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The scattering cancellation technique (SCT) has proved to be an effective way to render static objects invisible
to electromagnetic and acoustic waves. However, rotating cylindrical or spherical objects possess additional
peculiar scattering features that cannot be canceled by regular SCT-based cloaks. Here, a generalized SCT theory
to cloak spinning objects, and hide them from static observers, based on rotating shells with different angular
velocity is discussed. This concept is analytically and numerically demonstrated in the case of cylinders, showing
that the generalized SCT operates efficiently in making rotating objects appear static to an external observer. Our
proposal extends the realm of SCT and brings it one step closer to its practical realization that involves moving
objects.
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I. INTRODUCTION

Inspired by the concept of photonic crystals [1–4] and
photonic crystal fibers [5–8], a new class of acoustic materials
has emerged during the 1990s. These so-called phononic
crystals (PCs) consist of a periodic arrangement of at least
two materials with different densities [9–12]. These materials
were shown to possess a frequency range over which sound-
wave propagation is prohibited (phononic band gap) [9,10].
These forbidden bands can also result in singular properties of
sound waves, e.g., negative refraction at the interface between
a classical medium and a phononic crystal [13–15], ultrasound
tunneling [16], or tunable filtering and demultiplexing [17], to
cite a few [18–23]. These PCs are difficult to miniaturize, as
the band gap appears at wavelengths in the same order as the
period of the PCs, meaning a low-frequency band gap requires
a large PC [24,25]. To overcome this major hurdle, active
research has been directed towards other concepts involving
local resonances [26,27] that best operate when the periodicity
is much smaller than the wavelength (this is the so-called
quasistatic or long-wavelength limit). For instance, composite
structures formed by locally resonating meta-atoms, so-called
metamaterials (MMs), made their appearance at the turn of
the century, both for electromagnetic [28–31] and acoustic
[32] waves. Based on analogies drawn from optical MMs, an
acoustic MM consists of a heterostructure formed of resonant
inclusions having characteristic dimensions smaller than the
wavelength of the wave propagating in the medium and vi-
brating on their natural modes of resonance [33].

Controlling the propagation of waves using these engi-
neered MMs is thus a considerable opportunity [34,35]. For
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example, we can protect buildings from seismic waves [36,37]
or tsunamis [38–41] by means of a large-scale metamaterials,
which may guide the acoustic/elastic energy out of the area
to be protected and may considerably attenuate the amplitude
of the impinging waves or enhance and harvest their energy
[42,43]. Defense applications are potentially very important
as well, with the possibility, for example, of fabricating
stealth systems (invisibility cloaks) [35]. The term “invisibil-
ity cloak” designates a coating whose material parameters,
determined by the optical transformation process, make it
possible to deflect any electromagnetic or elastodynamic wave
[44–46]. If we place an object in the isolated interior area, then
no incident wave can interact with this object, since the cloak
detours wave trajectories around it in such a way that for any
external observer the field appears to be undisturbed. In other
words, the object is both undetectable (invisible) and pro-
tected. Note that the concept of invisibility is distinct from that
of stealth [47]. The primary purpose of a stealth coating is to
cancel the reflection coefficient in certain directions (typically
those of a detection antenna). To do this, the idea is to absorb
the incident waves or to reflect them to another direction.
Interestingly, some species of moths have acquired dynamic
acoustic camouflaging features thanks to some microstruc-
tures reminiscent of metamaterial surfaces [48]. Conversely,
in an invisible device, we cancel both the reflection coefficient
and the absorption, and we make the transmission coeffi-
cient ideally unitary. The object included in the coating has
then a zero electromagnetic/acoustic size and further has no
“shadow” [35]. Other cloaking strategies were subsequently
proposed through homogenization [49–51], and/or scattering
cancellation technique (SCT) [52,53], and even suggested for
other types of waves [54–56].

All the above-mentioned devices and techniques operate
for static objects, i.e., at rest. For instance, moving or rotating
objects possess intrinsically different scattering signatures
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FIG. 1. (a) Scheme of the multiple layers and the interfaces of an acoustic structure, as well as the rotation directions and incident plane
wave. (b) Real and (c) imaginary parts of the spinning wave numbers for different orders n vs the rotation coefficient α1 = �1/ω.

[57–66] and require special treatment [67,68]. Some intrigu-
ing applications were put forward with spinning elements
such as gyroscopes [69,70] and waveguide rotation sensors
[68]. In order to realize efficient cloaking devices for such
rotating devices, we first need to characterize the scatter-
ing response from these acoustic objects and then analyze
the feasibility and physical difference of a cloaking mecha-
nism. Some recent studies, for example, considered cloaking
structures that are moving using spatiotemporal properties to
counter the Doppler effect [71–73]. A theory of a space-time
cloak was also proposed to make a time interval undetectable
for an observer [74] and further demonstrated experimentally
in a highly dispersive optical fiber [75]. However, cloaking
rotating objects was not achieved in any context. In the present
paper, the use of the scattering cancellation technique [53,76–
79] to render spinning objects invisible for acoustic waves is
proposed.

