, and
localized phases. We calculate the NPR and IPR for all
eigenstates of the non-Hermitian GAA model and display
their average values in Fig. 3(a), which clearly shows the
existence of three distinct phases depending on the strength of
the quasiperiodic potential V/t1 for the given parameters p =
1.5 and h = 0.5. When the potential strength is smaller than
the threshold Vc1/t1 = 0.702, all eigenstates are extended, as
indicated by a vanishing 〈IPR〉 and a finite 〈NPR〉. When the
potential strength exceeds the second threshold Vc2/t1 = 2.02,
all eigenstates are localized, as indicated by a finite 〈IPR〉
and a vanishing 〈NPR〉. When the potential strength lies in
between two thresholds, an intermediate regime with both
finite 〈IPR〉 and 〈NPR〉 is characterized by the coexistence
of extended and localized states, which can also be read out
from the distribution of IPRs for all eigenstates, as shown in
Fig. 3(b).

We display the average IPR in the two-dimensional pa-
rameter space V/t1 versus h in Fig. 3(c), in which the blue
solid lines distinguish the extended, intermediate, and local-
ized regime, respectively. When gradually increasing h, the
intermediate regime with SPME diminishes. On the other
hand, if we fix h and increase p, the intermediate regime
with SPME also diminishes. Particularly, when p → ∞, our
model reduces to the non-Hermitian AA model with only
nearest-neighboring hopping [69,70], and Eq. (6) reduces to

Ve|h| = 2t1, (8)

indicating the absence of a mobility edge.

FIG. 3. Mobility edges for the non-Hermitian GAA model with lattice sites L = 1597, α = (
√

5 − 1)/2, and p = 1.5. (a) Averaged IPR
and NPR for all eigenstates in our lattice model with h = 0.5. (b) IPR of all eigenstates for the system with h = 0.5. Here, eigenstates numbers
are ordered by Re(E ). The white lines mark out the SPME. (c) Phase diagram in the parameter space spanned by V/t1 and h. The blue solid lines
are the phase boundaries separated by the intermediate regime from the extended and localized regimes, which can be obtained numerically
using Eq. (6).
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III. LEVEL STATISTICS AND LOSCHMIDT-
ECHO DYNAMICS

The level statistics provides a powerful tool to character-
ize the localization transition in Hermitian disorder systems
[15,74–79]. For our non-Hermitian model, the eigenvalues in
the localized regime are complex. The nearest-neighboring
level spacing statistics for non-Hermitian disorder systems has
been investigated in terms of non-Hermitian random-matrix
theory [80–83]. According to Eq. (6), the mobility edge is
only associated with the real part of the complex energies, and
it is reasonable to count the real part of level spacings. So, we
calculate the adjacent gap ratio r of ordering Re(E ), which is
given as

rn = min(sn, sn−1)

max(sn, sn−1)
, (9)

with sn the level spacing between the real part of the nth and
(n − 1)-th eigenenergies. The average of rn is introduced as

〈r〉 = 1

L

∑
n

rn. (10)

In Fig. 4, we show the real level statistics across the local-
ization transition. The average value 〈r〉 approaches zero in
the delocalized phase, whereas it approaches 0.386 in the
localized phase, which is identical to the expected value from
Poisson statistics as in the Hermitian disorder systems. For
the intermediate regime with mobility edges, the value 〈r〉
presents a steplike growth from zero to 0.386. This is con-
sistent with the result shown in Fig. 3(a). In the intermediate
regime, if we count the level statistics for the states above or
below the mobility edges separately, the average value 〈r〉
approaches the value in the extended or localized regime,
respectively, as shown in Fig. 4.

