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Localization from Hilbert space shattering: From theory to physical realizations

Vedika Khemani,1 Michael Hermele,2 and Rahul Nandkishore2

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA

(Received 12 November 2019; accepted 19 March 2020; published 15 May 2020)

We show how a finite number of conservation laws can globally “shatter” Hilbert space into exponentially
many dynamically disconnected subsectors, leading to an unexpected dynamics with features reminiscent of both
many-body localization and quantum scars. A crisp example of this phenomenon is provided by a “fractonic”
model of quantum dynamics constrained to conserve both charge and dipole moment. We show how the Hilbert
space of the fractonic model dynamically fractures into disconnected emergent subsectors within a particular
charge and dipole symmetry sector. This shattering can occur in arbitrary spatial dimensions. A large number
of the emergent subsectors, exponentially many in system volume, have dimension one and exhibit strictly
localized quantum dynamics—even in the absence of spatial disorder and in the presence of temporal noise.
Other emergent subsectors display nontrivial dynamics and may be constructed by embedding finite-sized
nontrivial blocks into the localized subspace. While “fractonic” models provide a particularly clean realization,
the shattering phenomenon is more general, as we discuss. We also discuss how the key phenomena may be
readily observed in near term ultracold atom experiments. In experimental realizations, the conservation laws are
approximate rather than exact, so the localization only survives up to a prethermal timescale that we estimate.
We comment on the implications of these results for recent predictions of Bloch/Stark many-body localization.
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I. INTRODUCTION

A particularly interesting question in many-body quantum
dynamics is whether a system can robustly fail to come to
equilibrium under its own dynamics. One well known class
of problems where such robust ergodicity breaking does arise
involves the phenomenon of many-body localization (MBL)
[1–9]. The lack of ergodicity in MBL systems follows from
the presence of extensively many emergent local integrals
of motion [7,10,11]. Other phenomena involving ergodicity
breaking include integrable systems which also possess an
extensive number of conserved quantities and, more recently,
systems exhibiting so called quantum scars in which a vanish-
ing fraction of eigenstates are nonthermal and coexist with
thermal eigenstates [12–14]. These scarred systems violate
a “strong” form of the eigenstate thermalization hypothesis
(ETH) [15–17] which requires all many-body eigenstates to
individually look thermal; the weak form of the ETH, in
which only almost all eigenstates are thermal, is known to
not be sufficient to guarantee thermalization [18]. In these
latter contexts of integrable and scarred models, however,
it is not known to what extent the ergodicity breaking is
robust to generic perturbations of the Hamiltonian [19], and
explanations for the phenomenology of scarring are still being
widely debated [12,19–27]. The search for alternative mecha-
nisms for robustly and provably breaking ergodicity therefore
continues apace.

In this work, we introduce a novel mechanism for er-
godocity breaking by which a finite O(1) number of con-
servation laws can provably give rise to a dramatic frac-
turing of Hilbert space into exponentially many dynamical
subsectors—whence the word “shatter”—so that states even

with the same global quantum numbers for the conservation
laws cannot mix under local dynamics. This mechanism for
localization is robust, even to temporal noise (unlike MBL),
works in arbitrary spatial dimensions, and lies outside the
framework of locator expansions.

Most of this work will focus on models inspired by fracton
systems [28–34] in which excitations are known to exhibit
restricted mobility. While much work on fractons has focused
on exactly solvable spin models in 3D (which realize gapped
fractonic phases), a useful complementary perspective on gap-
less fracton phases is provided by higher-rank gauge theories
that conserve not only a U(1) charge, but also higher multi-
poles of charge [32]. Motivated by this, Ref. [35] considered
a model of local random unitary circuit dynamics [36–42]
constrained to conserve both a U(1) charge and its dipole
moment in one dimension, but with no other constraints.
The mixed state dynamics of operators in this circuit showed
signatures of localization for unitary circuits with range three
interactions (but not longer ranged interactions), but the result
was left largely unexplained [43].

The mechanism for localization via shattering that we
introduce herein rigorously explains the results of Ref. [35]
as a special case, but has far broader applicability. Indeed, one
of our main results is an analytic proof that the conservation
of charge and dipole moment, along with spatial locality,
is sufficient to produce exponentially many strictly ‘inert’
states which live in dynamical subspaces of dimension exactly
exactly equal to one and are left invariant by the dynamics.
These look like simple product states in the computational
basis, and have zero entanglement. This behavior is par-
ticularly striking since conventional wisdom holds that the
presence of a finite [O(1)] number of commuting conservation
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laws should not generically impede thermalization—which
requires instead the presence of extensively many explicit
or emergent integrals of motion. Much as the case of MBL,
the existence of these localized states could have interesting
applications for protecting quantum information, for example
in building quantum memories which remember their initial
conditions and do not decohere. More generally, the shattering
leads to a wide distribution of dimensions for the emergent
subsectors, leading to a strong initial state dependence in the
dynamics. We also explain how the dynamics of pure states
can look localized for any finite ranged fractonic model (un-
like mixed state dynamics which were considered in Ref. [35]
and are only localized for models with spatial range less than
three).

The shattering of Hilbert space is robust in that it only
relies on spatial locality and two local commuting constraints,
and does not depend on details of the Hamiltonian, nor on
the presence or absence of spatial or temporal translation
symmetry. This is, again, quite striking since MBL systems
are not robust to temporal noise, and require spatial nonuni-
formity either in the form of random or quasiperiodic cou-
plings. While the fractonic circuit provides an especially clean
realization of localization from shattering, the phenomenon is
more general and we also discuss alternate settings in which
such dynamics may arise. In particular, we explain how the
phenomenon may be rigorously realized in arbitrary spatial
dimensions on hypercubic lattices, and also how the resulting
phenomenology may be accessed in near term ultracold atom
experiments. We apply this understanding to the special case
of ultra cold atoms in a tilted potential, a problem with a long
history [44–49], which has recently been revisited [50–52],
especially from the point of view of “Bloch” [50] or “Stark”
[51] many-body localization.

We note that physics analogous to Hilbert space fracture
has also been observed in other models including, e.g., the
Fermi-Hubbard model and its cousins [26,53], models with
kinetic constraints (including in classical settings) [54–56],
and dimer models [57]. However, although constraints can
lead to disconnected subsectors of Hilbert space in these
cases, there is no understanding of general conditions that
lead to Hilbert space fracture in the absence of fine tuning,
and there is moreover no principled way to examine the
stability of fracturing in these models to the addition of
perturbations or noise. For example, the simplest kinetically
constrained models comprise spin 1/2 systems in which the
spin on a site can flip if certain conditions are obeyed by its
neighbors, for instance if both neighbors are down. However,
there is no unique or natural way to “extend” such models,
for example, to include the effect of further neighbor spins.
Likewise, the dynamics in quantum dimer models come from
certain “flippable” plaquettes which are lattice dependent
[58]. While allowing for longer flippable loops decreases
fracture [57], there are no general results on how the number
of disconnected sectors scales with such perturbations. In
contrast, our work furnishes a robust class of constrained
models where such Hilbert space fracture can be proven to
exist on very general grounds. Moreover, fracture in our mod-
els comes from a clear physical origin—the conservation of
charge and dipole moment—which furnishes a natural class of
symmetry respecting perturbations, and also allows a natural

generalization of the results to systems with longer range
terms in the Hamiltonian, or to systems in higher dimensions.

This work is organized as follows: we begin in Sec. II
by introducing a simple (but not fine tuned) model in one
dimension which realizes a shattered Hilbert space. We an-
alyze this model in Sec. III and rigorously prove shattering.
In Sec. IV, we demonstrate how the phenomenology may
be extended to systems in arbitrary space dimensions. In
Sec. V, we discuss more general classes of quantum dynamics
that exhibit a shattered Hilbert space. Near term physical
realizations are discussed in Sec. VI, following which we
conclude in Sec. VII with a discussion of the implications of
our results and some open directions. The appendices contain
details of parenthetical importance to the main narrative.

II. THE ONE-DIMENSIONAL MODEL

Throughout this paper we will restrict to systems on hy-
percubic lattices with linear extent L in each direction, i.e.,
one dimensional systems, square lattices in two dimensions,
or simple cubic lattices in three dimensions. On each site r,
there exists an effective local U(1) “charge.” This could be
particle number for a bosonic or fermionic model, or Sz (the
z component of spin) in a model of qudits with spin S. We
will work with spin variables in most of what follows, but our
statements are readily translated to the bosonic and fermionic
cases. The dynamics will be required to conserve the total
U(1) charge (Q = ∑

r Sz
r), and certain multipole moments of

charge (defined below in the obvious manner).
We further assume that the dynamics are generated by

strictly local models, such as static Hamiltonians with in-
teractions of maximum spatial range � or, more generally,
models of unitary circuits with local gates that may be cho-
sen randomly in space and time (and no gate acts on two
sites separated by more than � along any lattice axis). Our
arguments are cleanest for a finite O(1) interaction range �,
but we also discuss exponentially local (rather than strictly
local) models in the section on physical realizations. It will
not matter whether our models are translationally invariant in
space or time.