The rest of the paper is organized as follows. In the back-
ground and problem setup section, the equations of motion of
a spinning acoustic object and its dispersion relation, which
permit the study of acoustic scattering from multilayered
spinning structures, are put forward. In the following section,
using Bessel expansions of the pressure fields, the possibility
of canceling the leading scattering orders from spinning ob-
jects by coating them with shells of tailored spinning velocity
is shown. In that section, the effect of geometrical parameters
and spinning velocity amplitude on the scattering reduction is
also analyzed. Finally, the obtained results are summarized in
the concluding remarks. Two Appendixes complete the paper
with more details on the frequency response and derivation
details.

II. BACKGROUND AND PROBLEM SETUP

A. Acoustic equation in rotating media

Let us consider time-harmonic waves, with dependence
upon time t proportional to e−iωt , where ω is the angular
wave frequency. We also assume structures with cylindrical
invariance [see Fig. 1(a)], i.e., the solution of the physical
problem may be expressed in terms of einθ so that derivatives
in the azimuthal direction θ produce terms of the form in,
where n is an integer and i2 = −1. We start by invoking the
mass and momentum conservation laws of acoustics, and we
express them in the laboratory frame of reference [80]. This
is done by using the Eulerian specification of the flow field,
i.e., by replacing time derivatives with material derivatives,
i.e., ∂t ′ (·) → ∂t (·) + u · ∇(·), where the ′ denotes derivatives
taken in the rest frame of the moving fluid. Also, u = u0 + v
is the total velocity of the flow, whereas u0 is the bulk velocity
and v is the acoustical perturbation velocity. This results in
modified conservation equations (see Appendix B).

We combine the modified equations, i.e., Eqs. (B3) and
(B4) of Appendix B, by writing down each component [for
instance, Eq. (B3) contains two components, while Eq. (B4)
contains a single component]. We then use that in cylindrical
coordinates u0 · ∇ = �1∂/∂θ and linearize the equations by
keeping only first-order quantities of acoustic perturbations,
e.g., quadratic terms such as (v · ∇ )v are neglected, as shown
in Appendix B [80]. We thus obtain a linear system (of order
3) in terms of the variables p1, vr,1, and vθ,1 (assuming that the
z components of the fields are zero, as it is assumed in this first
example, infinitely extended cylinders in the z direction and
incidence normal to the z direction). This system of coupled
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partial differential equations (PDEs) can be expressed, in
cylindrical coordinates, using the differential operator D̃ as
D̃(vr,1, vθ,1, p1)T = 0, with (·)T denoting the transpose of the
vector in parentheses, i.e.,⎛

⎜⎝
ζn,1 −2�1 ρ−1

1 ∂r

2�1 ζn,1 (ρ1r)−1in

r−1 + ∂r r−1in ρ−1
1 c−2

1 ζn,1

⎞
⎟⎠

⎛
⎝vr,1

vθ,1

p1

⎞
⎠ = 0 . (1)

In this coupled differential system, we denote ∂r = ∂/∂r and
the modified angular frequency ζn,1 = i(n�1 − ω). From the
system of Eq. (1), we derive the equation verified by the
pressure p1 in the cylindrical coordinates, that is,

∂2 p1

∂r2
+ 1

r

∂ p1

∂r
+

(
β2

n,1 − n2

r2

)
p1 = 0 , (2)

which is the Helmholtz equation expressed in cylindrical
coordinates, assuming an effective wave number

βn,1 =
√

−(
4�2

1 + ζ 2
n,1

)
c2

1

. (3)

We verify that for �1 = 0, we recover the classical dispersion
β1 = ω/c1, with c1 = √

κ1/ρ1 the speed of sound inside the
object (all parameters related to the object are denoted with
subscript 1 and those related to free space with subscript
0). The behavior of βn,1, i.e., the spinning effective wave
number, is depicted in Figs. 1(b) and 1(c). As the parameter
ζn,1 is complex, βn,1 possesses both imaginary and real parts
(i.e., damping). For example, for β0,1 (i.e., n = 0) in the
domain |α1| = |�1/ω| � 1/2, only the real part exists and
decays exponentially, while reaching 0 for α1 = ±1/2. The
imaginary part is zero in this domain and increases quasilin-
early out of this domain. The orders n = ±1 possess similar
and symmetric behavior. The orders n = ±2 have slightly
different behavior, which is not symmetric with respect to
α1. It should be mentioned that for α1 = 0, i.e., no spinning,
both wave numbers (βn,1 and β1) are equal, as expected. In
the domain |α1| � 1, we should expect no damping of the
spinning wave numbers, as observed.

