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We study the thermal conductivity in disordered s-wave superconductors. Expanding on previous works for
normal metals, we develop a formalism that tackles particle diffusion as well as the weak localization (WL)
and weak antilocalization (WAL) effects focusing on the two-dimensional case. Using a Green’s functions
diagrammatic technique, which takes into account the superconducting nature of the system by working in
Nambu space, we identify the system’s low-energy modes, the diffuson and the cooperon. The timescales that
characterize the diffusive regime are energy dependent; this is in contrast to the normal state, where the relevant
timescale is the impurity scattering time τe, independent of energy. The energy dependence introduces a novel
energy scale ε∗, which for dirty superconductors (τe� � 1, with � the gap) is given by ε∗ = √

�/τe. From the
diffusive behavior of the low-energy modes, we obtain the WL correction to the thermal conductivity. We give
explicit expressions in two dimensions. We determine the regimes in which the correction depends manifestly on
ε∗ and propose an optimal regime to verify our results in an experiment. In particular, we find a parametrically
large reduction of the weak localization correction in a dirty superconductor, in comparison with its value in the
normal state, when the temperature is lowered by 10% below the transition temperature.
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I. INTRODUCTION

The study of quantum effects in the transport properties of
disordered conductors has a long history. For thermal conduc-
tivity in normal metals, a fundamental question was whether
such corrections obey the Wiedemann-Franz (WF) law re-
lating the electrical conductivity σ to thermal conductivity
K [1]. For noninteracting electrons, the WF law is expected
to hold with the inclusion of quantum corrections in the weak
localization (WL) regime but the numerical coefficient known
as the Lorenz number L0 = K/σT , with T the temperature, is
reduced when approaching the Anderson localization transi-
tion [2]. Away from the transition, deviations have been cal-
culated due to electron-electron interactions [3]. Mesoscopic
fluctuations can also lead to violations of the WF law [4].
In the superconducting state the dc electrical resistance van-
ishes and hence there is no WF law; in fact, approaching
the critical temperature from the normal state, superconduct-
ing fluctuations lead to a divergent electrical conductivity,
whereas they only constitute a finite correction to K [5,6].
Sufficiently far below the critical temperature, fluctuations are
negligible and the leading-order expression for the thermal
conductivity of a BCS superconductor has been obtained in
the early work of Ref. [7]. Further extensions to this result
include the effects of electron-phonon scattering [8,9], strong
coupling [10], and paramagnetic impurities [11]. However,
to the best of our knowledge, the question of the fate of the
weak localization correction to the thermal conductivity in
the superconducting state has so far only been addressed for
normal/superconductor/normal (SNS) junctions [12] and not
for the bulk.

In this paper, we analytically calculate the weak local-
ization correction to the thermal conductivity in s-wave

superconductors, including weak antilocalization (WAL) in
a system with spin-orbit scattering, focusing on the two-
dimensional case. To that end, we extend the formalism used
to study diffusion in normal metals (see, e.g., Ref. [13]), so
that it can be used for superconductors as well. Technically,
we work with matrix Green’s functions in Nambu space.
In the next section, we introduce the model for disordered
superconductors to establish our notation. In Sec. III, we study
diffusion in disordered superconductors in depth by gener-
alizing the ladder approximation. Using the classification of
Ref. [14], we focus on the A-type diffusons and cooperons
since in a time-reversal-invariant system, the D-type ones do
not contribute to thermal transport [10]. In contrast to the
normal state, the diffusion constant in the superconducting
state depends on energy (measured from the Fermi energy).
This energy dependence manifests itself in the condition
defining the diffusive regime in the time domain, which is
now not simply given by the requirement of time being long
compared to the impurity scattering time τe. We find that
the corresponding timescale in the superconducting state is
different for energies below or above an energy scale ε∗ which
is a function of the superconducting gap � and the scattering
time; for disordered superconductors with τe� � 1, we find
ε∗ = √

�/τe.
In Sec. IV, we make use of the results of the preced-

ing section to calculate the thermal conductivity from the
Kubo formula. We recover previous results [7,10] for the
Drude-Boltzmann contribution to the thermal conductivity,
which, because of the opening of the superconducting gap,
is suppressed as temperature is reduced. As the diffusion
constant is energy dependent, we have to specify whether the
phase-coherence length or the phase-coherence time is con-
stant in a material in order to evaluate the weak localization
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correction. We obtain results for both scenarios; in general,
the WL correction is temperature dependent. Interestingly, the
suppression of the WL correction with decreasing temperature
is generally stronger than that of the Drude-Boltzmann term.
Of possible experimental interest is the temperature region
of order T� ≈ 0.9Tc, where Tc is the critical temperature
of the superconductor and T� is defined by kBT� = �(T ).
On one hand, this temperature is sufficiently high that the
strong (exponential) suppression of the (Drude-Boltzmann)
thermal conductivity has not yet taken place. On the other
hand, for disordered superconductors, this temperature is low
enough that most of the weak localization correction is already
suppressed. This temperature is therefore optimal in order to
observe the deviation of the WL correction in the supercon-
ducting state from its normal-state value, as we predict the
thermal conductivity to be larger than expected from its value
just above Tc. We summarize our findings in Sec. V.

A number of details can be found in Appendices A–E. In
Appendix A, we discuss the normalization of the diffusion
probability and relate it to particle conservation. Appendix B
presents the calculations of Sec. III B in momentum space in-
stead of in real space. The explicit expression for the cooperon
and its derivation are given in Appendix C. In Appendix D
we show the explicit calculation of the WL correction to
the thermal conductivity. Finally, in Appendix E, we treat a
superconducting system with spin-orbit scattering and derive
the superconducting WAL correction.

II. MODEL

The (mean field) Hamiltonian for a superconductor with
s-wave pairing can be expressed in the Bogoliubov–de Gennes
(BdG) form as [15]

H =
∑

k

�
†
kĤBdG(k)�k (1)

with the Nambu vector

�k =
(

ck↑

c†−k↓

)
, (2)

where c†kσ
and ckσ are creation and annihilation operators for

electrons with momentum k and spin σ , respectively. The
BdG Hamiltonian is given by

ĤBdG(k) = εkτ3 − �τ1, (3)

where the hat denotes matrices in the Nambu space. Here,
εk = k2/2m − μ, m is the electron mass, μ = k2

F /2m the
Fermi energy with kF the Fermi momentum, � the supercon-
ducting order parameter, and τi the Pauli matrices in Nambu
space (we omit hats on these matrices for notational simplic-
ity). For later use, we introduce the basis {|e〉, |h〉} in Nambu
space, where the states |e〉 and |h〉 stand for electron and hole,
respectively. The Bogoliubov–de Gennes Hamiltonian (3) in-
cludes the noninteracting electron and hole Hamiltonians in
its diagonal terms as well as the pairing term, given by �,
in its off-diagonal terms. The retarded and advanced Green’s
functions are then solutions of

(E − ĤBdG ± i0+)ĜR,A
E = 1. (4)

We distinguish the four different elements of the matrix
Green’s function as follows:

ĜR,A
E =

(
GR,A

E F R,A
E

F̄ R,A
E ḠR,A

E

)
. (5)

The diagonal terms, that is, the electron and hole Green’s
functions, describe electron and hole propagation, respec-
tively. The off-diagonal terms, known as anomalous Green’s
functions, account for particle-hole conversion, i.e., Andreev
reflection.

So far, we have considered a clean superconductor. To treat
the elastic scattering of electrons off impurities we introduce
a random disorder potential. The disorder potential V̂ (r) =
V (r)τ3 is taken to be Gaussian distributed with V (r) = 0,
where the overline (· · ·) denotes the disorder average. We
work in the weak disorder limit kF le 	 1, where le is the
mean-free path, which allows for the perturbative treatment
of impurity scattering. We define the disorder parameter γe

by relating it to the disorder average of the variance of the
potential such that

V̂ (r) ⊗ V̂ (r′) = γeδ
(d )(r − r′)Ûv, (6)

where Ûv = τ3 ⊗ τ3. The disorder parameter is related to the
scattering time τe = le/vF in the normal state and to the
normal-state density of states per spin ρ0 as γe = 1/2πρ0τe

with vF = kF /m the Fermi velocity.
In a normal metal, both electrical and thermal conductivity

are attributed to free conduction electrons, and both phenom-
ena can be understood by studying electron diffusion. In su-
perconductors, the (super)current is carried by Cooper pairs;
the thermal conductivity, however, is still related to particle
diffusion. In order to study diffusion in the superconducting
state, in the next section we develop a matrix formalism in
Nambu space that enables us to generalize the diagrammatic
approach well established in the study of diffusion in the
normal state.