We begin by analyzing the one dimensional model of
quantum circuit dynamics introduced in [35]. The Hilbert
space consists of a chain of S = 1 quantum spins of length
L, acted upon by local unitary gates which locally conserve
both charge (Q = ∑

j Sz
j) and dipole moment (P = ∑

j jSz
j,),

where j is a site label. We can work with basis states in
the Sz basis, as these are eigenstates of both P and Q. On
each site, the allowed values of Sz are |+〉, |−〉, |0〉. The
twin conservation laws greatly restrict the allowed movement
of charges (fractons), as is characteristic of fracton phases
[32,34]. For example, a single + or − charge on site r has
dipole moment P = ±r. Such a charge cannot simply “hop”
to the left or right, because such a movement changes the net
dipole moment by one unit. On the other hand, bound states
of charges or “dipoles” of the form (−+) have net charge zero
and net dipole moment P = ±1 independent of position, and
these can move freely through the chain. Additionally, dipoles
can enable the movement of charges, because a charge can
move if it simultaneously emits a dipole to keep P unchanged:
|0 + 0〉 → | + −+〉.
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FIG. 1. Fractonic random unitary circuit: each site is a three-state
qudit. Each gate (blue box) locally conserves charge Q = ∑

j Sz
j and

dipole moment P = ∑
j jSz

j of the three qudits it acts upon. The
block diagonal Haar-random unitary with its nontrivial blocks is also
shown. Figure taken from Ref. [35].

The simplest realization of these rules is provided by cir-
cuits with three site unitary gates, which take the form of 27 ×
27 matrices as shown in Fig. 1. The charge and dipole moment
conservation lead to a block diagonal structure in the gates.
Notably, there are only four nontrivial two by two “blocks,”
each of which is a random unitary drawn independently from
the Haar measure on U(2), while the rest of the matrix is
diagonal [pure U(1) phase]. We will begin our analysis with a
discussion of this simple circuit with three site gates, but we
will prove that the key results are robust for any finite gate
size (while also flagging some special features that are unique
to gates of range three). We note that while [35] considered
a circuit that was random in both space and time, this is not
important for our purposes—our results hold just as well if the
circuit is uniform in space (translation invariant), and/or if it
is periodically repeated in time (Floquet). In all that follows,
we work with a circuit that is translation invariant, since this
makes our central result of localization yet more dramatic. We
also work with a circuit that is stroboscopically repeated in
time, since this allows us to meaningfully discuss eigenstates.
However, we emphasize that our basic results require neither
translation invariance in space, nor periodicity in time.

This circuit has only two symmetries: charge conservation
and dipole moment, and the ‘symmetry sectors’ of the theory
are correspondingly labeled by just two quantum numbers:
charge Q and dipole P. In the Floquet version of the model,
three staggered “layers” of the circuit are chosen indepen-
dently, but the layers are then repeated in time. The time
evolution operator for one Floquet period is given by U F =
U3U2U1, where

Un =
⎧⎨
⎩

∏
i U n

3i,3i+1,3i+2 if n = 0∏
i U n

3i−1,3i,3i+1 if n = 1∏
i U n

3i−2,3i−1,3i if n = 2
, (1)

where the gates U 1, U 2, and U 3 are chosen at random for
a given realization, but remain fixed throughout the run cor-
responding to that realization. We work throughout with open
boundary conditions. In certain layers of the circuit, there may
be sites near the boundary that are acted on trivially (pure
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FIG. 2. Entanglement entropy of eigenstates as a function of
dipole moment for a system with L = 13 sites, in the symmetry
sector with total charge Q = 0. The color-bar denotes the number
of eigenstates with entanglement entropy S and a given (Q, P). For
each symmetry sector (Q, P), there is a co-existence of low and
high entanglement eigenstates, in sharp contrast to the usual behavior
expected from the eigenstate thermalization hypothesis.

phase) but the Floquet operator as a whole acts nontrivially
on every site.

Before presenting our analytic proofs, we illustrate the
unusual properties of this model by numerically studying
the eigenstates of the Floquet unitary within each symmetry
sector. For each eigenstate |ψ〉 we construct a density matrix
ρ = |ψ〉〈ψ |, and extract the half-chain entanglement entropy
S according to S = −TrBρ ln ρ, where the trace is over half
the chain. In Fig. 2, we plot the entanglement entropy of the
eigenstates for a system of size L = 13, in total charge Q = 0
sector, as a function of dipole moment P. We note that the
states with maximal charge have Q = ±L, so Q = 0 corre-
sponds to the middle of the many-body spectrum, where we
could expect the eigenstate thermalization hypothesis (ETH)
[15–17] to apply in a translation invariant and not conven-
tionally integrable model. However, in every symmetry sector
(Q, P) we find a combination of low and high entanglement
eigenstates, in sharp contrast to the usual expectations from
eigenstate thermalization, but analogous to the phenomenon
of quantum many-body scars. As we will show, this apparent
violation of the ETH arises from the shattering of Hilbert
space.

III. SHATTERING OF HILBERT SPACE

We now demonstrate how the local constraints fracture
Hilbert space, giving rise to an exponentially large number
of emergent dynamical subsectors that do not mix under
the dynamics. By contrast, note that the twin conservation
laws of charge and dipole moment only lead to O(L3) ex-
plicit symmetry sectors, labeled by the values of charge
and dipole moment ranging from Q = {−L, . . . , L} and P =
{− L(L−1)

2 , · · · L(L−1)
2 }.

A. Localized eigenstates

In this section, we show how all local fractonic circuits
have exponentially many exactly localized inert states, labeled
by state dependent local integrals of motion (despite the
absence of spatial randomness). These constitute emergent

174204-3



KHEMANI, HERMELE, AND NANDKISHORE PHYSICAL REVIEW B 101, 174204 (2020)

(a)

(b)

(c)

FIG. 3. (a) Exponentially many strictly inert states in a model
with range � can be constructing by dividing the system into size �

blocks, and randomly picking each block to be of extremal positive
or negative charge. A range � gate (blue rectangles) acting on such
a state locally sees either a configuration of maximal charge, or a
configuration of maximal dipole moment for a given charge—and
hence is forbidden from making any local rearrangements. (b) Dy-
namical subspaces of varying sizes can be constructed by embedding
“active,” i.e., noninert, blocks into inert backgrounds. As long as the
active block has a finite size, it can be prevented from melting the
inert regions by surrounding it with “shielding” regions of equal or
greater size. (c) Dynamics of charge 〈Sz

x (t )〉 starting from an initial
state with a central active region surrounded by shielding regions.
We see that the central region thermalizes, but is not able to melt the
boundary spins which remain inert.

subsectors of dimension exactly one. Notably, these inert
states are product states of charge (i.e., product states of
Sz), so these are exceptionally simple, physically realizable
states. These states are eigenstates of the Floquet fractonic
circuit with zero entanglement, while they are left invariant by
circuits that are random (i.e., nonrepeating) in time, thereby
also demonstrating robustness to temporal noise.

We start with an analytic proof which shows that the
combination of Q, P symmetries together with locality is
enough to give exponentially many strictly inert states. The
construction in our proof is extremely physical, and furnishes
a strict lower bound on the number of inert states. Section V
provides an inductive, though less physical, method which
allows us to count the actual number of inert states.

Consider a model with charge and dipole symmetries,
and finite range (gate-size) �. Let us denote by +/− the
maximum/minimum local charges on a site respectively;
these could be the “top” and “bottom” states of a qudit of spin
S so that Sz = ±S, or else the occupied and unoccupied states
of a hardcore boson model. Now, note that any pattern that
alternates between locally “all plus” and locally “all minus,”
with domain walls between “all plus” and “all minus” regions
at least � sites apart, must be inert. These are states of the form
| + + + + − − − − − + + + + · · · 〉 [cf. Fig. 3(a)]. This fol-
lows because every gate acting on such a state straddles either
zero or one domain walls. If it straddles zero domain walls,
then it acts locally on a block with extremal charge, which is
obviously inert. If it straddles one domain wall, then it acts
on a block with extremal dipole moment given its charge, and
this must also be inert. The inertness of the latter kind of block

follows because it is made up of only + and − charged sites,
and the only charge conserving moves that one can make are
(i) to reshuffle + and − charges and (ii) to lower the charge
of a “+” site by 1, and simultaneously raise the charge of a
‘‘−” site by 1. However, if every + charge is to the right of
any − charge (or vice versa) then any such move necessarily
changes the dipole moment, and so is forbidden.