Now, Eq. (2) shall be complemented with adequate bound-
ary conditions. In the case of media at rest, we have continuity
of the pressure field p1 and the normal component of the
velocity field (proportional to the displacement field) vr,1 ∝
p1/ρ1. In the case of spinning media, we have continuity of
the pressure and of the normal displacement ψr,1 [see Eq. (B5)
in Appendix B] [80],

ψr,1 = ζn,1vr,1 + �1vθ,1

ζ 2
n,1 + �2

1

=
(
2�2

1 − ζ 2
n,1

)
∂r p1 − 3iζn,1�1np1/r

ρ1
(
4�2

1 + ζ 2
n,1

)(
�2

1 + ζ 2
n,1

) . (4)

By letting �1 = 0 in Eq. (4), one gets a displacement propor-
tional to (1/ρ1)∂r p1 as in the case for acoustic waves in media
at rest.

B. Bessel expansion and scattering from bare spinning objects

Let us now turn to the main problem of characterizing the
scattering from rotating cylindrical objects, at uniform angular

velocity �1. First we consider a bare cylindrical object of
radius r1 rotating in free space with density and bulk modulus
ρ1 and κ1, respectively. At this stage, we will derive the
general equation for any properties of the rotating object, and
later, it will be assumed that ρ1 = ρ0 and κ1 = κ0 to single
out the pure effects due to spinning. An acoustic plane wave
of amplitude 1 is incident on the structure. For simplicity and
without loss of generality, let us assume that the wave is in
the x-y plane and that it propagates in the x direction. It can
thus be expressed as pinc = eiβ0x = eiβ0r cos θ , by ignoring the
time-harmonic dependence, for now. The expansion of this
incident plane wave in terms of Bessel functions takes the
form

pinc =
+∞∑
−∞

inJn(β0r)einθ . (5)

The scattered field is expanded in terms of Hankel functions
of the first kind to ensure that the Sommerfeld radiation
condition is satisfied, i.e.,

pscat =
+∞∑
−∞

insnH (1)
n (β0r)einθ , (6)

for r > r1 and with sn the scattering coefficients to be de-
termined using the boundary conditions at the interfaces of
the structure. Hence, the field in region 0 is p0 = pinc + pscat.
These scattering coefficients intervene in the definition of the
scattering amplitude f (θ ) ∝ √

r limr→∞ pscat(r, θ ), which is
a measure of the acoustic scattering strength in the direction
θ . The total scattering cross section (SCS) is the integration
over all angles θ of the scattering amplitude and represents a
scalar measure of the total scattering (irrespective of direction)
and in the two-dimensional (2D) scenario is proportional to a
length. For instance, we have

σ scat = 4

β0

+∞∑
−∞

|sn|2 . (7)

To complete the expansion of the pressure fields, we consider
now the case of the spinning disk of radius r1 that is different
from scattering objects that were considered in previous stud-
ies, so far. In this case and owing to the previous results, the
pressure field in the region r � r1 is given by

p1 =
+∞∑
−∞

inanJn(βn,1r)einθ , (8)

with βn,1 given in Eq. (3) and an unknown coefficients to be
determined by the boundary conditions along with sn. Now by
equating the pressure and the displacement [see Eq. (4)] at the
boundary r = r1, we get

pinc(r1) + pscat(r1) = p1(r1) ,

1

ρ0ω2

∂ (pinc + pscat )

∂r

∣∣∣∣
r=r1

=
(
2�2

1 − ζ 2
n,1

)
∂r p1 − 3iζn,1�1np1/r

ρ1
(
4�2

1 + ζ 2
n,1

)(
�2

1 + ζ 2
n,1

)
∣∣∣∣∣
r=r1

. (9)
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Equation (9) yields with the previous expansions a set of
linear systems, for each azimuthal order n, thanks to the
orthogonality of the functions einθ , i.e.,(

Jn(βn,1r1) −H (1)
n (β0r1)


Jn − β0

ω2ρ0
H (1)′

n (β0r1)

)(
an

sn

)
=

(
Jn(β0r1)

β0

ω2ρ0
J ′

n(β0r1)

)
,

(10)
where the coefficient 
Jn is expressed as


Jn =
(
2�2

1 − ζ 2
n,1

)
βn,1J ′

n(βn,1r1) − 3ζn,1�1in
r1

Jn(βn,1r1)

ρ1
(
4�2

1 + ζ 2
n,1

)(
�2

1 + ζ 2
n,1

) .

(11)
Equation (11) shows clearly for the specific case of scatter-

ing from spinning objects that the multipoles of orders n and
−n give different contributions. The scattering coefficient sn

can be easily obtained from Eq. (10), i.e.,

sn =
∣∣∣∣∣
Jn(βn,1r1) Jn(β0r1)


Jn

β0

ω2ρ0
J ′

n(β0r1)

∣∣∣∣∣
×

∣∣∣∣∣
Jn(βn,1r1) −H (1)

n (β0r1)


Jn − β0

ω2ρ0
H (1)′

n (β0r1)