III. PARTICLE DIFFUSION AND WEAK LOCALIZATION

In this section, we study the propagation of particles in
disordered conventional superconductors in the weak disorder
limit kF le 	 1. In this limit, localization affects the transport
coefficients, but Anderson localization [16] does not yet take
place. Throughout this section, we expand to the supercon-
ducting state the diagrammatic treatment of particle propa-
gation in a normal metal presented in Ref. [13]. The main
technical change involves modifying the Feynman diagrams
to include all the four components of the superconducting
Green’s function defined in Eq. (5) [17] (see Fig. 1). We define
the quantum diffusion probability matrix P̂ω(r, r′) as

P̂ω(r, r′) = ĜR
E+ω(r, r′) ⊗ ĜA

E (r′, r)T , (7)

where the retarded Green’s functions in real space are given
by ĜR

E (r, r′) = 〈r′|ĜR
E |r〉 and

ĜA
E (r′, r)T = ĜR

E (r, r′)∗. (8)

The matrix P̂ω(r, r′) acts on the space spanned by |i, j〉 =
|i〉 ⊗ | j〉 with i, j ∈ {e, h}; that is, |i〉 and | j〉 are basis states
in the Nambu spaces pertaining to the retarded and advanced
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FIG. 1. Feynman diagrams for the time-ordered Green’s func-
tions in a normal metal and a superconductor. Time evolution occurs
from left to right. The four components of the Green’s function for
a superconductor are distinguished by the arrows at the ends. The
matrix formulation in the Nambu formalism is represented by an
arrowless line.

Green’s functions, respectively. We discuss the proper nor-
malization of this probability in Appendix A. We stress that
P̂ω(r, r′) depends on the energy argument E appearing in the
Green’s functions, although we do not highlight this in the no-
tation for simplicity: scattering off impurities being elastic, the
energy argument can be treated as a parameter that is constant
during diffusion. The diagrammatic expression for P̂ω(r, r′) in
the ladder approximation is shown in Fig. 2. In each diagram
shown in the figure, the upper line represents the retarded
Green’s function in Nambu space from point r to point r′,
and the lower one represents its complex conjugate, given
by Eq. (8). We calculate three main contributions to particle
propagation, starting with the Drude-Boltzmann contribution
P̂0,ω(r, r′). This contribution accounts for the probability of
propagation in a disordered medium without colliding with
any impurities. Subsequently, we include classical scattering
events and calculate the diffuson P̂d,ω(r, r′). We show that in
the superconducting state the so-called diffusive or hydrody-
namic approximation is applicable beyond a timescale that
differs from that of the normal state and depends on energy
E . We define the total probability of diffusion as the sum of

FIG. 2. Representation of the ladder approximation for the dif-
fusion probability matrix P̂ω(r, r′) in a superconductor as defined in
Eq. (7). The upper arrowless line represents the disorder-averaged
retarded superconducting Green’s function expressed in matrix form
in the Nambu formalism. The lower line represents its complex
conjugate. The dashed lines represent impurity scattering. The to-
tal probability of diffusion P̂ω(r, r′) is composed by the Drude-
Boltzmann contribution P̂0,ω(r, r′) and the diffuson P̂d,ω(r, r′). The
latter includes the structure factor �̂ω(r1, r2) which accounts for
elastic scattering with static impurities.

these two contributions

P̂ω(r, r′) = P̂0,ω(r, r′) + P̂d,ω(r, r′). (9)

In the last part of the section, we consider the effect
of coherent backscattering and derive the weak localization
correction to particle diffusion P̂c,ω(r, r′), that is the cooperon
contribution. In this way, we generalize previous studies of
weak localization in superconductors, which considered the
effect on the density of superconducting electrons [18] and
on nonlocal transport in normal/superconductor/normal struc-
tures [19,20].

A. Drude-Boltzmann contribution

The Drude-Boltzmann contribution P̂0,ω(r, r′) is given by

P̂0,ω(r, r′) = ĜR
E+ω(r, r′) ⊗ ĜA

E (r′, r)T . (10)

The disorder-averaged superconducting retarded Green’s
function can be explicitly calculated in momentum space,
where it is given by [17]

ĜR
E (k) = Ēτ0 + εkτ3 − �̄τ1

Ē2 − ε2
k − �̄2

(11)

with

Ē = E

[
1 + i

1

2τe

sgn(E )√
E2 − �2

]
(12)

and

�̄ = �

[
1 + i

1

2τe

sgn(E )√
E2 − �2

]
. (13)

The Fourier transform of Eq. (11) into real space can then
be calculated in the limit μ 	 ε,�, with ε = √

E2 − �2, by
linearizing the spectrum around kF . We provide the explicit
result in the two-dimensional case since it will be of particular
interest for the weak localization correction. In the limit
kF R 	 1 with R = r′ − r, we have (E > 0)

ĜR
E (r, r′) = m√

2πkF R
ei εR

vF
− R

2le

[
i
E

ε
cos

(
kF R + 3π

4

)
τ0

− sin

(
kF R+ 3π

4

)
τ3−i

�

ε
cos

(
kF R+ 3π

4

)
τ1

]
.

(14)

The advanced Green’s function in real space can be arrived at
using Eq. (8). Having obtained the disorder-averaged super-
conducting Green’s functions in real space, P̂0,ω(r, r′) can be
found from Eq. (10). In the next section we use P̂0,ω(r, r′) to
calculate the diffuson.

B. Diffusion in disordered superconductors: The diffuson

The diffuson P̂d,ω(r, r′) is the classical probability of prop-
agation from r to r′ accounting for all paths including at least
one scattering event. Summation over these paths is performed
in the ladder approximation, as sketched in Fig. 2, giving the
equation

P̂d,ω(r, r′) =
∫

dd r1

∫
dd r2P̂0,ω(r, r1)�̂ω(r1, r2)P̂0,ω(r2, r′).

(15)
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The Drude-Boltzmann factors account for the trajectory be-
fore the first scattering event and after the last one, at r1 and
r2, respectively. The structure factor �̂ω(r1, r2) includes all
scattering events. In our formalism, it is a 4 × 4 matrix defined
self-consistently by

�̂ω(r1, r2)

= γeÛv

[
δ(d )(r1 − r2) +

∫
dd r′′P̂0,ω(r1, r′′)�̂ω(r′′, r2)

]
(16)

(see the bottom half of Fig. 2). The Drude-Boltzmann contri-
bution decays on a length scale of the order of the mean-free
path le [cf. Eq. (14)]. Here we are interested in the diffusive
regime, where the length scale λ over which the structure
factor varies is much longer than the mean-free path λ 	 le.
We can then approximate �̂ω(r1, r2) ≈ �̂ω(r, r′). In this limit,
Eq. (15) can be approximately rewritten as

P̂d,ω(r, r′) = 〈P̂0〉r�̂ω(r, r′)〈P̂0〉r, (17)

with 〈P̂0〉r ≡ 〈P̂0,ω=0〉r and

〈P̂0,ω〉r ≡
∫

dd r′P̂0,ω(r, r′). (18)

Diffusion takes place at sufficiently long times beyond
the scale τmin so that terms of the order (ωτmin)2 and
(ωτmin)(le/λ)2 can be neglected in comparison to those of
order (ωτmin) and (le/λ)2, respectively. For the diffusion, in
a normal metal the scale τmin is simply given by τe = le/vF .
Analogously, for a superconductor, we obtain the scattering
time

τs = le
vg

, vg = vF
ε

|E | (19)

with vg the group velocity of the quasiparticles. However, we
find that diffusion only sets in after the longer time

τmin = max

{
τs,

�

ε2

}
. (20)

The second scale �/ε2 appears in order that the diffusive
modes [first two entries of Eq. (25) below] are decoupled
from the massive modes (last two entries). The definition in
Eq. (20) reduces to τmin = τe in the normal state, while in the
superconducting one we find

τmin =
{

�
ε2 , E < E∗,

τs, E > E∗,
(21)

where E∗ is defined as the energy at which τs = �/ε2. The
magnitude of E∗ is sensitive to the disorder strength in the
superconductor. Writing E∗ = � + ε∗, we obtain

ε∗ �
⎧⎨
⎩

√
�
τe

, τe� � 1
1

2�τ 2
e
, τe� 	 1

, (22)

where the condition τe� � 1 identifies the dirty regime, in
which ε∗ 	 �, and τe� 	 1 the clean case, where ε∗ � �.
We will discuss in Sec. IV the relevance of this and other
energy scales to the thermal conductivity.