One can then straightforwardly lower bound the size of
the exactly localized subspace for circuits with gate-size � by
dividing the system up into blocks of length �, and allowing
each block to be either all plus or all minus. This yields
an inert subspace of dimension at least 2L/� = cL, where
c = 21/�. This is exponentially large in system size for any
finite gate size �, and cleanly illustrates how simultaneously
conserving charge and dipole moment provably leads to the
emergence of exponentially large localized subspaces into
which information may be robustly encoded.

Note that the bound above is not tight; for � = 3 it predicts
a localized subspace of dimension at least 1.25L , whereas
a more careful counting, done in Sec. V, gives a localized
subspace of dimension 2.2L. This may be verified numeri-
cally (Fig. 4). Nevertheless, it is sufficient to establish the
existence of an exponentially large, robust, localized sub-
space for any finite gate size. Each of the inert states in this
subspace can be labeled by state-dependent local integrals
of motion corresponding to the local values of charge and
dipole moment. Also, note that this type of localization does
not require disorder—indeed it occurs even in a circuit that
is translationally invariant in the thermodynamic limit and
survives temporal noise, as long as the constraints are obeyed.

B. Larger subsectors

We now turn to a systematic construction of emergent
dynamical subspaces of dimension greater than one, which
do not mix with the rest of the Hilbert space. The main idea
is to build subspaces of various sizes by embedding “active”
(noninert) blocks into inert backgrounds, and appropriately
“shielding” the active blocks so as to keep the active region
localized in a finite region of space [Fig. 3(b)]. The size of
the sector so built will be controlled by the Hilbert space
dimension of the active blocks, and we can embed multiple
active blocks spatially separated by inert regions. Strikingly,
this leads to a coexistence of spatial regions that thermalize or
not, starting from a single initial state! This is different even
from the case of scars in other models like the PXP where the
thermalization, or lack thereof, is controlled by the initial state
but there is no further spatial dependence of the relaxation of
observables.

To illustrate, Fig. 3(c) shows the expectation value of the
charge 〈Sz

x(t )〉 in a system of length L = 14, initialized in
a state with a central active region surrounded by shielding
regions (explained below). We can see that although the spins
at the center thermalize, they never succeed in entirely melting
the shielding region, so that the spins on the boundary of the
system remain frozen throughout the time evolution! In other
words, the shielding regions can protect the boundary spins
against decoherence, despite the presence of the fluctuating
active region nearby. In this example, the inert spin lies at
the boundary merely for ease of depiction in a finite size
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FIG. 4. (a) Scaling of dimension of inert subspace as a function of system size, for � site gates � = 3, 4, and 5. For � = 3 and 4, the
results are consistent with the analytic predictions. For � = 5, we have not worked out an analytic prediction, but the results are consistent
with the lower bound established in Sec. III A. (b) Plot showing subsector size distribution. For three site gates, the frequency of subsectors
of a particular size decreases polynomially with the Hilbert space dimension of the subsector. For four site gates there is an initial polynomial
decrease followed by a saturation, in that beyond a certain subsector size, further increases in subsector size do not seem to translate into a
decrease in frequency. Notably, the maximum size of the emergent subsectors for four site gates is much larger than that for three site gates.
(c) Plot showing the relative sizes of the largest emergent subsector and largest (Q, P) symmetry sector, which corresponds to Q = 0 and P =
0. For three site gates, the size of the largest emergent subsector is a vanishing fraction of the size of the largest symmetry sector, in the
thermodynamic limit, whereas these sizes scale similarly for four and five site gates, showing that the fracturing is more severe for three site
gates.

system—this chunk of 14 sites can be embedded into a larger
system by extending the inert configurations on either end.

At this point, one may wonder if the “embedding” of
active regions into inert subspaces actually works for “active”
regions of arbitrary size, or if there is a critical size of active
region beyond which the problem “avalanches” [59], causing
the entire inert region to “melt.” However, it is straightforward
to prove that any finite size of active region can always be
contained by suitably chosen finite-sized shielding regions.
For example, take any finite-sized active region, and flank it
with “shielding” regions that are all plus to the right, and all
minus to the left, and which are at least as large as the active
region (cf. Fig. 3). Now the active region can start to melt
the shielding regions, but in doing so it will inevitably either
be moving plus charge left, or minus charge right, both of
which reduce the dipole moment. To preserve dipole moment
overall, the active region would have to increase its internal
dipole moment to compensate. However, a finite sized active
region has a maximum internal dipole moment that it can ac-
commodate, and as such the active region cannot entirely melt
suitably chosen shielding regions of the same size. Outside
the shielding regions, the state can then remain inert, as in
Fig. 3(c). At a technical level, the problem avoids avalanches
[59] because as the active region grows, it has to increase its
dipole moment and become less active. Consequently, one
may embed active regions of any desired size into the inert
subspace, by choosing the appropriate shielding.

We have therefore proven that the Hilbert space within each
symmetry sector “shatters” into numerous emergent subsec-
tors of all sizes. This “shattering” may be straightforwardly
verified numerically extracting the “connectivity” of the

Floquet operator, within a particular symmetry sector. In
Fig. 5, we show this shattering quantitatively, for a twelve
site system in the sector with Q = 0 and P = 0 and three-site
gates. The sectors with exactly one state correspond to the
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FIG. 5. (a) Breakup of the Hilbert space into symmetry sectors
labeled by charge Q and dipole moment P (b) Further shattering of
each symmetry sector into emergent subsectors of various size, here
shown for the symmetry sector with (Q, P) = (0, 0).

174204-5



KHEMANI, HERMELE, AND NANDKISHORE PHYSICAL REVIEW B 101, 174204 (2020)

‘inert’ states (localized subspace) discussed above, but as one
can see, there is a distribution of emergent subspaces of a wide
variety of sizes. In Fig. 4(b), we show the full distribution
of emergent subsector sizes for circuits with gate size � =
3 and 4 in a system of size L = 13 with spin 1 degrees of
freedom on each site. The figure shows that the frequency of
subsectors of a particular size decreases polynomially with the
dimension of the subsector, followed by a saturation.

The broad distribution of emergent subsector sizes largely
explains the broad distribution of eigenstate entanglement
entropies found within a given (Q, P) symmetry sector. In-
deed, the eigenstate entanglement for a given cut is controlled
by size of the dynamical subsector in which the eigenstate
lives (more specifically, the size of the largest active block
straddling the entanglement cut), and not the dimension of the
full symmetry sector. This is discussed further in Appendix B.

We now turn to an important distinction between three site
gates versus gates of size four and larger. The largest subsector
for three-site gates is numerically observed to contain exactly
( L − 1

(L − 1)/2) states, which asymptotically scales as 2L. This is
a vanishing fraction of the largest symmetry sector labeled by
a particular quantum number for (Q, P), which scales as 3L

(upto polynomial in L corrections). This indicates a strongly
constrained dynamics, which is only ever able to connect
a vanishing fraction of the full Hilbert space, also shown
quantitatively in Fig. 4(c). This scenario is referred to as
“strong” fracture of the Hilbert space. By contrast, the figure
shows that the largest dynamical subsector with longer range
gates asymptotically has the same size as the largest symmetry
sector, denoting “weak” fracture, and thus the dynamics can
access much larger parts of the Hilbert space.

Intuitively, the distinction between three and four site gates
can be understood due to the presence of “bottlenecks” in
the range three system, which refer to finite motifs that “cut”
the chain in two, regardless of the state these motifs are
embedded into—so that the two halves of the system on either
side of the bottleneck become dynamically disconnected (see
Appendix A for details). In contrast, systems with range four
and larger do not have such bottlenecks. The reason is that if
one has a large sea of zeros 00000, then “vacuum fluctuations”
of this can pair produce antialigned dipoles − + +−, which
can then separate and travel freely and destroy bottlenecks.
While such fluctuations are not possible with range three gates
and spin 1, one can get rid of bottlenecks upon considering
larger spins, say S = 2.

The distinction between strong and weak fracture has
important consequences for dynamics. While exponentially
many strictly inert (or mostly localized) pure states exist for
gates of any finite range, dynamics from a randomly chosen
typical initial state is expected to be highly sensitive to the
degree of shattering. If the largest dynamical subsector is a
vanishing fraction of the full Hilbert space, as in the case
of three site gates, then dynamics from a randomly chosen
initial state will be nonergodic at all times. This is in con-
trast to weakly fractured systems where typical initial states
have some weight in the largest dynamical subsector and
this contains most of Hilbert space, such that the dynamics
from randomly chosen initial states can also explore most of
Hilbert space. These distinctions are discussed further within

the context of entanglement dynamics in Appendix C. This
discussion also explains the numerical results of Ref. [35]
which observed localization in operator dynamics (which
averages over all states) for three site gates, but not four site
gates [43].

More detailed implications of these shattering and shield-
ing phenomena are discussed in Appendices.