∣∣∣∣∣
−1

, (12)

where |M| denotes the determinant of a matrix M.
In order to single out the effect of rotation on the scattering,

we consider an object with the same density and bulk modulus
as the surrounding environment, i.e., ρ1 = ρ0 and κ1 = κ0.
This leaves us with only the rotation angular velocity �1 of
the object (r � r1). A scenario of interest is that of small
objects compared to the sound wavelength, i.e., β0r1 � 1 and
βn,1r1 � 1. The first multipole terms are thus given by

s0 = 3iπ

4

α2
1 (β1r1)2

1 − α2
1

+ O[(β1r1)4] ,

s±1 = iπ

4

α1(β1r1)2

±2 + α1
+ O[(β1r1)4] ,

s±2 = iπ

32

α1(β1r1)4

∓2 + α1
+ O[(β1r1)6] ,

s±n = f±n(α1)(β1r1)2n + O[(β1r1)2n+2] . (13)

In Eq. (13), f± denote functions of the variable α1. The
upper/lower signs in the second and third lines correspond
to the positive/negative coefficient, respectively. Also, O(·)
denotes the Landau notation (of a function of the same order)
[81]. It may be noted that if the angular rotation velocity of the
fluid goes to zero, all the scattering orders sn vanish without
exception. A case of interest is that of small rotation angular
velocity, so the denominators in Eq. (13) are close to 1 and
can be omitted; thus we have s0 ∝ α2

1ω
2, s±1 ∝ α1ω

2, and
s±2 ∝ α1ω

4. In classical scattering from nonrotating acoustic
objects (or 2D electromagnetism), it is well known that the
scattering cross section is dominated by both the zeroth order
and first order, i.e., the monopole s0 and the dipole s1 [82].
However, from Eq. (13), we can see that s0/s±1 ∝ α1 � 1 and
s±2/s±1 ∝ ω2 � 1. Hence, unlike for the case of acoustics at
rest [77], the SCS of spinning objects is dominated by the
dipole terms s±1. The higher-order terms scale as (β1r1)2n

and do not contribute significantly to the scattering, although
in Eq. (11) we have terms proportional to n. However, the
peculiar behavior of Bessel functions makes the higher-order
multipoles negligible in the quasistatic limit.

Another interesting remark about scattering of spinning
fluids can be immediately seen upon inspection of Eq. (13).
We can see that the scattering coefficients possess poles for
determined values of α1. Namely, these are ω = ±�1 for s0,
∓�1/2 for s1,−1, and ±�1/2 for s2,−2. Thus for these frequen-
cies, resonant scattering may be observed. For instance,

σ scat ≈ (β0r1)3 α2
1

(
α2

1 + 4
)

(
α2

1 − 4
)2 . (14)

Figure 2(a) plots these normalized scattering coefficients
4/β0|sn|2 in logarithmic scale versus frequency (in logarith-
mic scale, too) for a spinning object (made of water, as the
surrounding, and separated from it by a thin membrane),
with �1 = 2π rad/s, of radius r1 = 1 m, bulk modulus and
density κ1 = κ0 = 2.22 GPa and ρ1 = ρ0 = 103 kg/m3, re-
spectively, for n = 0,±1,±2. These plots show that although
the object has the same physical parameters as the environ-
ment (water, here, for instance), resonant modes take place
at specific frequencies given by Eq. (13). It should be also
noted that both modes n = 0 and n = ±1 dominate, as can
be anticipated from Eq. (13). Also the resonance of modes
n = 1 and n = −2 cannot be seen here as we use positive
�1(= 2π rad/s). Figure 2(b) depicts the total scattering
cross section σscat with 21 scattering orders taken into ac-
count (n = −10 : 10) versus the normalized spinning ve-
locity for different kinds of objects, ranging from soft,
i.e.,

√
(κ1ρ1)/(κ0ρ0) � 1 [green line in Fig. 2(b)], to “non-

rigid,” i.e.,
√

(κ1ρ1)/(κ0ρ0) ≈ 1 [red and blue lines in
Fig. 2(b)], to hard wall (rigid) (detailed in Sec. III C), i.e.,√

(κ1ρ1)/(κ0ρ0) � 1 [black dashed line in Fig. 2(b)]. The
resonant scattering can be seen from all these objects around
the predicted spinning velocities. Here the frequency is fixed
at 1 Hz (quasistatic limit). It should be noted that the presence
of these Mie resonances is unusual in acoustics, where ho-
mogeneous objects do not possess low-frequency resonance.
The only case of low-frequency Mie resonances concerns
flexural waves scattered off thin-plate objects as was ana-
lyzed in Ref. [83], originating from the peculiar nature of
flexural biharmonic waves obeying a fourth-order PDE [84].
However, in the present scenario, these resonances are due to
pure rotation. Figure 2(c) plots contours of normalized SCS
σ scat/r1 (in logarithmic scale) of a scatterer with the same
physical properties as the surroundings (water) for varying
frequencies ω and spinning speeds �1. This plot clearly shows
that the SCS has two resonances (marked with dark red color)
for each spinning speed. Moreover, the blue horizontal thick
linear region at the center with blue color (i.e., zero scattering)
corresponds to very low, down to zero spinning speeds, and as
the scatterer possesses the same density and bulk modulus as
the surrounding, it does not scatter at all at these low spinning
speeds. On the other hand, if we take vertical cuts along this
2D graph, four resonances occur (in a symmetric manner with
respect to �1) as it transpires from Fig. 2(b) and as predicted
from Eq. (13).