To obtain the diffusion equation for the structure factor �̂ω,
we expand the latter up to second order in r′′ − r1 around
r′′ = r1 in the right-hand side of Eq. (16). That equation can
then be cast in the form

M̂ω(r)�̂ω(r, r′) = γeδ
(d )(r′ − r), (23)

with the matrix operator

M̂ω(r) = Û −1
v − γe〈P̂0,ω〉r − γe

2d
〈r2P̂0〉r∇2

r . (24)

We have again neglected terms of order (ωτmin)(le/λ)2 by
evaluating 〈r2P̂0,ω〉r at ω = 0, which we denote by removing
the ω subscript. The integration over space of the Drude-
Boltzmann contribution 〈P̂0,ω〉r can be performed directly
using Eq. (10) and the Green’s function in real space [we
remind that in the diffusive regime we only need to keep
terms of order (ωτmin)0 and (ωτmin)1]. Using the relation
〈r2P̂0〉r = 2l2

e 〈P̂0〉r and the definition of the potential matrix
Ûv [see the text after Eq. (6)], the matrix operator M̂ω(r) is
obtained straightforwardly.

We wish to study the structure of M̂ω(r) to understand
the diffusive modes of �̂ω(r, r′). It is convenient to introduce
the states |a±〉 = 1√

2
(|e, e〉 ± |h, h〉) and |b±〉 = 1√

2
(|e, h〉 ±

|h, e〉). We then work in the basis B = {|a−〉, cos(θ )|a+〉 +
sin(θ )|b+〉, cos(θ )|b+〉 − sin(θ )|a+〉, |b−〉}, where �/E =
tan(θ ). In this basis, the structure of M̂ω(r) simplifies and the
behavior of the diffusive modes can be singled out. Indeed, we
find in the diffusive regime the result

M̂ω(r) = diag

(
τsD, τs

ε2

E2 + �2
D,−E2 + �2

ε2
,−1

)
, (25)

with D = −iω − Ds∇2
r . Here Ds is the superconducting dif-

fusion constant

Ds = vgle
d

(26)

which, similarly to the scattering rate above, is energy depen-
dent. On the other hand, the mean-free path, proportional to√

Dsτs, remains independent of energy and equal to that in the
normal state. These findings are in agreement with those in
Ref. [7].

Equation (25) shows that in the diffusive limit M̂ω(r) is
a diagonal matrix with two diffusive and two fast modes.
We will neglect the fast modes and focus on the diffusive
ones. To this end, we define M̂ω(r) as the 2 × 2 matrix
obtained by projecting M̂ω(r) into the subspace spanned by
{|a−〉, cos(θ )|a+〉 + sin(θ )|b+〉}. According to Eq. (23), the
structure factor Γ̂ω(r, r′) in this subspace satisfies the equation[

τs

(
1 0
0 ε2

E2+�2

)
D

]
Γ̂ω(r, r′) = γeδ

(d )(r′ − r), (27)

where the terms in square brackets are the matrix M̂ω(r). We
can rewrite Eq. (17) using Γ̂ω(r, r′) as

P̂d,ω(r, r′) = P̂v Γ̂ω(r, r′)P̂T
v , (28)

where P̂v is the matrix with dimension 4 × 2 that encompasses
the first two columns of 〈P̂0〉r in the previously introduced
basis B; it has the useful property γ 2

e P̂T
v P̂v = 1. The diffuson

thus found is a rank-two matrix that takes a diagonal form in

174202-4



WEAK LOCALIZATION CORRECTIONS TO THE THERMAL … PHYSICAL REVIEW B 101, 174202 (2020)

the basis B̃ = {|a−〉, cos(θ )|a+〉 − sin(θ )|b+〉, cos(θ )|b+〉 +
sin(θ )|a+〉, |b−〉}, which is also the eigenbasis of 〈P̂0,ω〉r. Its
nonzero terms follow a diffusion equation in the subspace
B̃2 = {|a−〉, cos(θ )|a+〉 − sin(θ )|b+〉} given by

vF

2πρ0vg

(
1 0
0 ε2

E2+�2

)
D P̂d,ω(r, r′) = δ(d )(r′ − r). (29)

We emphasize here the first diffusive mode shown in Eq. (29):
it relates to quasiparticle conservation [21] and, as we will see
later on, to the thermal conductivity. We thus define for later
use the quasiparticle diffusion probability

Pqp
ω (r, r′) ≡ 〈a−|P̂ω(r, r′)|a−〉

= 1
2 Tr

[
τ3ĜR

E (r, r′)τ3ĜA
E (r′, r)

]
(30)

and, correspondingly, the Drude-Boltzmann, quasiparticle dif-
fuson, and cooperon contributions Pqp

i,ω = 〈a−|P̂i,ω(r, r′)|a−〉,
with i ∈ {0, d, c}.

The two diffusons shown in Eq. (29) resemble the diffuson
in the normal metal, but in the superconduncting state the
diffusion constant and the scattering time depend on the group
velocity vg which is no longer equal to the Fermi velocity
[Eq. (29) can also be reformulated to include the energy
scaling vg/vF in the frequency component rather than in the
diffusion constant]. After applying the temporal Fourier trans-
form, we obtain a direct relation between the probabilities of
diffusion in the superconducting and normal states

〈i′, j′|P̂d (r, r′; t )|i, j〉
= Pn(r, r′; tvg/vF )

πρ0vg

(E2 − �2)vF
((2E2 − �2)δi, jδi,i′δ j, j′

+ �2(1 − δi,i′ )(1 − δ j, j′ ) + �2δi,i′δ j, j′ (1 − δi, j )

− �E [δi,i′ (1 − δ j, j′ ) + δ j, j′ (1 − δi,i′ )]), (31)

where i, j, i′, j′ ∈ {e, h} and the normal-state diffusion proba-
bility satisfies the equation(

−D∇2
r + ∂

∂t

)
Pn(r, r′; t ) = δ(d )(r′ − r)δ(t ), (32)

where the diffusion constant D coincides with the limit of zero
order parameter for Ds of Eq. (26) (in which case vg → vF ).
We note that the factor vF /2πρ0vg appearing in Eqs. (29)
and (31) is due to the unconventional normalization used for
the probability. Since our main interest is the calculation of
the thermal conductivity, it is more convenient to directly
calculate the disorder-average product of Green’s function
which does not correspond to the normalized probability of
diffusion. More details on the normalization are given in
Appendix A. Equations (27) and (29) can also be obtained
in momentum space: by inverting matrix M̂ω(q), the calcu-
lation of both �̂ω(q) and P̂d,ω(q) is straightforward (see Ap-
pendix B). Relations between diffusion in the superconduct-
ing and normal states similar to Eq. (31) have been recently
obtained for energies below the gap and at ω = 0 [22]. We
note that such subgap (virtual) diffusion can mediate the
exchange interaction between two spin qubits tunnel coupled
to a superconductor [23].

FIG. 3. Diagrammatic representation of the diffuson (left) and
the cooperon (right). The cooperon corresponds to reversing one of
the trajectories that take part in the probability so that the impurities
are encountered in inverse order. The upper Green’s functions are
retarded while the lower ones are advanced.

C. Weak localization: The cooperon

After studying classical diffusion within the ladder approx-
imation, we now focus on the first quantum correction to
the probability of diffusion arising from localization effects
(the cooperon contribution). The cooperon matrix P̂c,ω(r, r′),
shown schematically next to the diffuson in Fig. 3, corre-
sponds to the quantum interference between two trajectories
covering the exact same path but in opposite directions. This
interference effect is reflected in the structure of the expres-
sion

P̂c,ω(r, r′) =
∫

dd r1

∫
dd r2

(
ĜR

E+ω(r, r1) ⊗ ĜA
E (r′, r1)T

)
× �̂c,ω(r1, r2)

(
ĜR

E+ω(r2, r′) ⊗ ĜA
E (r2, r)T

)
,

(33)

�̂c,ω(r1, r2) = γeÛv

[
δ(d )(r1 − r2) +

∫
dd r′′(ĜR

E+ω(r1, r′′)

⊗ ĜA
E (r1, r′′)T

)
�̂c,ω(r′′, r2)

]
. (34)

Since the disorder-averaged Green’s functions decay ex-
ponentially in real space [cf. Eq. (14)], it can already be
seen above that the cooperon is exponentially suppressed in
|r′ − r|/le. We can simplify Eq. (34) by noting that for a
time-reversal-invariant system, i.e., for ĜR

E (r, r′) = ĜR
E (r′, r),

it is identical to Eq. (16) and thus �̂c,ω(r1, r2) = �̂ω(r1, r2).
We now again assume the latter to vary slowly on the scale
of the mean-free path and thus make the approximation
�̂c,ω(r1, r2) ≈ �̂ω(r, r) in Eq. (33) which, neglecting terms of
order (ωτmin)2, (ωτmin)(le/λ)2, and higher, becomes approxi-
mately