The Loschmidt echo is an important quantity for describing
quench dynamics [84–88], which measures the overlap of
an initial quantum state and its time-evolution state after
a quench process. The behavior of the Loschmidt echo is
related to both the initial state and postquench states. It was
shown that the Loschmidt-echo dynamics can characterize
the localization-delocalization transition in a standard AA

model [89], and was applied to study the dynamical ob-
servation of mobility edges in 1D incommensurate optical
lattices [90]. The exotic dynamical phenomenon in some
other PT -symmetric systems has also been studied [91,92].
Here, we explore the Loschmidt-echo characteristic of our
non-Hermitian quasiperiodic system. The system is initially
prepared in the eigenstate |φi〉 of an initial Hamiltonian Hi

with tunable parameter V = Vi. Then the potential strength is
suddenly switched to a new value Vf , resulting in a final state

|φ f (t )〉 = e−itHf |φi〉, (11)

where e−itHf is the evolution operator after quenching and
h̄ = 1 is set for convenience. We need to emphasize that for
the final system with real eigenvalues, the final state oscillates
over time, and for the final system with complex eigenvalues,
the final state becomes a steady state for a long time, which is
similar to the imaginary-time evolution for finding the ground
state of a Hermitian system. The difference is that for the
non-Hermitian system, the steady state is an eigenstate of the
final system with the maximum eigenvalue of the imaginary
part, instead of the ground state. The form of the Loschmidt
echo is

L(t ) = |〈φi|φ f (t )〉|2
〈φi|φi〉〈φ f (t )|φ f (t )〉 , (12)

where the denominator is introduced to make sure that the
initial and final states are normalized. The dynamics of the
non-Hermitian system is a kind of nonunitary dynamics, due
to the existence of complex eigenvalues.

Figures 5(a) and 5(e) show the quench dynamics for initial
states prepared as eigenstates of the system in the extended
regime with Vi = 0.2, corresponding to minimum and max-
imum eigenvalues, respectively. For the final systems with
Vf = 0.4 and Vf = 0.7, they locate in the same regime as the
initial system with all eigenvalues being real, and L(t ) oscil-
lates with a positive lower bound, which never approaches
zero during the evolution process. When the final system
locates in the mixed regime with Vf = 1.5 and Vf = 2.0,
respectively, both the real and complex eigenvalues coexist,
and L(t ) oscillates at short time but approaches zero at long
times. When the final system is in the localized regime with
Vf = 2.5, L(t ) exhibits similar behavior as in the mixing
regime.

Figures 5(b) and 5(f) show the quench dynamics for initial
states prepared in the mixing regime with Vi = 1.4, corre-
sponding to the minimum and maximum of the real part of
the eigenvalues, respectively. As one of the initial states is a
localized state and another is an extended state, they exhibit
different dynamical behaviors. While the latter one is similar
to the case shown Fig. 5(e), the former one is similar to
cases with the initial state prepared in the localized regime
with Vi = 2.7, as shown in Figs. 5(c) and 5(g), where L(t )
always approaches zero at long times for the final systems in
different regimes. Our results demonstrate that the Loschmidt
echo exhibits different dynamical behaviors for systems with
initial states in different regimes.
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FIG. 5. Evolution of Loschmidt echo. The initial state is chosen to be the state corresponding to the minimum and maximum of the real
part of the eigenvalues of the initial Hamiltonian with (a), (e) Vi = 0.2, (b), (f) Vi = 1.4, (c), (g) Vi = 2.7, respectively. Different Vf are shown
by different colors. Here we have set the energy unit t1 = 1.

IV. SUMMARY

In summary, we studied the localization transition in-
duced by a non-Hermitian quasiperiodic potential in 1D
PT -symmetric quasicrystals, described by the non-Hermitian
GAA model with exponential hopping. Our results demon-
strate that there exist three different regimes, i.e., extended,
mixed, and localized phases. While all the eigenstates are
either extended or localized in the extended or localized
regime, the extended and localized states coexist in the
mixed regime and are separated by energy-dependent mobility
edges. By analyzing the distribution of wave functions and
the corresponding eigenenergies, we found that the localiza-

tion transition is always accompanied by the PT -symmetry-
breaking transition and the mobility edges only depend on
the real part of the energies. We also investigated the level
statistics and Loschmidt-echo dynamics in our non-Hermitian
quasiperiodic systems and unveiled that they display different
behaviors in different regimes.
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