The inset of Fig. 2(c) plots the real part distribution of the
pressure field [�(p)] in the scattering region (i.e., region 0)
in the presence of the spinning acoustic cylinder. These plots
correspond to frequencies and spinning speeds of different
resonating modes, as depicted in Fig. 2(c). It may be seen
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FIG. 2. (a) Scattering coefficients 4/β0|sn|2 in logarithmic scale vs frequency (in logarithmic scale, too) for a spinning object [�1/(2π ) =
1 Hz] of radius r1 = 1 m, bulk modulus and density κ1 = κ0 = 2.22 GPa and ρ1 = ρ0 = 103kg/m3, respectively, for n = 0, ±1, ±2. (b) Total
normalized SCS (σ scat/r1) with 21 scattering orders taken into account (n = −10, −9, . . . , 10) vs the normalized spinning velocity for different
kinds of objects, ranging from soft (

√
κ1ρ1 � 1), “normal” (

√
κ1ρ1 ≈ 1), to hard wall (see Sec. III C) (

√
κ1ρ1 � 1). (c) Normalized SCS,

in logarithmic scale, of the spinning cylinder vs the frequency of the acoustic wave ω and the spinning velocity �1 for the same physical
parameters as the environment (water). The inset plots �(p0 ) at corresponding parameters. The middle one corresponds to a high frequency,
�1 = 2ω = 2π × 500 Hz.

that the pressure field takes very large values (in comparison
to the nonresonating case, where �(p) ≈ 10−3 p0), which is
coherent with the observed Mie resonance due to the spinning
fluid.

III. SCATTERING CANCELLATION
FOR SPINNING CYLINDERS

A. Bessel function expansion for the core-shell structure

Let us now turn to the analysis of cloaking the spinning
objects using the paradigm of the scattering cancellation
technique [52]. We consider a core-shell structure, depicted
in Fig. 1(a), with an object of radius r1 and a shell of radius
r2. The parameters of the object and the shell are denoted by
ρ1,2, κ1,2, and �1,2, for the density, bulk modulus, and angular

velocity, respectively. On the other side, the parameters of free
space are just ρ0 and κ0, as the fluid in region 0 is at rest. The
field expansions are similar to those of a bare object. However,
we have now an additional domain (the shell) r1 < r � r2,
within which the pressure field can be expanded as

p2 =
+∞∑
−∞

in[bnJn(βn,2r) + cnYn(βn,2r)]einθ , (15)

with Yn the Bessel function of the second kind, βn,2 =√
−(4�2

2 + ζ 2
n,2)/c2

2 and c2 = √
κ2/ρ2.

The obtained scattering system for this structure is thus
obtained by applying the same boundary conditions at the
interfaces r = r1 and r = r2, taking into account that the fluid
is either rotating or at rest. This leads to

⎛
⎜⎜⎜⎝

0 Jn(βn,2r2) Yn(βn,2r2) −H (1)
n (β0r2)

0 
Jn (βn,2r2) 
Yn (βn,2r2) − β0

ω2ρ0
H (1)′

n (β0r2)

−Jn(βn,1r1) Jn(βn,2r1) Yn(βn,2r1) 0

−
Jn (βn,1r1) 
Jn (βn,2r1) 
Yn (βn,2r1) 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

an

bn

cn

sn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Jn(β0r2)
β0

ω2ρ0
J ′

n(β0r2)
0
0

⎞
⎟⎟⎠ , (16)
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with the functionals 
Yn given in the same way as 
Jn ,
shown in Eq. (11), up to the replacement of Jn by Yn.
The scattering coefficient is thus sn = |M|/|M̃|, where M is
the 4 × 4 matrix in the left-hand side of Eq. (16), and M̃ is
the matrix obtained from M by replacing its fourth column
vector by the vector in the right-hand side of Eq. (16). Solving
Eq. (16) is straightforward using a numerical software such as
MATLAB [85], and this will be performed later to characterize
and analyze this peculiar cloaking mechanism.

B. Analysis of the SCT

In order to gain more insight and due to the general
complexity of this linear system, it is instructive to analyze
the long-wavelength limit (as done for the bare object in
previous section) corresponding to acoustically small objects
and shells, i.e., β0r j � 1 and βn, j r j � 1, where j = 1, 2.
Note that with the values of the parameters in this study, it is
sufficient to impose the first condition β0r1 � 1. Under these
assumptions and by denoting �1 = α1ω, �2 = α2ω, r2 =
r1/γ , and by choosing without loss of generality ρ2 = ρ1 =
ρ0 and c2 = c1 = c0 in order to single out the effect of spin-
ning (by ignoring scattering due to the acoustic impedance
mismatch due to inhomogeneities), we obtain for the leading
scattering orders, as discussed in the previous section,

s0 = 3iπ

4γ 2

[
γ 2α2

1 − (−1 + γ 2 + α2
1

)
α1α2

]
(−1 + α2

1

)
(−1 + α1α2)