P̂c,ω(r, r′) = F̂ (R)�̂ω(r, r)F̂ (R). (35)

Here, we define R = r′ − r and

F̂ (R) =
∫

dd r1 ĜR
E (r, r1) ⊗ ĜA

E (r′, r1)T

=
∫

dd k

(2π )d
eik·RĜR

E (k) ⊗ ĜA
E (−k)T , (36)

which can be calculated by direct integration using Eq. (11).
Note the similarity between Eqs. (17) and (35), which become
equivalent for r = r′, since 〈P̂0〉r = F̂ (0). In fact, there exists
a general relation between the cooperon and the diffuson of
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the form

P̂c,ω(r, r′) = P̂d,ω(r, r) f̂ (R), (37)

with f̂ (R) given explicitly in Appendix C.
In the following, we focus on Pqp

c,ω(r, r′) =
〈a−|P̂c,ω(r, r′)|a−〉, which will later be related to the thermal
conductivity. We find

Pqp
c,ω(r, r′) = Pqp

d,ω
(r, r) f qp(R), (38)

with

f qp(R) ≈

⎧⎪⎪⎨
⎪⎪⎩

1
2 e− R

le (1D),
1

πkF R e− R
le (2D),

1
2k2

F R2 e− R
le (3D),

(39)

where we have assumed kF R 	 1 and μ 	 ε, and we have av-
eraged fast oscillations over a spatial region of extension large
compared to the Fermi wavelength 1/kF but small compared
to the mean-free path le. The weak localization correction (38)
is a positive contribution to the probability of diffusion that
is negligible when R 	 le. Consequentially, particles have
an enhanced probability of returning to the origin. Due to
conservation of the total probability, this implies a reduced
probability of diffusion over long distances. This effect will
be seen as a decrease of the thermal conductivity in Sec. IV
and is qualitatively the same effect that the WL correction has
on the transport coefficients of a normal metal.

The condition for the validity of the diffusive approx-
imation ωτmin � 1 affects the return probability P̂d,ω(r, r).
Based on that condition, the diffusive behavior of the system
breaks down when considering very short timescales. On the
other hand, on long timescales diffusion is limited by the
phase-coherence time τφ (which can be related to the phase-
coherence length via Lφ = √

Dsτφ). The return probability at
zero frequency is then given by

P̂d (r, r) =
∫ τφ

τmin

dt P̂d (r, r; t ), (40)

where P̂d (r, r′; t ) is given in Eq. (31). Solving the diffusion
equation (32) in d-dimensional free space we obtain

Pqp
d (r, r′; t ) = 2πρ0vg

vF

1

(4πDst )d/2
e−R2/(4Dst ), (41)

where, as mentioned above, we focus for later use on the el-
ement Pqp

d (r, r′; t ) = 〈a−|P̂d (r, r′; t )|a−〉. Inserting this result
into Eq. (40) and performing the integral yields the return
probability at zero frequency

Pqp
d (r, r) = 4πρ0

D(4π )d/2
D1−d/2

s

⎧⎪⎪⎨
⎪⎪⎩

√
τφ − √

τmin (1D),

ln
( √

τφ√
τmin

)
(2D),

1√
τmin

− 1√
τφ

(3D).

(42)

This result is similar to the one for normal metals [13], but
there is a crucial difference: unlike in the normal state where
τmin = τe, in the superconducting state τmin of Eq. (20) is an
energy-dependent quantity (this holds also for Ds). The en-
ergy dependence is qualitatively different in the two regimes
separated by the energy E∗ [see Eq. (22)], and the energy E∗
itself takes different values in the clean and dirty regimes.

IV. THERMAL CONDUCTIVITY

In this section, we connect the results of the previous
section concerning particle propagation to the thermal con-
ductivity which is a physical observable. We obtain quantum
corrections to the known results for the Drude-Boltzmann
contribution [10]. In particular, we derive explicit results for
the weak localization correction to the thermal conductivity
in two dimensions. Interestingly, in the superconducting state
this correction displays a temperature dependence that differs
from that in the normal state [or its simple extension to be
discussed after Eq. (54)]. Different regimes arise depending
on the relations between temperature T , order parameter
�(T ), and the energy scale ε∗ = E∗ − �.

Our starting point is Kubo’s formula for the thermal con-
ductivity K (T ) [24]; it can be written in terms of a product of
Green’s functions [10]

K = 1

4πkBT 2m2

∫ ∞

�

dE
E2

cosh2
(

E
2kBT

) I, (43)

with1

I =
∫

dd k

(2π )d

dd k′

(2π )d
kxk′

xTr
[
τ3Im ĜR

E (k, k′)τ3Im ĜR
E (k′, k)

]
,

(44)

where kB is the Boltzmann constant and we take x as the
direction of the temperature gradient (and hence of heat
propagation in an isotropic material, to which we restrict
our attention). Its diagrammatic representation can be seen in
Fig. 4.

Using the above expression, we rewrite I = IA − ID as the
difference between two integrals with

IA = Re
∫

dd k

(2π )d

dd k′

(2π )d

kxk′
x

2
Tr

[
τ3ĜR

E (k, k′)τ3ĜA
E (k′, k)

]
,

(45)

ID = Re
∫

dd k

(2π )d

dd k′

(2π )d

kxk′
x

2
Tr

[
τ3ĜR

E (k, k′)τ3ĜR
E (k′, k)

]
.

(46)

In the regime μ 	 ε, � discussed after Eq. (13), we can
approximate kx ≈ kF ux, where u is the unit vector on the
Fermi surface, and similarly for k′

x. Therefore, only the rel-
ative angle between the two momenta k, k′ matters. Indeed,
we discuss below the dependence of the disorder-averaged
product of Green’s functions on the relative orientation of
k and k′. Once this dependence is known, the integrals IA

and ID can then be related to the so called A-type and D-
type diffusive modes, respectively [14]. The A-type modes
contribution IA is proportional to the probability of diffu-
sion P̂ω(r, r′) studied in Sec. III, and the D-type modes one

to P̂D
ω (r, r′) = ĜR

E+ω(r, r′) ⊗ ĜR
E (r′, r). In systems with time-

reversal symmetry it can be shown that the D-type modes do
not contribute to the thermal conductivity, i.e, ID = 0 [10].

1Note that the general expression for the Green’s functions in
momentum space depends on both the initial and final momentum
k and k′. The simplified expression given in 11 assumes that after
disorder averaging the Green’s functions are ∝δk,k′ .
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FIG. 4. (a) Diagrammatic representation of the Drude-
Boltzmann, diffuson, and cooperon contributions to the thermal
conductivity in a disordered system (K0, Kd , and Kc, respectively).
The arrowless lines represent superconducting Green’s functions
in Nambu space. The vertex contractions differentiate K from the
probability of diffusion (see Fig. 2). (b) Explicit representation of
the four different components arising from the vertex contractions.
These four terms correspond to the four superconducting Green’s
functions pairs obtained from the trace seen in Eq. (44).

With I = IA we can calculate the thermal conductivity using
the results from the previous section. We only briefly sketch
how to use those results here; more details on how to relate
transport coefficients to the propagation probability can be
found in Ref. [13].

As done for the total probability of diffusion, we distin-
guish three contributions to the thermal conductivity, K0, Kd ,
and Kc, which can be seen in Fig. 4(a). We define as such the
integrals I0, Id , and Ic such that, for i ∈ {0, d, c} we have

Ki = 1

4πkBT 2m2

∫ ∞

�

dE
E2

cosh2
(

E
2kBT

) Ii. (47)

The Drude-Boltzmann integral I0 represents propagation
in a disordered medium without any scattering event taking
place. In the absence of scattering, the initial and final mo-

menta of the Green’s functions are the same, with ĜR
E (k, k′) ⊗

ĜA
E (k′, k)T ∝ δ(d )(k − k′). Then, the angular integration in

momentum space is equivalent to taking the product of mo-
menta out of the integral as k2

F /d , and the relation between I0

and Pqp
0 (r, r′) can be obtained by going into real space, using

the Fourier transform for a translational-invariant system∫
dd k

(2π )d
ĜR

E (k) ⊗ ĜA
E (k)T =

∫
dd r′P̂0(r, r′). (48)

The Drude-Boltzmann integral is then

I0 = k2
F

d
Re

∫
dd r′Pqp

0 (r, r′), (49)

and using Eq. (18) [see also Eq. (B6)] we obtain I = k2
F /dγe.