IV. HIGHER DIMENSIONS

Thus far we have restricted our discussion to systems in
one space dimension. We now discuss how the results may
be extended to higher dimensional systems on hypercubic
lattices.

A. Shattering from dipole conservation

We begin with the case where the dynamics is generated by
gates that conserve charge and also conserve all components
of dipole moment, defined along the various lattice directions
as Pα = ∑

r rαSz
r, where r = (rx, ry, rz · · · ). In one dimension,

we have proven that the conservation of Q and Px provably
gives exponentially many (at least 2

L
� ) strictly localized ‘inert’

states that are left invariant by the dynamics (Sec. III A).
These are obtained by considering product states which are
either + or − on every lattice site, with + and − regions
separated by domain walls that are at least � sites apart
[Fig. 6(a)]. Crucially, even though such states can have the
same global Q, Px quantum numbers as other states, they can-
not be connected to these other states under local dynamics.

We now turn to higher dimensions d > 1. Of course, the 1d
states considered above can be extended in a translationally
invariant fashion in directions orthogonal to x̂ [Fig. 6(b)] and
all such states would still be inert. However, there are only
exponentially many in L such states. However, we now show
that if all components {Pα} are conserved, then the number of
inert states is ∼exp(cLd ). For specificity, consider a system
in d = 2 space dimensions (x̂, ŷ). Start with a “stripe” state
with domain walls parallel to the y axis and at least � sites
apart in the x direction. Now, note that these domain walls can
be allowed to “roughen” slightly while leaving the state inert.
For specificity: divide up a domain wall that lives between
sites with x coordinate n� and (n� + 1) into blocks of length
�. In each such block, allow the domain wall to uniformly
shift in the +x̂ direction by either zero or one lattice spacings
[Fig. 6(c)]. This reduces the spacing between domain walls by
at most one in the x̂ direction; to wit, all sites with n� + 1 <

x � (n + 1)� are + while all sites with (n − 1)� + 1 < x �
n� are −, and dipole conservation of Px still prohibits any
rearrangement involving these sites. It is only along the line
x = (n� + 1) that we encounter both + and − sites, and can
make rearrangements that conserve the x̂ component of dipole
moment. However, along this line we see alternating + and −
regions with domain walls at least � apart, and conservation
of Py guarantees that this too must be inert. Thus, in fact,
any such roughened configuration of a domain wall is inert.
There are N (L) ∼ 2L/� inert roughened configurations of each
domain wall, and L/� places where we could choose to place
a domain wall (or not), so the total number of inert states
is at least ∼N (L)L/� ∼ 2L2/�2

. This argument proceeded by
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(a) (b) (c) (d)

FIG. 6. Inert states in one and two dimensions. Thick green lines indicate domain walls. (a) The state is divided into blocks of length �,
and each block is chosen randomly to be + or −. Each such pattern is an eigenstate of the dynamics when Q and Px are conserved because
a range � gate (gray blocks) either sees a pattern of extremal local charge or extremal local dipole moment. (b) Translating one dimensional
inert states along ŷ still gives inert states (c) When Q, Px and Py are conserved in 2d, the domain walls can be allowed to “roughen,” while the
state still remains an eigenstate of the dynamics. (d) When charge, dipole and quadrupole are conserved, inert states are obtained by dividing
the system into blocks of size � × �, and picking each block to be + or −.

a dimensional reduction to the one-dimensional problem. By
the same token, the argument extends to hypercubic lattices
in arbitrary dimension, so that conservation of charge and
all components of dipole moment is always sufficient to
guarantee the existence of an exponential in volume number
of inert states.

B. Shattering from multipole conservation

The localized states considered above were fundamentally
one dimensional (i.e., stripelike). We now consider a class
of intrinsically d-dimensional localized states, with number
exponential in system volume, which become available if the
system conserves the first d multipoles of charge.

Consider a two dimensional system on a square lattice
constrained to conserve charge q, dipole moment {Pα}, and
also quadrupole moment {Pαβ}. Note that in two dimensions
quadrupole moment is a rank two symmetric traceless tensor
with two independent entries Pxy and Pxx − Pyy, corresponding
to the “dipole of a dipole” in the directions perpendicular
and parallel to the dipole vector respectively. The compo-
nents of Pαβ are defined in d space dimensions as Pαβ =∫

dV ρ(r)[drαrβ − r2δαβ], where dV indicates a volume in-
tegral, ρ is the charge density, δi j is the Kronecker delta func-
tion, and the definition depends on the choice of origin (with
obvious lattice generalizations) Assume that charge, dipole,
and Pxy are all locally conserved (conservation of Pxx − Pyy

is not necessary). Now consider ‘checkerboard’ states made
by dividing up the system into � × � squares, and allowing
every square to be either all + or all − randomly [Fig. 6(d)].
There are 2L2/�2

such states. Any gate acting on such a state
acts across either zero or one corners. If it acts across zero
corners, then it acts on a state which is locally either maximum
charge, or maximum dipole given its charge, and charge and
dipole conservation suffices to guarantee that the gate must
act trivially (i.e., as a pure phase). Meanwhile, if the gate
acts across one corner, then it acts on a state that is locally
of extremal Pxy given its charge and dipole moment, such that
charge, dipole and Pxy conservation again forces the gate to act
trivially. It then follows that every ‘checkerboard’ state of this
form is an exact eigenstate of the dynamics, concluding our
proof that there is an exactly localized subspace of dimension
at least 2L2/�2

. Likewise, one can generalize to three and
higher dimensions, so long all higher multipoles of charge

are conserved. For instance, three dimensions would require
conservation of charge, dipole moment, all off diagonal com-
ponents of the quadrupole moment (Pxy, Pxz, Pyz), and the fully
off diagonal (Pxyz) component of the octupole moment—in
which case all 2L3/�3

cubic tilings of space with maximal local
charge would be inert.

Shattering and shielding with multipolar conservation laws

We now show that in addition to the exactly localized sub-
space discussed above, there also arises a broad distribution of
dynamical subsectors of various sizes, similar to the 1d case.
Upon embedding active regions in inert states, one can prevent
an avalanche by simply surrounding the active region by a
shielding region of maximal multipole. In two dimensions,
a suitable shielding region would be all + in the first and
third quadrant, and all − in the second and fourth quadrant.
As before, any process by which the active region melts the
shielding region necessitates increasing the multipole moment
of the active region (dipole moment in one dimension, Pxy

in two dimensions, etc), which makes the active region less
active. Moreover, the deeper the rearrangements extend into
the shielding region, the bigger the change in the multipole
moment in the shielding region, and thus the bigger the back
action on the active region. For a finite-sized active region and
a sufficiently large finite shielding region, the time evolution
operator cannot have any matrix elements to product states
which differ from the initial condition at the outer boundaries
of the shielding region, or beyond. The initial condition can
thus only mix with a finite number of other product states.
In this manner, one may construct dynamical subspaces of
a range of sizes by embedding one or more finite volume
active regions into the otherwise localized subspace, hence
‘shattering’ Hilbert space.

V. SHATTERING IN NONFRACTONIC CIRCUITS

Thus far, our discussion of circuits exhibiting shatter-
ing has been particular to circuits with fractonic constraints
(viz. conservation of charge and certain multipole moments
thereof). However, not obviously fractonic circuits displaying
a similar shattering of Hilbert space may also be constructed.
To present such examples, it is instructive to first consider a
more precise counting of the inert states in fractonic circuits
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TABLE I. For the fractonic circuit with three site gates, if an inert
state in a system of size L has the final two sites in the states shown in
the left column, then it remains inert upon addition of another spin if
the new spin is in the corresponding state shown in the right column.

Last two sites of L site chain are Site added can be

+ + + or 0 or −
+ 0 + or 0 or −
+ − −
0 + +
0 0 + or 0 or −
0 − −
− + +
− 0 + or 0 or −
− − + or 0 or −

using an inductive method. This leads to a natural generaliza-
tion to nonfractonic examples.

We start with circuit with range three unitary gates. For
system size L = 3, there is only one gate acting, and there
are exactly 19 product states (in the charge basis) which have
trivial dynamics, and are hence localized—these are the 19
states acted upon by trivial blocks of the constrained random
unitary in Fig. 1 (e.g., the state |00+〉). These states do not
mix with the rest of the Hilbert space, and are hence inert,
lying in a subsector with dimension one. Meanwhile, if a state
is inert in a system of size L, then it will remain inert when an
additional degree of freedom is added if the final two degrees
of freedom of the L site system and the additional degree of
freedom collectively form one of the inert configurations of an
L = 3 site system. This is because the only “new” dynamics in
the presence of the additional spin comes from the addition of
a single three site unitary gate acting on the three spins formed
by the added spin and the two penultimate spins of the length
L chain. Importantly, for any inert state of an L site system,
there is at least one choice of spin state for the added spin (and
sometimes more than one), which leaves the resulting state in
the L + 1 site system also inert. Specifically, an inert state in a
system of size L remains inert upon addition of another degree
of freedom if the conditions tabulated in Table I are satisfied.
Now let Nab(L) be the number of inert states in a system of
size L, in which the final two sites have Sz eigenvalues a and
b respectively. The total number of inert states for a system
of size L is obtained by summing Nab(L) over all choices
ab. Using Table I, we can see that these quantities obey the
recursion relations⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N++
N+0

N+−
N0+
N00

N0−
N−+
N−0

N−−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L+1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N++
N+0

N+−
N0+
N00

N0−
N−+
N−0

N−−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L

.