(β0r1)2

+O[(β0r1)4] (17)

and

s±1 = iπ

4γ 2

A±1

B±1
(β0r1)2 + O[(β0r1)3] , (18)

with

A±1 = ±2γ 2α1 + α2(±2 ∓ 2γ 2 + α1 − 6γ 2α1)

+α2
2 (−3 + 6γ 2 ± α1 ± 4γ 2α1)

+α3
2 (±1 ∓ 4γ 2 + 6γ 2α1) + α4

2[6(1 − γ 2)] (19)

and

B±1 = 4 ± 2α1 + α2(∓4 + 3α1 − 2γ 2α1)

+α2
2 (−1 + 2γ 2 ± α1 ∓ 2γ 2α1)

+α3
2 (±13 ± 2γ 2 + 6γ 2α1) + α4

2[6(1 − γ 2)]. (20)

In Eqs. (19) and (20) the upper (lower) signs correspond to the
order n = 1 (n = −1). Note that as α2 → 0, i.e., the shell is
at rest, the expressions of s0 and s±1 given in Eqs. (17)–(20)
reduce to those given in Eq. (13), as would be expected.

In order to cancel the total SCS, i.e., σ scat, we have to
enforce simultaneously s0 = 0 and s±1 = 0. For small angular
rotation speeds, only s±1 is significant [as we have seen earlier
from Eq. (13)], and it is safe to ignore the contribution of the
higher-order multipoles (|n| � 2), as these scale with (β0r1)2n

[their squared amplitude, i.e., their contribution to the SCS,
from Eq. (7), scales with (β0r1)4n−1, which is even smaller].

First, enforcing |s0| = 0, we derive the quasistatic condi-
tion of SCT, i.e.,

γ 2α2
1 − (−1 + γ 2 + α2

1

)
α2

2 = 0 , (21)

FIG. 3. (a) Contour plot of α2 vs α1 and γ for the first-order
(n = 0) condition, given in Eq. (17). (b) Contour plot of α2 vs α1 and
γ for the second-order condition (n = ±1), given in Eqs. (18)–(20).

which relates α2, α1, r1, and r2 (via γ ). It is found that to
satisfy Eq. (20), α2 must take positive and/or negative values.
Note that positive (resp. negative) angular velocity just means
an anticlockwise (resp. clockwise) rotation. We thus have

α2 = ± γα1√(−1 + γ 2 + α2
1

) . (22)

Also, when γ 2 + α2
1 � 1, no solution can be found that may

cancel the scattering monopole s0. The behavior of α2, versus
γ and α1, corresponding to Eq. (17) is depicted in Fig. 3(a)
[see Fig. 8 for a different view of the same plot]. Specifically,
we can observe that for the domain γ 2 + α2

1 � 1, no solution
for α2 can be found (empty region of the plot). For γ 2 + α2

1 =
1, very high positive (and negative) values of α2 are required.
On the other hand, when the condition on γ 2 + α2

1 is relaxed,
small values of α2 are sufficient. It should also be noted that
α2 is symmetric with respect to the variation of α1 (α1 and
−α1 give the same values of α2), as seen from Fig. 3(a).

Let us now turn to the analysis of canceling the leading
scattering dipole orders s±1. In fact, Eq. (19) is of fourth
order, so we may expect to obtain four distinct solutions for
α2. This is exactly what may be observed in Fig. 3(b), where
four branches can be distinguished in this three-dimensional
contour plot. In this scenario, we can see that there is a lack
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FIG. 4. (a) Normalized SCS (σ scat
c /σ scat

b ) in logarithmic scale (where the subscripts b and c refer to the scattering cross section of the
obstacle and cloaked structure, respectively) vs the spinning frequency of the cloaking shell �2/(2π ) and the radii ratio γ . The bright regions
represent the locations of optimized scattering reduction, with values exceeding 40 dB (in absolute value). The inset gives the acoustic Poynting
vector of the cloaked structure normalized by that of the bare object in the scattering region. (b) Scattering amplitude (| f (θ )|2) in logarithmic
scale for the cloaked structure (normalized by the amplitude of the bare object) for �2/(2π ) = 16.06 Hz (solid line, clockwise motion) and
�2/(2π ) = −22.7 Hz (dashed line, anticlockwise motion) corresponding to the highlighted values from (d). (c) Normalized SCS vs γ for
various values of �2/(2π ). (c) Normalized SCS vs the spinning frequency of the cloaking shell �2/(2π ) for various values of γ . All these
figures were plotted for a frequency of ω/(2π ) = 15.5 Hz and �1/(2π ) = 15 Hz.

of symmetry with respect to α1 due to the presence of the
dipole order term in the equation (n = ±1). Clockwise and
anticlockwise rotations �2 are thus viable ways to counteract
the anticlockwise rotation of the object and make it look static
to external observers (by canceling the n = ±1 multipoles).
The angular rotation speeds needed here are also comparable
to the speed of the object to cancel. The graphs of Fig. 3
are only dependent on frequency through the parameters αi =
�i/ω.