Inserting the result into Eq. (43) we obtain the Drude-

Boltzmann contribution to the thermal conductivity

K0 = Dρ0

2kBT 2

∫ ∞

�

dE
E2

cosh2
(

E
2kBT

) , (50)

where D = vF le/d is the diffusion constant in the normal
state. This formula agrees with previous calculations [10]. It
is equivalent to the result in the normal state with the sole
difference that only states with energy E > � contribute. The
absence of states below the gap is reflected in the lower limit
of the integral and leads to the exponential suppression of K0

at temperatures kBT � �.
For the diffuson integral Id , we find simply Id = 0. This

result is valid for isotropic scattering by impurities: the initial
and final momenta of the Green’s functions (k and k′, respec-
tively) have uncorrelated directions after a large number of
scattering events, which leads to the vanishing of the angular
integration in Eq. (45). Anisotropic scattering would result in
the substitution of the scattering time τe with the transport
time in Eq. (50) [13] (τe enters that equation via the mean-free
path in the diffusion constant).

Similar considerations to those above make it possible to
relate Ic to Pqp

c (r, r′). The cooperon accounts for an enhanced
probability of a particle to return to its initial point; therefore,
its initial and final momenta will be approximately opposite
to each other. The integrand of Ic is then sharply peaked
around k = −k′, and can be approximated to be proportional
to δ(d )(k + k′).2 We again take the product of momenta out of
the integral, and going over to real space yields

Ic = −k2
F

d
Re

∫
dd r′Pqp

c (r, r′). (51)

After substituting Eq. (38) into the above expression we have

Ic = −k2
F

d
Re Pqp

d (r, r)
∫

dd R f qp(R). (52)

Using the expressions for f qp(R) given in Eq. (39), we find
that for all dimensions∫

dd R f qp(R) = τe

πρ0
, (53)

and inserting these results into Eq. (43), we arrive at

Kc = − D

4π2kBT 2ρ0

∫ ∞

�

dE
E2

cosh2
(

E
2kBT

)Pqp
d (r, r), (54)

where the return probability Pqp
d (r, r), given by Eq. (42), is

a function of energy E . This energy dependence leads to a
temperature dependence of Kc which we study in the follow-
ing for two dimensions. We note that it is crucial to retain
this energy dependence. Neglecting the energy dependence
of the return probability, we would find the incorrect result
Kc/K0 = −Pqp

d (r, r)/2π2ρ2
0 and the temperature dependence

of Kc would simply follow from the one in the normal state.

2This result can be obtained mathematically by calculating the
structure factor for the cooperon in momentum space. It has a peak
at k + k′ = 0, with Γ̂c,ω(k + k′) = Γ̂ω(k + k′), where Γ̂ω(q) is defined
in Eq. (B2); see also Ref. [13].
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A. Regimes for the WL correction to the thermal conductivity

As remarked above, the dependence of the return probabil-
ity Pqp

d (r, r) on energy makes it possible for the WL correction
Kc to the thermal conductivity to have a temperature depen-
dence that differs from that of the main (Drude-Boltzmann)
contribution K0. Here, we explore when such a deviation takes
place and under which conditions it could be observable.
To this aim, let us introduce the temperature T� defined by
kBT� = �(T�); for our purposes, the temperature dependence
of the gap on temperature is approximately captured by the
interpolation formula [25]

�(T ) ≈ 1.76kBTc tanh

(
1.74

√
Tc

T
− 1

)
, (55)

with Tc the critical temperature of the superconductor. From
this expression we find T� ≈ 0.9Tc. Clearly, both K0 and Kc

are exponentially suppressed in the low-temperature regime
T � T� [see Eqs. (50) and (54)], making their accurate mea-
surement challenging. Therefore, the high-temperature regime
T� � T < Tc is most relevant in order to observe the effects
of weak localization. For completeness, we consider both
regimes below (details of the calculations are presented in
Appendix D).

A second relevant temperature scale, denoted by T∗, can
be defined via the equation kBT∗ = ε∗(T∗), where ε∗ depends
on temperature through the gap �(T ) [see Eq. (22)]. For
dirty superconductors, τe�(0) � 1, we have T∗ � Tc, while
for clean ones, τe�(0) 	 1, we find T∗ � Tc, indicating that
qualitatively different behaviors can be expected in the two
cases. Finally, with regard to the effect of phase coherence
on Kc, we consider two possibilities, namely, an energy-
independent coherence time τφ or an energy-independent
coherence length Lφ = √

DSτφ . These two possibilities are
equivalent in the normal state, but in the superconducting one
they are not, due to the energy dependence of the diffusion
constant DS [Eq. (26)].

1. High-temperature regime

In the high-temperature regime T � T�, in order to find the
leading contributions to the heat conductivity, we approximate
kBT 	 �. Then, the WL correction in this regime does not
depend on the gap �. Moreover, for a superconductor in the
clean limit, since ε∗ � �, the relative correction coincides
with the one in the normal state3

Kc

K0
= −1

πkF le

{
ln

( τφ

τe

)
(τφ fixed),

2 ln
( Lφ

le

)
(Lφ fixed).

(56)

The same expressions hold for a dirty superconductor suf-
ficiently close to Tc, so that ε∗ � kBT , but since, as mentioned
above, T∗ � Tc, this result has very limited applicability. More
interestingly, there exists an intermediate regime T� � T �

3We note that sufficiently close to Tc, a crossover from clean to
dirty takes place when �τe ∼ 1. However, the condition ε∗ � T is
met, which ensures the validity of our results (see also the discussion
for the dirty case).

T∗, in which the WL correction depends on the ratio kBT/ε∗:

Kc

K0
= −1

πkF le

{
ln

( τφ

τe

) − 2 ln
(

ε∗
kBT

)
(τφ fixed),

2 ln
( Lφ

le

) − 2 ln
(

ε∗
kBT

)
(Lφ fixed).

(57)

Note that, in the high-temperature regime, the temperature
dependence of the WL correction is insensitive to the as-
sumption of energy-independent dephasing time vs length;
this can be traced back to the fact that at the relevant energy
scale (given by temperature), we have for the group velocity
vg ≈ vF [see Eq. (19)].

2. Low-temperature regime

In the low-temperature regime T � T� we have kBT � �,
which results in the exponential suppression of both K0 and
Kc discussed above. Their ratio, however, is not exponentially
suppressed. Indeed, the WL correction for a dirty supercon-
ductor is given by

Kc

K0
= −1

πkF le

⎧⎨
⎩

ln
( τφ

τe

) − ln
( ε2

∗
�kBT

)
(τφ fixed),

2 ln
( Lφ

le

) − ln
( ε2

∗
�3/2

√
kBT

)
(Lφ fixed).

(58)

In both cases, at the crossover temperature T� the correc-
tion agrees with that found in the high-temperature regime.
However, the temperature dependence is now sensitive to the
assumption of energy-independent dephasing time/length.

For a clean superconductor in the regime T∗ < T < T�, the
normalized WL correction is

Kc

K0
= −1

πkF le

{
ln

( τφ

τe

) − 1
2 ln

(
�

kBT

)
(τφ fixed),

2 ln
( Lφ

le

)
(Lφ fixed).

(59)

We note that, according to Eqs. (56) and (59), for T > T∗
and assuming energy-independent dephasing length, the WL
correction in the clean case coincides with that in the normal
state. This finding resembles that for the WL correction to the
heat conductance of superconductor/normal/superconductor
junctions with short (shorter than dephasing length) normal
part in the absence of phase gradient and gap differences [12].
In that case, the latter two assumptions ensure that the trans-
mission probability of quasiparticles excitations through the
junction is independent of energy. Similarly here, the assump-
tions of energy-independent dephasing length and sufficiently
high temperature ensure that the return probability of Eq. (42)
is energy independent over the relevant energy range. For a
clean superconductor, there exists also a regime where kBT �
ε∗, where this energy independence does not hold. This regime
is calculated in Appendix D, but we do not discuss it here
further as it has a limited validity at temperatures where the
thermal conductivity is strongly suppressed.4

V. SUMMARY AND DISCUSSION

In this work, we have calculated the weak localization
correction to the thermal conductivity in conventional disor-
dered superconductors. As our starting point, we have studied

4We stress that all the results of this section are valid only under
certain conditions on τφ or Lφ , explained in Appendix D, which
ensure that the sum of the logarithms is positive.
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diffusion with the help of a general formalism based on semi-
classical Green’s functions and their corresponding matrix
expressions in Nambu space (see Sec. III). The formalism can
be straightforwardly expanded to tackle systems with different
symmetries; as an example, in Appendix E we investigate
diffusion in the presence of weak spin-orbit scattering.

The thermal conductivity K can be obtained from the
probability of diffusion and, similarly to the calculation of
electrical conductivity in the normal state, the weak localiza-
tion correction can be related to the cooperon Pqp

c (r, r′) (see
Sec. III C). In fact, the correction always reduces the thermal
conductivity which is consistent with the results for electrical
conductivity in normal metals [13,26]. Our calculations in
Sec. III show that diffusion is reduced as the probability of
return to the origin is increased due to WL.