This matrix can be diagonalized and its eigenvalues and
eigenvectors, combined with the known values for Nab(3) can
be used to exactly determine the number of inert states for
any L. However, asymptotically at large L, the growth will be

controlled by the largest eigenvalue of this matrix, λ, i.e., the
dimension of the Hilbert space grows asymptotically as |λ|L.
The matrix in question has only one real, positive eigenvalue
with norm greater than one, λ ≈ 2.2 which tells us that the
dimension of the localized subspace grows asymptotically as
∼2.2L.

We therefore conclude that in the thermodynamic limit
there are approximately 2.2L inert states, each of which exists
in its own emergent subsector, undergoes trivial (pure phase)
dynamics, and does not mix with the rest of the Hilbert space.
This is verified by exact numerical counting of the number
of inert states in systems upto sizes L = 15, and shown in
Fig. 4(a).

We note that the key feature of fractonic circuits that leads
to this exponentially growing inert subspace is the existence
of multiple pathways or choices for getting new inert states
upon adding spins to inert states of a given size. By contrast,
in a system with only charge conservation, the only choices
for building inert states require ++ to be followed by +, or
−− to be followed by −. This, however, gives exactly two
inert states due to a lack of exponential branching arising from
multiple pathways.

Generalizing this, one can verify via a similar asymptoti-
cally exact counting (see Appendix D) that a fractonic circuit
with four site gates also has an exponentially large localized
subspace, with asymptotic dimension ∼1.8L in the thermo-
dynamic limit, again numerically verified in Fig. 4(a). Exact
analytical calculations for larger gate sizes rapidly become
tedious, but the construction depicted in Fig. 3 is sufficient
to show that an exponentially large exactly localized subspace
survives for any finite gate size �.

Let us now turn to nonfractonic examples, building on the
construction above. Consider a circuit made out of local two
spin gates acting on a one dimensional chain of S = 1 spins. If
this two site gate is constrained so that it acts trivially on the
states |0+〉, | + 0〉, |0−〉, and | − 0〉, then it may be readily
verified, through methods similar to those above, that there is
an exponentially large space of inert states displaying trivially
localized dynamics. For a chain of size L = 2, there are then
exactly four inert states. Meanwhile, if Nβ (L) is the number of
inert states ending in β in a system of size L, then this quantity
obeys the recursion relation

⎛
⎝

N+
N0

N−

⎞
⎠

L+1

=
⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠

⎛
⎝

N+
N0

N−

⎞
⎠

L

.

The matrix in the recursion relation has eigenvalues ±√
2

and zero. The dimension of the degenerate subspace thus

grows asymptotically as
√

2
L
, providing a concrete example

of a not obviously fractonic circuit with an exponentially
large localized subspace. The mechanism again involves the
existence of “multiple” pathways for extending inert states
when new sites are added. However, in the absence of a
physical principle giving rise to this particular circuit archi-
tecture, analogous to the fractonic constraints of charge and
dipole moment conservation, it is unclear how this circuit
should be generalized to gates of longer range, and hence the
question of whether this shattering survives in the presence of
longer range gates is ill posed. Nevetheless, shattering may be
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(a) (b) (c)

FIG. 7. How to obtain dipole and quadrupole conservation. (a) A one dimensional system in a “tilted potential” conserves dipole moment
upto an exponentially long prethermal timescale. (b) When a tilted potential is applied at an angle in two dimensions, dipole moment in the
direction of the tilt is conserved but one has to worry about hopping in an equipotential shell perpendicular to the tilt direction (shown).
The color scale denotes the potential energy due to a tilt at 60◦ relative to the x̂ axis. Sites within the equipotential shell see a quasiperiodic
potential set by the distance from the equipotential line. (c) Quadrupole conservation in two dimensions may be obtained by placing the
system in a harmonic trap, with inequivalent trap frequencies along two orthogonal directions, and with the trap rotated with respect to lattice
axes.

produced by similar constructions in circuits involving gates
of larger size—a sufficient condition is that there should exist
at least two locally inert patterns which can be combined
together in an inert fashion.

A fruitful perspective on which types of circuits produce
shattering of Hilbert space is provided by recursion relations
of the form discussed above. For a circuit acting on a system
with local Hilbert space dimension q, and random N site
gates, the recursion relation is governed by a square matrix
of size qN−1. The entries in this matrix can only be 0 or
1 and at least two of the entries must be zeros, otherwise
the circuit acts trivially on every possible state (which is
a trivial shattering, say by diagonal matrices). Every such
matrix with an eigenvalue larger than 1 specifies a circuit with
an exponentially large inert subspace. From this it follows
that there are no spin 1/2 chains with only two site gates that
realize a shattered Hilbert space (in the obvious z basis) spin
S = 1 and two site gates is the minimal case necessarily to
realize such shattering.

VI. PHYSICAL REALIZATIONS

We now discuss how conservation laws on multipole
moments, and the associated localization from shattering,
may be generated in physically realistic settings. Dipole mo-
ment couples directly to electric field, so if the system is
placed in a sufficiently large static electric field (or equiv-
alently, a tilted potential) then the Hilbert space will (ap-
proximately) split into symmetry sectors labeled by dipole
moment (equivalently, center of mass position), with states
at different dipole moment having sharply different ener-
gies. A minimal model for realizing approximate conserva-
tion of charge and dipole moment in one dimension would
thus be given by a model of hardcore bosons (or spinless
fermions) in a linearly varying scalar potential [Fig. 7(a)] so
that H = H0 + V :

H0 = J
∑
〈x〉

b†xbx+1 + U
∑

i

nxnx+1, (2)

V = F
∑

x

xnx = FPx, (3)

where nx = 1 (nx = 0) corresponds to the + (−) state, i.e., the
presence or absence of a boson on site x. This model can be
mapped to a spin 1/2 system with spin up and down states
mapping to nx = 1 and 0, respectively. Likewise, we could
choose H0 to be a standard Fermi-Hubbard Hamiltonian with
spinful fermions, in which case the nx = {0, 1, 2} states can be
mapped to the Sz states of a spin-1 qudit, with the extremal ∓
states corresponding to empty (nx = 0) and doubly occupied
(nx = 2), respectively. The only explicit conservation laws in
this system are energy and charge.

Now if one prepares an initial state at high temperature
with repect to H0, say a charge density wave (CDW) of
small amplitude A and wavenumber k with 〈n(x, t = 0)〉 =
n + A cos(kx + φ), we (naively) expect the system to evolve
towards towards thermal equilibrium by exchanging energy
between the tilt and ‘nontilt’ parts of H [52]. However, we
note that the spectrum of F is superextensive (∼L2) while
that of H0 is merely extensive. Thus, if we prepare an initial
state with 〈Px〉0 ∼ L2, the tilt energy cannot be dissipated
through H0 and the final equilibrium state maintains the
same value of 〈Px〉, regardless of F (modulo O(L) correc-
tions). In contrast, for initial states with merely extensive
〈Px〉0 ∼ L, the tilt energy can potentially be dissipated by
heating the system towards infinite temperature with respect
to H0 which would take the system towards a uniform den-
sity profile at late times (in a possibly subdiffusive man-
ner [52]). For such states, we expect the behavior to be
qualitatively different for large and small F , and the re-
laxation towards infinite temperature is only appropriate for
small F .

Let us now consider large F . In this case, the tilt is the
dominant term in H and the spectrum splits into sectors
labeled by dipole moment which now becomes a conserved
quantity. Of course, this is only strictly true at infinite F (or
if F ∼ L). However, even when F is finite so that sectors
with different values of Px overlap, it is possible to obtain
long-lived approximate conservation of Px provided F 
 J .
In this case, rearrangements of the system that change Px can
only occur at a high order ∼(F/J ) and one can appeal to
the theory of prethermalization [60–62] which predicts that
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Px will be conserved up to an exponentially long timescale
t∗ ∼ exp(F/J ).1

On timescales short compared to t∗, the system is de-
scribed by an effective Hamiltonian that is constructed as a
power series in 1/F , and which displays an emergent dipole
conservation for an operator P̃x which agrees with Px to
leading order. The terms in the effective Hamiltonian which
are off diagonal in the local density basis must conserve
center of mass. The lowest order off diagonal term is of the
form b†i bi+1bi+2b†i+3 + H.c. If we stop here then the effective
Hamiltonian exhibits strong fracture in that a finite size motif
(e.g., a string of five consecutive occupied sites) can cut the
chain in two, with no charge transport being possible across
this motif. In this case a typical state will exhibit localized
charge dynamics, with charge being exponentially unlikely
to wander far from its initial position. Moreover, a density
wave that alternates between + and − with domain walls at
least four sites apart will be an exact inert eigenstate of the
dynamics. This is however an approximation to the dynamics
obtained by truncating the expansion at the lowest nontrivial
order in 1/F .