Next, we consider the general case where we do not
make use of the asymptotic (quasistatic) approximation and
solve the exact scattering problem, stemming from Eq. (16).
The angular rotation speed of the fluid in region 1 (r � r1)
is �1/(2π ) = 15 Hz, and its density and bulk modulus are
assumed, as before, equal to those of free space (water). Here,
the frequency of the wave is chosen as ω/(2π ) = 15.5 Hz
(high spinning regime, i.e., �1 ≈ ω). σ scat

c of the total object-
shell structure is normalized with the SCS of the bare object
and subsequently plotted against varying values of �2/(2π )
and γ . This result is shown in Fig. 4(a) in logarithmic scale.
The regions colored with dark blue correspond to significant
scattering reduction (i.e., σ scat

c /σ scat
b � 1), whereas the dark

red regions correspond to enhanced scattering from the core-
shell geometry. It can be seen that two distinct regions of
cloaking can be distinguished, i.e., for �2/(2π ) > 15.5 Hz

and for �2/(2π ) < −15.5 Hz, and both with values of γ

between 0.4 and 0.8, for efficient scattering reduction. In
particular, a minimum of −40 dB of σ scat

c /σ scat
b � 1 is seen

around values of �2/(2π ) = −16.7 Hz and γ = 0.6. In addi-
tion, the dashed black lines give the results of Eqs. (17) and
(22).

To isolate the effect of �2 and γ on the scattering reduction
mechanism, a plot of σ scat

c /σ scat
b is given versus γ and for dif-

ferent values of �2/(2π ). We can see in Fig. 4(c) that one sin-
gle cloaking regime takes place. For higher values (in absolute
value) of �2/(2π ) the cloaking is broader with γ but less pro-
nounced. When �2/(2π ) approaches ±15.5 Hz, the scatter-
ing reduction is higher but less broad with respect to γ . In ad-
dition, for the frequency range �2/(2π ) ∈ [−15.5, 15.5] Hz,
no cloaking can take place. Next, σ scat

c /σ scat
b � 1 is given

versus �2/(2π ) for different values of γ in Fig. 4(d). We can
see that two scattering dips exist for different values of γ . For
instance, for γ < 0.4 and γ > 0.8, no cloaking is possible.
The minimum cloaking is for �2 = −16.7 Hz and γ = 0.6.
To better illustrate the efficiency of the proposed cloak, the
far-field scattering patterns (i.e., | f (θ )|) in polar coordinates
are shown in Fig. 4(b) for two specific parameters of �2 and γ ,
depicted in Fig. 4(d) with circles. This plot demonstrates that
the spinning fluid is undetectable for all angles [Fig. 4(c) gives
normalized | fc(θ )/ fb(θ )|, with subscripts c and b denoting,
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FIG. 5. (a) Near-field plot (in arbitrary units) of the acoustic
scattered Poynting vector �b (proportional to |pscat|2) of the bare
object of radius r1 = 1 m, spinning with speed �1/(2π ) = 15 Hz at
the frequency ω/(2π ) = 15.5 Hz. (b) Same as in (a) for the cloaked
object (�c), with the shell of radius r2 = r1/γ and γ = 0.71 and
spinning frequency �2/(2π ) = −16 Hz. The physical parameters
of the object and shell are equal to those of the surrounding, i.e.,
water. The phases (normalized with π ) of the total Poynting vectors
are given in (c) and (d) for the bare and cloaked object with same
parameters as in (a) and (b), respectively. The black dashed lines
represent the contours of the phases.

as before, the cloaked and bare object, respectively]. In fact,
it should be understood that the continuous line offers better
cloaking than the dashed one, which is translated by a smaller
SCS (which is clearly visible in the figure.) However, it can
be remarked that the scattering amplitude is reduced more for
some angles (180◦, for instance). Hence, for the continuous
curve, the scattering reduction ranges from −23 to −35 dB,
which is considered as being cloaking for all angles. For the
dashed curve, the scattering reduction is not very efficient and
it is around 10 dB, on average. This is visible in Fig. 4(d),
which gives the SCS (which is the integration of the scattering
amplitude over all angles and is a better measure of scattering
reduction). This plot confirms that a clockwise rotating shell
of small radius can cloak an anticlockwise spinning object.

Last, Figs. 5(a) and 5(b) plot the near-field scattered pres-
sure field amplitude (or more precisely, the amplitude of the
normalized scattered acoustic Poynting vector [86], i.e., |�b|
and /|�c|) in the environment region (region 0) for the bare
object and cloaked object, respectively. We can observe that
a drastic reduction of the scattered fields (about two orders of
magnitude) takes place in the case of an object with spinning
coating. The phases (normalized with π ) of the total Poynting
vectors are given in Figs. 5(c) and 5(d) for the bare and
cloaked object with same parameters as in Figs. 5(a) and 5(b),
respectively. These plots show that the phase of the fields is
not distorted in the case of a cloaked scenario (straight parallel
contour lines, marked with the dashed black lines), whereas
for the bare case it is slightly distorted (contour lines are
curved due to the enhanced scattering from the spinning ob-
ject). A discussion on the frequency response of the cloaking

mechanism and near-fields at a different frequency are given
in Appendix A, Fig. 9.