As the temperature decreases below the critical tempera-
ture, the thermal conductivity is suppressed due to the opening
of the gap � in the density of states; this leads to the well-
known exponential suppression of K at temperatures T �
T� ≈ 0.9Tc. Interestingly, we find that the WL correction is
affected not only by the gap, but also by a second energy scale
ε∗ related to both the gap and the impurity scattering time
τe [see Eq. (22)]. This energy scale encodes the fact that the
onset of diffusion takes longer and longer times as the energy
approaches the gap (while being limited only by the scattering
time in the normal state); similarly, the diffusion constant
decreases as energy decreases toward the gap [Eq. (26)]. As
a consequence, by lowering temperature the probability of
return to the origin is decreased compared to the normal state,
and the magnitude of the WL correction decreases.

For both clean (τe� 	 1) and dirty (τe� � 1) supercon-
ductors, we have considered the high- (T > T�) and low-
(T < T�) temperature regimes, as summarized in Fig. 5 for
two dimensions. We highlight the regime T� ≈ 0.9Tc < T <

T∗ ≈ Tc, which exists only in dirty superconductors, as the
most interesting for the experimental verification of our re-
sults. In this temperature range, the thermal conductivity is
not yet exponentially suppressed but, at the same time most
of the decrease in the magnitude of the WL correction has
taken place [see Fig. 5(a) and Eq. (57)]. This result holds
independently of the assumptions made about the dephasing
mechanism which we have only treated at a phenomenolog-
ical level. At the temperature T� the reduction of the weak
localization correction is proportional to ln(1/τe�) and is
therefore parametrically large; such a reduction is measurable
on top of other contributions to the thermal conductivity (for
example, due to phonons) which are smooth in this temper-
ature window. Moreover, such a temperature dependence of
the WL correction is peculiar to the superconducting state
and differentiates it from the normal state, in which another
quantity (usually, magnetic field) needs to be tuned in order to
measure the WL correction.

An interesting question for future research is the general-
ization of the approach presented here to calculate transport
properties in disordered d-wave superconductors [27–29], for
which the weak localization correction to thermal conductiv-
ity has so far been considered only in the mixed state [30].
For both s- and d-wave superconductors, calculating the effect
of Zeeman splitting on the WL correction could also afford
another avenue to experimentally check our theory.

FIG. 5. Schematic representation of the normalized weak local-
ization correction −Kc/K0 as a function of temperature for an s-wave
superconductor in the (a) dirty limit, where T∗ ≈ Tc and (b) clean
limit, where T∗ � Tc. The blue color highlights the behavior in
the low-temperature regime T < T�, and the red color in the high-
temperature one. The solid lines represent the results for energy-
independent coherence time (fixed τφ) and the dashed lines (in red
and blue color) for energy-independent coherence length (Lφ fixed).
The horizontal dashed black line represents the normalized weak
localization correction in the normal state [see Eq. (56)].
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APPENDIX A: NORMALIZATION OF THE
DIFFUSION PROBABILITY

To discuss the normalization of the probability we consider
particle conservation: in a superconducting system, the num-
ber of electrons plus the number of holes must be conserved.
Let us define the two probabilities

Pe,ω(r, r′) = GR
E+ω(r, r′)GA

E (r′, r) − F R
E+ω(r, r′)F̄ A

E (r′, r),

(A1)

Ph,ω(r, r′) = ḠR
E+ω(r, r′)ḠA

E (r′, r) − F̄ R
E+ω(r, r′)F A

E (r′, r).

(A2)

Here, Pe,ω(r, r′) is the probability that an electron propagates
from r to r′ plus the probability that said electron converts
into a hole at some point during the trajectory. Ph,ω(r, r′) is
the equivalent for holes. These two quantities are related to
P̂ω(r, r′) by

〈a−|P̂ω(r, r′)|a−〉 = 1
2 [Pe,ω(r, r′) + Ph,ω(r, r′)]. (A3)
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We can define the normalized probabilities Pe,ω(r, r′) =
APe,ω(r, r′) and Ph,ω(r, r′) = APh,ω(r, r′) such that

〈Pe,ω〉r = 〈Ph,ω〉r = i

ω
, (A4)

which is the Fourier transform into frequency space of the
normalization condition∫

dd r′Pe,ω(r, r′; t ) =
∫

dd r′Ph,ω(r, r′; t ) = 1. (A5)

Let us now consider the diffusion equation followed by
Pqp

d,ω
(r, r′) ≡ 〈a−|P̂d,ω(r, r′)|a−〉, given by the first element of

Eq. (29):

vF

2πρ0vg

(−Ds∇2
r − iω

)
Pqp

d,ω
(r, r′) = δ(d )(r′ − r). (A6)

After spatial integration, we find the normalization factor A =
vF /2πρ0vg.

APPENDIX B: SUPERCONDUCTING DIFFUSON
IN MOMENTUM SPACE

To work in momentum space, we start by taking the Fourier
transform (23). The Laplace operator ∇2

r becomes the relative
momentum squared q2, and M̂ω(q) can be inverted to obtain

�̂ω(q) = γeM̂ω(q)−1. (B1)

After calculating the inverse of M̂ω(q) explicitly, we can
simplify it in the diffusive regime discussed in Sec. III B,
and �̂ω(q) is reduced to a rank-two matrix whose nonzero
elements correspond to Γ̂ω(q) = γeM̂ω(q)−1, given in the basis
B2 = {|a−〉, cos(θ )|a+〉 + sin(θ )|b+〉} by

Γ̂ω(q) = γe

τs

( 1
Dsq2−iω 0

0 E2+�2

ε2
1

Dsq2−iω

)
. (B2)

The diffuson, given by

P̂d,ω(q) = P̂0,ω(q)�̂ω(q)P̂0,ω(q), (B3)

can be approximated in the limit of small relative momentum
q and relative frequency ω as

P̂d,ω(q) = P̂0(0)�̂ω(q)P̂0(0), (B4)

where P̂0(q = 0) = 〈P̂0〉r, given in the original Nambu basis
[defined after Eq. (8)] by

〈P̂0〉r = 1

2γeε2

⎛
⎜⎜⎜⎝

2E2 − �2 −�E −�E �2

−�E �2 �2 −�E

−�E �2 �2 −�E

�2 −�E −�E 2E2 − �2

⎞
⎟⎟⎟⎠,

(B5)

and in its eigenbasis B̃ by

〈P̂0〉r = 1

γe

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 E2+�2

ε2 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠. (B6)

The diffuson can then be calculated by direct matrix multipli-
cation. We obtain

P̂d (q) = 1

τs

1

Dsq2 − iω
〈P̂0〉r, (B7)

which corresponds to a rank-two matrix that can be written as

P̂d,ω(q) = 2πρ0vg

vF

( 1
Dsq2−iω 0

0 E2+�2

ε2
1

Dsq2−iω

)
(B8)

in the basis B̃2 = {|a−〉, cos(θ )|a+〉 − sin(θ )|b+〉)}. This is
again equivalent to the result obtained by solving Eq. (29)
after performing a Fourier transform into momentum space.

APPENDIX C: SUPERCONDUCTING COOPERON

Here, we work out explicitly the relation between cooperon
and diffusion in the superconducting state. Since we are inter-
ested in the diffusive regime, the matrix �̂c,ω(r, r) = �̂ω(r, r)
can be simplified as a 2 × 2 matrix that follows Eq. (27) in the
subspace spanned by B2 = {|a−〉, cos(θ )|a+〉 + sin(θ )|b+〉}.
As done in Eq. (28), we rewrite Eq. (35) as

P̂c,ω(r, r′) = F̂v (R)Γ̂ω(r, r)F̂ T
v (R), (C1)

where F̂v (R) is defined, similarly to P̂v , as the matrix contain-
ing the first two columns of F̂ (R) in the B basis. By substi-
tuting the expression for Γ̂ω(r, r) as a function of P̂d,ω(r, r)
obtained from Eq. (28), we find

P̂c,ω(r, r′) = Â(R)P̂d,ω(r, r)Â(R)T , (C2)

where

Â(R) = γ 2
e F̂v (R)P̂T

v . (C3)

The matrix Â(R) is, like P̂d,ω(r, r), a rank-two matrix whose
only nonzero terms exist in the subspace spanned by the
basis B̃2 = {|a−〉, cos(θ )|a+〉 − sin(θ )|b+〉)}. The cooperon
P̂c,ω(r, r′) will therefore also share this property, and we can
work with Eq. (C2) in the B̃2 basis subspace to ensure the
invertibility of all terms involved and simplify the calculation.
We write this as