At higher orders, the effective Hamiltonian acquires terms
of all possible spatial ranges, with terms of spatial range R
(assumed large) being generated at order aR in perturbation
theory, where a is an O(1) number. Such terms will then have
amplitude (J/F )aR and will become important on a timescale
t (R) ∼ exp(aR ln(F/J )). Once the longer range terms are
incorporated into the Hamiltonian, the fracture will be only
‘weak’ (i.e. the size of the largest dynamical subsector will
scale the same way as the size of the symmetry sector, upto
pre-exponential corrections) and so a typical state will only
exhibit localized dynamics upto a timescale set by the least
weak off diagonal term of range larger than some critical value
Rc � 4. This timescale will be t (Rc). However, an initial con-
dition that alternates between ni = 1 and ni = 0 with domain
walls at least � sites apart will remain an exact eigenstate of
the dynamics up to the timescale tc ∼ min(t (�)), t∗), beyond
which longer range terms or dipole nonconserving effects will
become important. On timescales longer than t∗ we expect
the system to thermalize to the energy density set by the
initial condition. Finally, if t (�) < t∗ then on the intermediate
times-cales the thermalization will be to an energy shell
and restricted to a certain dipole sector, and this may have
interesting features that are beyond the scope of the present
work.

To summarize, the sharpest signature of fracturing at large
tilts is a strong initial state dependence in the dynamics. States
that would be strictly inert with exact dipole conservation
(such as a CDW with maximal amplitude for density fluc-
tations with wavelengths greater than �) will still look inert,
albeit only upto a long timescale tc. On the other hand, a state
with small overlap on the inert states (say CDW states with
small amplitudes for density fluctuations) will relax towards
a uniform density profile, perhaps subdiffusively [52]. We
note that tc may look infinite in a finite-sized system for

1This theory requires the spectrum of the conserved operator, in
this case P, to have a discrete harmonic spacing which is true of P

which a large enough tilt could lead to actual—rather than
prethermal—conservation of Px.

This initial state dependence also emphasizes that the ori-
gin of the observed Bloch/Stark MBL at large tilts is entirely
distinct from the usual MBL phenomenology in disordered
systems, which relies on the existence of exponentially many
emergent integrals of motion and predicts localization for
any typical initial state. Instead, the numerical observations
of Stark MBL [50,51] follow from Hilbert space shatter-
ing. To wit, the main diagnostics presented in Refs. [50,51]
were (i) a lack of level repulsion in the energy spectrum
which is explained by the presence of exponentially many
emergent dynamical sectors with Px conservation so that
the eigenvalues in different sectors do not feel each other
and (ii) persistence of local memory starting from certain
staggered CDW initial states, which happen to be inert for
the effective Hamiltonian with Px conservation to leading
order. This analysis also predicts that the observed transition
must become a crossover at large sizes once dipole is not
strictly conserved—although various additional ingredients
in the models in Refs. [50,51] such as onsite disorder and
nonlinearities in the tilt might preclude the eventual thermal-
ization. As an example, while the bare disorder strength in the
model in [50] looks weak compared to the bare hopping, it
may be sizable compared to the effective dipole-conserving
hopping and hence lead to MBL via more conventional
routes.

Next, we turn to higher dimensions, and see how one can
achieve conservation of all components of dipole moment.
In two or higher dimensions, a tilted potential will result in
(prethermal) conservation of only one component of dipole
moment if the field/tilt is aligned with a lattice axis (x̂). Mean-
while relaxation in directions orthogonal to x̂, corresponding
to motion along an equipotential surface, will not be inhibited
by the applied field.

Instead, if the field is applied at an angle θ with respect to
the x̂ axis then it has projections along all the different lattice
axes and could potentially engineer long-lived conservation
of all components of dipole moment if F 
 J . Specializing
to 2d, consider V = F

∑
r cos(θ )rxnr + sin(θ )rynr. Now, an

important point is that if Fy/Fx = tan(θ ) is rational, then “flat”
equipotential lines orthogonal to the tilt direction pass directly
through lattice sites and the system can once can again relax
along these directions. If tan(θ + π/2) = p/q then sites along
the equipotentials are connected to each other at O(p + q)
in the bare nearest-neighbor hopping, giving an effective
hopping along the equipotential line Jeff = J (J/F )p+q, which
sets the time-scale for relaxation (the factor of F in the
denominator comes from the component of the bare hopping
that is against the strong field). Note however that in a purely
noninteracting model, there will be a cancellation between
“uphill” and “downhill” virtual states, such that the presence
of a nonzero interaction is essential to obtain relaxation along
the equipotentials. Another way to see this is to note that
for the noninteracting model, the problem is separable into
effectively one dimensional problems along x̂ and ŷ.2

2We are grateful to Alan Morningstar for this observation.
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On the other hand, if tan(θ ) is irrational, there will still
be equipotential surfaces, although these will not contain
more than one lattice site [Fig. 7(b)], so that in this case one
can get (prethermal) Px, Py conservation along both lattice
directions. If we pick a strip of some O(1) width ε about
the flat equipotential line, then lattice sites within this strip
see a quasiperiodic potential set by Fδx, where δx is the
displacement of the target site from the true equipotential
surface. In the interacting problem, two sites in this strip
will be resonant if the effective hopping/interaction matrix
between them exceeds the potential energy difference. This
sets a new relaxation timescale t ′

c for hopping between distinct
lattice sites in an equipotential shell, beyond which it will
become apparent that only one component of dipole moment
is conserved. If this scale exceeds the prethermal scale t∗, then
it is irrelevant for the dynamics in which case we expect to
find exp(volume) product states that will be eigenstates of the
dynamics, up to the prethermal timescale t∗. The incommen-
surate potential may also lead to quasiperiodic MBL [63,64]
along the flat direction for strong enough tilt, in which case
only t∗ will be relevant and both Px, Py look conserved for
this time. We note that these arguments are straightforwardly
rigorizable using standard prethermalization analyses, and
indeed have already been rigorized, following the original
posting of this work, in Ref. [65].

Finally, let us now discuss how one may generate conser-
vation of quadrupole moment in d = 2. Quadrupole moment
couples to the gradient of the electric field. Thus, the addition
of a scalar potential of the form V (x, y) = F (Ax2 + By2 +
Cxy) will, for O(1) coefficients A, B,C and sufficiently large
F , cause the spectrum to split into symmetry sectors labeled
by quadrupole moment, again modulo the same considera-
tions as before on prethermalization. However, a scalar po-
tential of this form may be rewritten (at least for AB > C2)
simply as Ã(x′)2 + B̃(y′)2, where the x′ and y′ axes are rotated
with respect to the lattice. This may simply be recognized
as the potential for a harmonic trap, with inequivalent trap
frequencies along the x′ and y′ directions which is easily real-
ized in experiments [Fig. 7(c)]. However, it is not presently
clear how to establish conservation of both components of
dipole moment and quadrupole conservation, in an infinite
system. Naively we would think to do this via the addition
of a linear component to the potential at an irrational direction
with respect to the lattice vectors, which simply shift the trap
center along the irrational direction. However, a small region
far from the trap center will locally only see an approximately
uniform potential tilt, which along certain far field directions
will be aligned with lattice axes, leading to conservation of
only one component of dipole moment but not both. In a finite
size experimental system, it may be possible by judicious
choice of parameters to evade this issue.

VII. DISCUSSION AND CONCLUSIONS

We have shown how a a finite number of conservation
laws can provably shatter Hilbert space into a huge number of
emergent dynamical subsectors, leading to the emergence of
exponentially large localized subspaces in which the localiza-
tion is robust to temporal noise, does not require disorder, and
is characterized by state dependent emergent local integrals

of motion. This is in sharp contrast to conventional wisdom
which holds that ergodicity breaking requires infinitely many
exact or emergent conservation laws.