P̂c,ω(r, r′) = Â(R)P̂d,ω(r, r)Â(R)T , (C4)

where use of the sans serif fonts denotes the projection into
the 2 × 2 subspace. We deduce from Eq. (29) that P̂d,ω(r, r)
is diagonal and proportional to the matrix diag[1, ε2/(E2 +
�2)] in the B̃2 basis. We can then write in this basis

P̂c,ω(r, r′) = P̂d,ω(r, r)f̂(R), (C5)

where

f̂(R) =
(

1 0

0 E2+�2

ε2

)
Â(R)

(
1 0

0 ε2

E2+�2

)
Â(R)T . (C6)

The equation in the full 4 × 4 space can be obtained by
expanding every matrix into the full B̃ basis by filling in zeros
in all the other elements of the matrix to obtain

P̂c,ω(r, r′) = P̂d,ω(r, r) f̂ (R). (C7)
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In the two-dimensional case, we have, in the B̃2 basis

f̂(R) = e−R/le
1

πkF R

⎛
⎝ cos2

(
khR − π

4

) + cos2
(
keR − π

4

) √
E2+�2

ε

[
cos2

(
khR − π

4

) − cos2
(
keR − π

4

)]
ε√

E2+�2

[
cos2

(
khR − π

4

) − cos2
(
keR − π

4

)]
cos2

(
khR − π

4

) + cos2
(
keR − π

4

)
⎞
⎠, (C8)

where ke = kF + ε/vF and kh = kF − ε/vF . We note that in
contrast to P̂d,ω(r, r′), this matrix is not diagonal in the B̃
basis; that is, we have not fully separated the two low-energy
modes. However, we work in the limit μ 	 ε, where the small
difference in the frequency of oscillation between electrons
and holes is negligible. The fast oscillations average out
when integrating over a length long compared to the Fermi
wavelength but small compared to the mean-free path, so that
we can obtain an approximate formula for f̂(R) by replacing
cos2(keR − π/4) ≈ cos2(khR − π/4) ≈ 1/2. In this approxi-
mation, the proportionality factor between the cooperon and
the return probability P̂d,ω(r, r) [see Eq. (38)] is the same as
in the normal state.

APPENDIX D: EVALUATION OF THE WEAK
LOCALIZATION CORRECTION

The energy-dependent return probability Pqp
d (r, r), given in

Eq. (42), has different behaviors below and above E∗ [see the
definition of τmin in Eq. (21)]. Accordingly, the energy integral
for the WL correction to the thermal conductivity, Eq. (54), is
split into two parts,

Kc = − 1

8π2kBT 2
(I1 + I2), (D1)

which in two dimensions are explicitly

I1 =
∫ E∗

�

dE
E2

cosh2
(

E
2kBT

) ln

[
τφ (E2 − �2)

�

]
(D2)

and

I2 =
∫ ∞

E∗
dE

E2

cosh2
(

E
2kBT

) ln

(
τφ

√
E2 − �2

τeE

)
. (D3)

Below, we consider two situations: energy-independent
phase-coherence time τφ and energy-independent phase-
coherence length Lφ = √

Dsτφ . These two scenarios are
equivalent in the normal state, but yield different results in
the superconducting one. We note that, strictly speaking, the
lower integration limit of I1 is not � but, in the diffusion
approximation, the quantity �∗ defined by requiring that, for
the left-hand side of Eq. (40) to be nonzero, τφ > τmin. For
energy-independent phase time, under the usual assumption
that τφ 	 τe (needed for the general applicability of the
diffusive approximation [31]), we find for �∗ the equation
�2

∗ = �(1/τφ + �); thus, for τφ 	 1/�, we have �∗ ≈ �,
an approximation that is valid for temperature not too close to
absolute zero, kBT 	 1/τφ (at lower temperatures, the WL
correction is, with logarithmic accuracy, absent, since the
modes with energy between � and �∗ are not diffusive). The
same approximation is valid in the case of energy-independent
phase length (assumed to be long compared to the mean-
free path le) under the condition Lφ 	 ξ , with ξ = √

leξ�,

where ξ� = vF /� is the BCS coherence length for a clean
superconductor.

1. Energy independent τφ

It is convenient to rewrite I1 + I2 = In + Iε∗ + I3 with

In =
∫ ∞

�

dE
E2

cosh2
(

E
2kBT

) ln

(
τφ

τe

)
, (D4)

Iε∗ =
∫ E∗

�

dE
E2

cosh2
(

E
2kBT

) ln

(
E

√
E2 − �2

E∗
√

E2∗ − �2

)
, (D5)

I3 =
∫ ∞

�

dE
E2

cosh2
(

E
2kBT

) ln

(√
E2 − �2

E

)
, (D6)

where we have used the identity

τe = �

E∗(E2∗ − �2)1/2
, (D7)

which follows from the definition of E∗ [see Eq. (22)].
The integral in Eq. (D4) is defined such that its contribution

to the relative correction to the thermal conductivity Kc/K0

coincides with that in the normal state [see Eq. (56)]. The
other two integrals are then responsible for the temperature-
dependent deviations from the normal-state expression. We
compute I3 and Iε∗ for different temperature regimes with
logarithmic accuracy; note that only Iε∗ depends on the dis-
order strength. We first consider the low-temperature regime
T � T� for both the dirty and the clean case, and later the
high-temperature regime T � T�.

a. Low-temperature regime

In the low-temperature regime, since we have kBT �
� the hyperbolic cosine can then be approximated as
1/ cosh2(E/2kBT ) ≈ 4e−E/kBT . Introducing the dimension-
less integration variable α = (E − �)/kBT and keeping only
the leading term in the small parameter kBT/�, we find

I3 ≈ C

2

∫ ∞

0
dα e−α ln

(
2kBT

�
α

)
= C

2
ln

(
2e−γE

kBT

�

)
(D8)

with C = 4kBT �2e−�/kBT and γE � 0.5772 . . . the Euler-
Mascheroni constant.

For the integral Iε∗ we can proceed with the same approx-
imation for the hyperbolic cosine and the same change of
integration variable to get

Iε∗ ≈ C

2

∫ α∗

0
dα e−α ln

α(
1 + kBT

�
α∗

)2(
1 + kBT

2�
α∗

)
α∗

, (D9)

where α∗ = ε∗/kBT . We must now treat separately the disor-
dered (τe� � 1) and clean (τe� 	 1) cases. In the disordered
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case we have α∗ 	 �/kBT 	 1 and we obtain

Iε∗ ≈ C

2

∫
0
dα e−α ln

2�3α

(kBT )3α4∗
= C

2
ln

(
2e−γE �3kBT

ε4∗

)
.

(D10)

The sum of Eqs. (D8) and (D10) leads with logarithmic
accuracy to the last term in the top line of Eq. (58).

In the clean case, since α∗kBT/� � 1, the integral simpli-
fies to

Iε∗ ≈ C

2

∫ α∗

0
dα e−α ln

α

α∗
. (D11)

At very low temperatures such that kBT � ε∗ we can extend
the upper integration limit to infinity and thus find a loga-
rithmic contribution of the form Iε∗ ≈ C ln (e−γE kBT/ε∗)/2;
we also note here that for this contribution to be present
the condition τφ 	 1/� mentioned above is not sufficient,
and a more stringent one (τφ 	 τ 2

e �), obtained from de-
manding E∗ 	 �∗, is needed. At intermediate temperatures
ε∗ � kBT � kBT�, on the other hand, there is no logarithmic
contribution from Iε∗ and hence the last term in the top line of
Eq. (59) is determined solely by Eq. (D8).

b. High-temperature regime

In the high-temperature regime T � T�, we can approxi-
mate kBT 	 �. The integral I3 ∼ kBT �2 has then no loga-
rithmic parameter dependence and can be neglected in com-
parison to In ∼ (kBT )3 ln (τφ/τe). For Iε∗ we must again con-
sider the various regimes separately. However, for kBT large
compared to E∗ (which is always true in the clean case at high
temperatures, while it would require T in the narrow range
between T∗ and Tc for the dirty case), we can approximate the
hyperbolic cosine with unity; then Iε∗ becomes independent
of temperature and displays no logarithmic parameter depen-
dence; thus, as I3 above, Iε∗ can be neglected in comparison to
In and we arrive at the result in the top line of Eq. (56).

We are left with the dirty case in the regime T� � T � T∗.
Then, � is small compared to both E∗ and the typical energy
E ∼ T , so that we can write

Iε∗ ≈
∫ E∗

�

dE
E2

cosh2
(

E
2kBT

) 2 ln

(
E

E∗

)
(D12)

which, with logarithmic accuracy, is

Iε∗ = IK0 2 ln

(
kBT

ε∗

)
(D13)

with

IK0 =
∫ ∞

�

dE
E2

cosh2
(

E
2kBT

) . (D14)

Since we can also write In = IK0 ln (τφ/τe), the sum In + Iε∗
leads to the top line in Eq. (57).