The shattering leads to the coexistence, within a partic-
ular symmetry sector, of both high and low entanglement
states similar to systems with many-body scars. Moreover
the unitary operators generating the dynamics may be chosen
randomly, as long as they satisfy the conservation laws, so
the model is not at all fine tuned. The key results have
been shown to be robust for any finite gate size, and in any
spatial dimension (on hypercubic lattices). While much of
our analysis focuses for convenience on dynamics in which
the conservation laws function as hard constraints that cannot
be violated, our results obviously apply also to energy con-
serving Hamiltonian dynamics, and can be straightforwardly
generalized to settings where the constraints are soft (i.e.,
the conservation laws can be weakly violated). Indeed we
specifically discuss both generalizations in the section on
physical realizations.

We have also explained how the requisite conservation
laws may be naturally introduced in near term ultracold
atom experiments. In experimental realizations, the dynamics
is Hamiltonian, and the conservation laws are approximate
rather than exact. A key signature of the resulting physics lies
in the exquisite sensitivity of the dynamics to the initial con-
ditions. Initital conditions with large overlap on the localized
subspaces should be exact eigenstates of the dynamics, upto
a prethermal timescale that we have estimated. Meanwhile,
alternative initial conditions will relax even on timescales
short compared to the prethermal timescale. Importantly, the
prethermal timescale is always finite in the thermodynamic
limit, so localization from shattering will manifest experimen-
tally as a prethermal crossover rather than a true transition,
although the two may be difficult to distinguish in finite size
systems. Our work explains the origin of the recent numerical
observations of Stark/Bloch MBL [50,51] in tilted finite-size
systems, sharpening how the observed nonergodicity follows
from Hilbert space shattering in a large tilt.

While fractonic models with conservation laws on multi-
pole moments of charge provide the cleanest realization of
Hilbert space shattering, we have also provided examples
of not obviously fractonic circuits that exhibit shattering.
What physical principles underlie these circuits—beyond the
fractonic conservation laws discussed herein—would be an
interesting topic for future work. We note that our general
construction of circuits exhibiting shattering bears a striking
resemblance to cellular automata, a connection that may be
worth deeper exploration. We also note that a recent work ex-
ploring quantum dynamics of cellular automata demonstrated
how one may construct exponentially many eigenstates in
which at least some sites display trivial dynamics [56]. A
preliminary exploration of related phenomena in automaton
dynamics has also been discussed in Ref. [66].

Of course, the broadest physical class of theories involving
local constraints are gauge theories, and fractonic phases are
known to be describable as gauge theories of higher rank
[32]. It would be interesting to explore the possibility of
Hilbert space shattering in gauge theories more generally,
to clarify whether there are other types of gauge theories
(beyond the fractonic ones discussed herein) which exhibit
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such shattering. This may also connect to recent works on
ergodicity breaking in gauge theories [22–24,67,68].

More generally, this work represents an important addition
to the possible classes of many-body quantum dynamics by
furnishing a class of models where the dynamics is provably
mixed, rather than being either strictly localized or strictly
thermalizing for all initial states. Understanding the approach
to thermalization for states that do thermalize, and the new
classes of dynamical transitions between thermalizing and
localizing behavior represent important directions for future
research.

Note added. Recently, we learned about related work by P.
Sala, T. Rakovszky, R. Verresen, M. Knap, and F. Pollmann
which appeared in the same arXiv posting [69]. The results
of Ref. [69] have substantial overlap with the discussion in
Sec. III, and where our results overlap, they agree.
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APPENDIX A: BOTTLENECKS AND SHIELDING

In this section, we provide some particular examples of the
shielding behavior described in Sec. III, and also discuss a
special feature of the fractonic circuit with three site gates,
namely the existence of local integrals of motion that can
act as bottlenecks regardless of what larger state they are
embedded into.

Let us begin with shielding of active regions. A simple
example for a circuit with three site gates is provided by
a configuration of the form | · · · 0 + 0 · · · 〉, where in each
case the · · · denote inert configurations (such as the ones
constructed in the previous subsection) ending with a ++
next to the nontrivial block. Applying the allowed (Q, P)
conserving moves (Fig. 1) readily shows that such a state
has nontrivial dynamics only over three sites in real space,
and has Hilbert space dimension two. The total charge within

this restricted region of real space is then independently a
local integral of the motion, even though the circuit is in
principle allowed to spatially move charge. Importantly, this
local integral of motion is state dependent—a single charge
immersed in a sea of zeros can move freely by emitting
dipoles, whereas a charge blockaded on both sides by inert
configurations ending in ++ cannot leave a restricted re-
gion of real space. Multiple analogous active” blocks with
locally nontrivial dynamics may trivially be introduced into
an otherwise inert background, each block shielded” by ++
on either end. The size of the active blocks may also be
varied in size. Such constructions manifestly exist for any
finite gate size, since there is always a localized subspace
into which finite nontrivial blocks may be embedded, with
appropriate shielding (cf. Fig. 3). For example, for a circuit
with four site gates, + + + would suffice to shield a 0 + 0
region. These are not the only examples (e.g., all charges
could be reversed), but they suffice to make the point that
nontrivial blocks can always be embedded into otherwise inert
regions.

Next, we turn to bottlenecks, which are motifs that cut the
system in two, regardless of the state they are embedded in.
A simple example of such a bottleneck, again for range three
gates, is provided by a local pattern of the form + + ++ (or
the charged reversed version). If such a (finite size) pattern
is embedded into a larger state that is nontrivial everywhere
to the left and the right, then the outer two + charges can
move away (by absorbing dipoles), but crucially these outer
charges perfectly screen the inner charges from dipoles that
could make them move. The inner + charges will always be
adjacent either to another + charge, or to a 0, and thus any
three-site gate acting on or across the two inner charges must
necessarily be trivial (pure phase). As a result, the inner two
charges are perfectly localized regardless of what larger state
they are embedded into, and act as a bottleneck that cuts the
chain in two. The two halves can then be separately labeled by
values of charge and dipole moment that are conserved in each
half. Likewise, the presence of these bottlenecks at multiple
locations can break up the chain into effectively much smaller
segments, and the charge and dipole moment of each segment
is separately conserved.

On the other hand, with longer range gates, there is no
finite-sized motif that can cut the chain if embedded into an
infinitely large active region. This is easiest to see if one
simply embeds the finite-sized motif into a sea of zeros.
Suppose the left-most site of the inert/shielding motif is +
(the argument proceeds analogously if it were −). One may
then create − + +− quadrupoles out of the sea of zeros, move
off the −+ dipole to spatial infinity, and shoot the +− dipole
at our motif, causing the leftmost charge to move left one unit.
By iterating this process, one can move the leftmost charge
of the motif away to spatial infinity, leaving us with a motif
reduced in size by one unit, immersed in an infinite sea of
zeros (with various charges accumulated at spatial infinity).
One may then repeat the process and thus peel away the motif
one charge at a time. Accordingly, there is no finite-sized
motif that can cut the chain if embedded into an infinite
active region, with longer range gates. Of course, a finite
sized active region can always be contained by suitably chosen
shielding regions (as discussed in Sec. III B) and so even with
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longer range gates we can have patterns of finite-sized active
and inert regions, separated by suitably chosen shielding
regions.

APPENDIX B: IMPLICATIONS OF SHATTERING AND
SHIELDING FOR ENTANGLEMENT OF EIGENSTATES

In this Appendix, we re-examine our results on the mid-
cut entanglement entropy of eigenstates, armed with our un-
derstanding of Hilbert space fracture. The first point is that
there are emergent dynamical subsectors of varying sizes even
within a single (Q, P) sector, and the thermal” value for eigen-
states in a given dynamical subsector will be controlled by the
size of the subsector [70]. For instance, in the extreme case of
strictly inert states, the eigenstate entanglement will be exactly
zero. More generally, the subsectors of various sizes naturally
lead to a broad distribution of high and low entanglement
states—ranging from area to volume law—within a single
extensive symmetry sector, as was observed in Fig. 2.

To examine this more quantitatively, in Fig. 8(a), we plot
the average entanglement entropy of each emergent dynamical
subsector against the thermal (Page) value for that subsector in
a system of length L = 15 with three-site gates. We consider
all eigenstates in all subsectors in the Q = {0, 1} sectors (with
all possible P values). The data are averaged over 100 inde-
pendent circuit realizations. The Page value is computed by
explicitly examining the Sz basis states that span a given sub-
sector, and using these to extract DL and DR, the dimension
of the Hilbert spaces in the left and right halves of the chain
for that subsector. Because of the constraints, these depend
on the exact basis states that form the subspace and could be
different for different subsectors of the same size. Because
some of the subsector sizes are very small, we use the exact
expression for the Page value [70] SPage = ∑mn

k=n+1
1
k − m−1

2n ,
where m = min[DL,DR] and n = max[DL,DR]; this reduces
to the more familiar form SPage ∼ ln(n) − m

2n for 1  m � n.
A priori one might have thought that the existence of

these multiple subsectors with a broad distribution of sizes
would be sufficient to explain the coexistence of high and
low entanglement states within a symmetry sector. Indeed,
the eigenstate entanglement does broadly track the Page value
for the appropriate subsector, as shown in Fig. 8(a). However,
the figure also shows the existence of a broad distribution
of entanglement entropies even after resolving by subsector
size. There even exist states with strictly zero entanglement
in subsectors with dimension greater than one. Thus, the
shattering of Hilbert space is part of the explanation for
the broad distribution of entanglement entropies, but it is not
the whole picture.

This brings us to our second point—a key part of
the explanation for the broad distribution of entanglement
entropies, even after resolving by subsector size, is the
bottleneck/shielding phenomenon discussed in Secs. A and
III B. In particular, the states with zero entanglement entropy
(which are not in the strictly localized subspace) have been
explicitly verified to contain a bottleneck motif at the midpoint
of the chain, which prevents development of any entanglement
across this motif, which happens to overlap the entanglement
cut. The existence of such bottleneck motifs at positions away
from the entanglement cut is also at least partially responsible

FIG. 8. (a) A plot showing the average bipartite entanglement
entropy of eigenstates as a function of subsector size. The Page
value would be the thermal entanglement entropy for a subsector of
this size. Data are for L = 15, three site gates, and open boundary
conditions, and all eigenstates with Q = 0, 1 are considered. Note
that while the eigenstate entanglement broadly tracks the appropri-
ate Page value for the subsector, there is still a wide distribution,
with many eigenstates having significantly subthermal half-chain
entanglement, including eigenstates with strictly zero entanglement
(perfect scars) in subsectors that do not exhibit trivial dynamics. This
is related to the physics of bottlenecks described in Sec. A. (b) Entan-
glement entropy of individual eigenstates within the largest emergent
subsector, plotted as a function of Floquet quasienergy φ. Now the
eigenstates do have entanglement close to the thermal (Page) value,
and this agreement gets better as system size is increased.

for the existence of a broad distribution of entanglement
entropies, even after resolving by subsector size, since the
effective number of entangling degrees of freedom get re-
duced when the chain is cut. More generally, the entanglement
entropy is bounded by the Hilbert space dimension of the
active region that straddles the cut, and this can be much less
than the size of the subsector in which the state lives, if the
state consists of disconnected active regions. This discussion
highlights that not only is there strong state-to-state variation
in the entanglement properties of eigenstates, there is also a
strong variation across spatial locations of the entanglement
within a given state.

Finally, we note that the entanglement entropy in the
subsector of largest size does appear to well approximate
the thermal Page value, and this agreement gets better with
increasing system size [Fig. 8(b)].
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FIG. 9. Figure showing the dynamics of entanglement starting
from a random product state (not in the z basis). Entanglement
entropy is given as a ratio of the Page value for a random product
state in a Hilbert space of dimension 3L . For three site gates, the en-
tanglement entropy saturates to well below its Page value, consistent
with expectations given the strong fracturing of Hilbert space. For
four site gates, the saturating value of entanglement entropy is much
closer to the Page value, with a slow upward drift with increasing
system size.

APPENDIX C: IMPLICATIONS OF SHATTERING
FOR DYNAMICS

In this Appendix, we discuss at length the implications of
shattering for dynamics starting from different initial states.
Note that while we have proven the existence of an exponen-
tially large localized subspace, this subspace is still a measure
zero fraction of the entire Hilbert space in the thermodynamic
limit. While initial conditions that have high overlap with
this localized subspace will clearly exhibit localization, initial
conditions chosen randomly in Hilbert space will have vanish-
ing overlap with the localized subspace. We now discuss the
implications of Hilbert space shattering for the dynamics from
random initial conditions.

Dynamics from random initial conditions is expected to be
highly sensitive to the degree of shattering. In Fig. 4(c), we
examine what fraction of the states in a symmetry sector are
contained in the emergent subsector of largest size. For three
site gates, the largest emergent subsector is observed to con-
tain a vanishing fraction of the states in the thermodynamic
limit, consistent with our analytic estimates. (Recall that the
largest subsector contained ∼2L states, whereas the Hilbert
space dimension is 3L). In contrast, for longer range gates a
nonzero fraction (almost exactly equal to one) of the Hilbert
space is contained in the emergent subsector of largest size,
and this does not change with changing system size.

These differences may have interesting implications for
the dynamics from randomly chosen initial product states
(which are not in the z basis and are not confined to any
particular symmetry sector). For example, for three site gates,
the largest subsector of Hilbert space has dimension ∼2L. The
late-time entanglement entropy should therefore be dominated
by this subsector and scale as L ln 2. Meanwhile, the entire
Hilbert space has dimension 3L, and so the thermal or Page

TABLE II. For the fractonic circuit with four site gates, if an
inert state in a system of size L has the final three sites in the states
shown in the left column, then it remains inert upon addition of
another spin if the new spin is in the corresponding state shown in
the right column. Note that we have only listed sixteen of the twenty
seven possible configurations for the last three spins of the L site
chain—the remaining eleven configurations are dead ends, i.e., there
is nothing that can be added that leaves the state inert.

Last three sites of L site chain are Site added can be

+++ + or 0 or −
++0 + or 0 or −
++− −
+0+ +
+0− −
+− − −
0++ +
00+ +
00− −
0− − −
−++ +
−0+ +
−0− −
− −+ +
− − 0 + or 0 or −
− − − + or 0 or −
+00 −
−00 +

entanglement entropy for the full Hilbert space is of order
L ln 3. We would therefore expect that for a circuit with three
site gates, a random initial condition should exhibit entan-
glement entropy growth saturating to a value approximately
equal to ln 2

ln 3 SPage ≈ 0.63SPage. However, for a circuit with four
site gates, the largest subsector size and the Hilbert space di-
mension scale similarly, as 3L, and one might expect dynamics
starting from random initial conditions to lead to entangle-
ment entropy growth saturating close to the Page value. (Note
however a potential loophole on this argument: if the states
in the largest subsector were made up of disconnected active
subregions, then the saturating entropy would be bounded by
the Hilbert space dimension of the active subregion straddling
the entanglement cut, which could well be less than the Hilbert
space dimension of the entire subsector).

To test this intuition, in Fig. 9, we show the growth
of entanglement entropy for both three and four site gates,
starting from an initial condition that is a random product
state. Note that a random product state (not in the z basis) is
a superposition of multiple symmetry sectors and subsectors.
For three site gates, the entanglement entropy is observed to
saturate to a clearly subthermal value of order 0.6SPage, con-
sistent with our expectations. Meanwhile, for four site gates
the saturation value for the entanglement entropy is clearly
higher, much closer to the Page value, with a slow upward
drift with increasing system size. Whether the saturating value
of entanglement entropy actually reaches the Page value in
the thermodynamic limit is not clear from the present numer-
ics. A more extensive investigation of pure state dynamics
starting from random initial conditions, and how this depends
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on gate range, would be an interesting problem for future
work.

APPENDIX D: LOCALIZED SUBSPACE FOR FRACTONIC
CIRCUIT WITH FOUR SITE GATES

In this Appendix, we provide an explicit calculation of
the localized subspace for the fractonic circuit with four site
gates. In this case, the gates are matrices of rank 34 = 81, with
structure as detailed in Table I of Ref. [35]. Note however
that there is a typo in the charge zero block of that table, in
that configurations such as +00− and −00+ should be inert,
whereas + − +− should mix freely with +0 − 0 and 0 + 0−,

but not with +00−. With this typo corrected, we note that in a
chain of size L = 4 there are twenty six trivial states. If a state
is inert in an L site system, then the addition of another site
will leave it still inert as long as the last three sites of the L
site chain and the added site collectively form an inert state of
the L = 4 chain, i.e., if the conditions detailed in Table II are
fulfilled. Note that of the twenty seven possible end states for a
chain of length L, only eighteen allow the state to remain inert
upon addition of another spin—the rest are dead ends. This
is an important distinction to the circuit with three site gates
where there were no dead ends. We can then write a recursion
relation for the eighteen live configurations only, and it takes
the form of the rank eighteen matrix equation given below.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N+++
N++0

N++−
N+0+
N+0−
N+−−
N0++
N00+
N00−
N0−−
N−++
N−0+
N−0−
N−−+
N−−0

N−−−
N+00

N−00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L+1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N+++
N++0

N++−
N+0+
N+0−
N+−−
N0++
N00+
N00−
N0−−
N−++
N−0+
N−0−
N−−+
N−−0

N−−−
N+00

N−00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L

.

The largest eigenvalue of the above matrix has magnitude
1.8, leading us to conclude that the dimension of the local-
ized subspace grows asymptotically as 1.8L, in agreement
with Fig. 4(a) and again, faster than the lower bound of

2L/4 ∼ 1.2L. Similar analyses may be carried through for
any finite range of gates in the fractonic circuit, but the
analysis rapidly becomes tedious and so we do not pursue it
here.
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