2. Energy independent Lφ

In the previous section, we assumed the phase-coherence
time to be independent of energy. Since the group velocity
vg [Eq. (19)] in a superconductor and hence the diffusion
constant Ds [Eq. (26)] are energy dependent, such a choice for

the phase-coherence time leads to an energy-dependent phase-
coherence length. As an alternative scenario, we consider here
a constant phase-coherence length, expressed in terms of the
dephasing time and diffusion constant as Lφ = √

Dsτφ . This
choice now leads to an energy-dependent phase-coherence
time τφ = L2

φ/levg. We substitute this expression for τφ to-
gether with τe = le/vF in Eqs. (D2) and (D3) to rewrite the
integrals in terms of length scales rather than timescales. We
obtain I1 + I2 = In + Iε∗ , with

In =
∫ ∞

�∗
dE

E2

cosh2
(

E
2kBT

) ln

(
L2

φ

l2
e

)
(D15)

and Iε∗ as defined in Eq. (D5). The expressions for the different
regimes can then be easily obtained using the results for Iε∗
in the preceding part of the Appendix. Here, we only note
that the condition for the presence of the Iε∗ contribution in
the clean case for the lowest-temperature regime T � T∗ [see
discussion after Eq. (D11)] can be written as Lφ 	 le.

APPENDIX E: WEAK ANTILOCALIZATION:
SPIN-ORBIT SCATTERING

In this Appendix, we study weak antilocalization [32] in
the presence of spin-orbit scattering in disordered s-wave
superconductors. To properly account for spin, we now define
the Nambu vector as [cf. Eq. (2)]

�k =

⎛
⎜⎜⎜⎜⎝

ck↑
ck↓

T

[
ck↑
ck↓

]
⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ck↑
ck↓

c†−k↓
−c†−k↑

⎞
⎟⎟⎟⎟⎠. (E1)

The full Nambu space is then the product between the space
spanned by {|e〉, |h〉} (the basis used in the main text) and
the spin space spanned by {|↑〉, |↓〉}; the Pauli matrices τi

and σi act, respectively, on these two subspaces. The spin-
orbit scattering can be expressed as an additional term in the
Hamiltonian in the form [13]

ĤSO
αα′ (k, k′) = iV SOσαα′ · (uk × uk′ ) ⊗ τ3, (E2)

where V SO is the strength of the spin-orbit scattering potential,
uk = k/k, the components of the operator σ are the Pauli
matrices {σx, σy, σz} and σαα′ = 〈α′|σ|α〉 with α, α′ ∈ {↑,↓}.
The full disorder potential now takes the form V̂αα′ (k, k′) =
Vαα′ (k, k′) ⊗ τ3 with

Vαα′ (k, k′) = V0δαα′ + iV SOσαα′ · (uk × uk′ ). (E3)

This leads to a new disorder parameter γtot =
〈|Vαα′ (k, k′)|2〉k′ = γe + γSO, with γSO = 1/2πρ0τSO, where
τSO is the spin-orbit scattering time and γe has been defined
at the end of Sec. II.

The disorder-averaged superconducting Green’s function
can be generalized to the full Nambu space as

ĜR,A
E =

⎛
⎝GR,A

E F R,A
E

F̄ R,A
E ḠR,A

E

⎞
⎠ ⊗ σ0, (E4)
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and the diffuson and the cooperon can be calculated following
a procedure similar to the one used in Sec. III. We define

p̂SO
d,ω(r, r′) = 〈

P̂SO
0

〉
r�̂

SO
ω (r, r′)

〈
P̂SO

0

〉
r, (E5)

p̂SO
c,ω(r, r′) = F̂ SO(R)�̂SO

c,ω(r, r)F̂ SO(R), (E6)

which generalize Eqs. (17) and (35), respectively. We use
lower case ps to emphasize that not all elements of these ma-
trices correspond to diffusons and cooperons, as we will later
see. The terms that do not take collisions into account, i.e.,
〈P̂SO

0 〉r and F̂ SO(R), are related to those in the absence of spin-
orbit scattering by 〈P̂SO

0 〉r = 〈P̂0〉r ⊗ σ0 ⊗ σ0 and F̂ SO(R) =
F̂ (R) ⊗ σ0 ⊗ σ0; here 〈P̂0〉r and F̂ (R) are as those defined in
Eqs. (18) and (36), respectively, but with γtot replacing γe. The
equations followed by the structure factors are now given by

M̂SO
ω (r)�̂SO

ω (r, r′) = γeδ
(d )(r′ − r), (E7)

M̂SO
c,ω(r)�̂SO

c,ω(r, r′) = γeδ
(d )(r′ − r). (E8)

The diffusion matrices M̂SO
ω (r) and M̂SO

c,ω(r) are each defined
by an equation similar to Eq. (24), but substituting 〈P̂0〉r by
〈P̂SO

0 〉r and Ûv by the potential matrices Û SO
v and Û SO

c,v . The
potential matrices are no longer equivalent for the diffuson
and the cooperon due to the different spin and momenta rela-
tions between the retarded and advanced Green’s functions in
the two cases. They are given by

Û SO
v = Ûv ⊗ ûSO, (E9)

Û SO
c,v = Ûv ⊗ ûSO

c , (E10)

with the (normal metal [13]) matrices ûSO and ûSO
c given in the

basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} by

ûSO =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ + γSO

3γe

⎛
⎜⎜⎝

1 0 0 2
0 −1 0 0
0 0 −1 0
2 0 0 1

⎞
⎟⎟⎠,

(E11)

ûSO
c =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ − γSO

3γe

⎛
⎜⎜⎝

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎞
⎟⎟⎠.

(E12)

Here, each element 〈γ δ|ûSO|αβ〉 and 〈γ δ|ûSO
c |αβ〉 with

α, β, γ , δ ∈ {↑,↓} relates the spins of the Green’s functions
before and after interacting with an impurity, as depicted in
Fig. 6. After obtaining �̂SO

ω (r, r′) and �̂SO
c,ω(r, r) from Eqs. (E7)

and (E8), the matrices p̂SO
d,ω(r, r′) and p̂SO

c,ω(r, r′) can be calcu-
lated using Eqs. (E5) and (E6).

FIG. 6. Elementary vertex with spin-orbit impurity scattering for
the diffuson (left) and Cooperon (right).

Not all terms in p̂SO
d,ω(r, r′) and p̂SO

c,ω(r, r′) represent dif-
fusons or cooperons. The trajectories represented by the re-
tarded and advanced Green’s functions in the diffuson and the
cooperon are not independent and their spin configurations
are related. The diffuson, for instance, is composed by a
time-reversed pair of trajectories; this implies that α = β and
γ = δ. We can obtain the diffuson by summing over the final
spin configuration while taking this constraint into account. In
this way we recover a 4 × 4 matrix in Nambu space, similar
to P̂d,ω of Sec. III, where each element now accounts for the
probability of propagation with and without spin flip. The
diffuson for a particle with initial spin α is given by

〈i′, j′|P̂SO
d,ω(r, r′)|i, j〉 =

∑
β

〈i′β, j′β | p̂SO
d,ω(r, r′)|iα, jα〉, (E13)

where |i〉, | j〉 ∈ {|e〉, |h〉} and |iα〉, | jα〉 ∈ {|e〉 ⊗ |α〉, |h〉 ⊗
|ᾱ〉} with α ∈ {↑,↓} and ᾱ �= α. The cooperon also accounts
for the probability of propagation with and without spin flip;
however, the conditions on the spins are different since the
advanced Green’s function (lower line in Fig. 6) now covers
the trajectory in the opposite direction. It is now necessary that
α = δ and γ = β, and the cooperon contribution for a particle
with initial spin α is given by

〈i′, j′|P̂SO
c,ω(r, r′)|i, j〉 =

∑
β

〈i′α, j′β | p̂SO
c,ω(r, r′)|iβ, jα〉. (E14)

Direct calculation (cf. Ref. [13]) shows that spin-orbit scat-
tering does not affect the diffuson, P̂SO

d,ω(r, r′) = P̂d,ω(r, r′),
while the cooperon is now qualitatively different, with

P̂SO
c,ω(r, r′) = − 1

2 P̂c,ω(r, r′). (E15)

As a consequence, in the presence of spin-orbit scattering the
quantum correction to the thermal conductivity is

KSO
c

KSO
0

= −1

2

Kc

K0
, (E16)

where Kc/K0 is the correction calculated in Sec. IV. This
correction, known as WAL effect, increases the total thermal
conductivity and is due to destructive interference between
self-crossing paths.
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