C. The case of a hard-wall object

Let us now first derive the equivalence of the scattering
from a hard-wall object and an infinite acoustic impedance
object [different from the case of a finite acoustic inhomo-
geneity, shown for comparison in Fig. 6(a)]. The hard-wall
(rigid) boundary condition is for r = r1, namely, n · v = 0 (or
in terms of pressure 1/ρ ∂r p = 0). The incident field is as
usual a plane-wave expressed as in Eq. (5) and the scattered
pressure is given as in Eq. (6). By application of the hard-wall
boundary condition at r1, we obtain the expression of the
coefficients,

s(r)
n = −J ′

n(β0r1)

H (1)′
n (β0r1)

, ∀n ∈ Z . (23)

On the other hand, an object of same radius r1, density ρ1,
and bulk modulus κ1 embedded in a homogeneous medium of
density ρ0 and bulk modulus κ0 possesses scattering given by

sn =
∣∣∣∣Jn(β1r1) Jn(β0r1)
J ′

n(β1r1) χJ ′
n(β0r1)

∣∣∣∣
∣∣∣∣Jn(β1r1) H (1)

n (β0r1)
J ′

n(β1r1) χH (1)′
n (β0r1)

∣∣∣∣
−1

,

(24)
where χ = Z1/Z0, and Z0,1 = √

ρ0,1κ0,1 is the impedance of
the object and free space, respectively.

Now, in order to establish the analogy between the hard-
wall boundary and the inhomogeneous medium, we must
equalize Eqs. (23) and (24). This can be obtained for all
scattering orders if we ensure that χ → ∞, i.e., by assuming
an infinite impedance of the object. This is somehow coherent,
as the higher impedance leads to enhanced reflection, and in
this limit the fields cannot penetrate the object, which is an
equivalent to a hard-wall boundary. This fact is demonstrated
in Fig. 6(b), where the plot of the SCS versus a broadband
of frequencies is depicted. It can be also seen from Fig. 6(b)
that rotating a hard-wall object does not change its scattering
response, unlike for the case of an acoustic medium with finite
impedance, shown in Fig. 6(a). This is mainly because there
is no flow inside the object (pressure and velocity are zero
for r < r1), and hence rotating the object does not induce any
extra scattering features.

Last, to verify the versatility and robustness of this new
kind of SCT-based cloaking, we investigate the possibility
to cloak a rigid (hard-wall-like) cylindrical object by using
only a rotating shell of the same physical parameters (ρ2

and κ2) as those of the surrounding medium (water, here).
The rigid body can mimic, for example, a submarine, or
any underwater solid (we ignore shear waves here, as only
compression waves are investigated). We first coat the rigid
object of radius r1 = 1 m with a shell of radius r2 = 1.2 m,
and we sweep the density and bulk modulus of the shell, as
usually done in SCT cloaking. The normalized SCS is plotted
as before, at frequency ω/(2π ) = 383 Hz, and the result is
depicted in Fig. 6(c). On the other hand, we consider coating
the same object with a shell of radius r2 = r1/γ and spinning
angular frequency �2. In this scenario ρ2 = ρ0 and κ2 = κ0.
So the SCT is induced here purely by the spinning effect. The
result is depicted in Fig. 6(d), and it can be clearly seen that
comparable scattering cancellation is possible to achieve. The
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FIG. 6. (a) SCS for an object of radius 1 m, density ρ1 = ρ0, bulk modulus κ1 = 0.1 × κ0 vs frequency when the object is at rest (dashed
blue curve) and when it is spinning with �1/(2π ) = 25 Hz (black circles). (b) SCS for the hard-wall boundary (blue line), infinite acoustic
impedance approximation, i.e.,

√
ρ1κ1 → ∞ (red dashed line), and spinning infinite acoustic impedance approximation (circles). (c) Cloaking

scenario for the hard-wall object of radius r1 = 1 m when using classical SCT scheme, i.e., by varying the density and bulk modulus of the
shell of radius r2 = 1.2 m at frequency ω/(2π ) = 383 Hz. (d) Same as in (c) but using a spinning shell of density and bulk modulus equal to
those of free space.

advantage is here that we do not need near-zero or negative
density and/or bulk modulus for the cloaking operation [as
can be seen from Fig. 6(c)]. By pure rotation of homogeneous
shells, cloaking is made possible. Note that we can further
improve this scattering cancellation with spinning by allowing
some freedom for the density and/or bulk modulus of the
shell.

Figure 7 plots the phases (normalized with π ) of the total
Poynting vectors for the bare and cloaked object, correspond-
ing to points A and B, highlighted in Figs. 6(c) and 6(d).
These plots show that the phase of the fields is not distorted
in the case of a cloaked scenario (straight contour lines,
marked with the dashed black lines), whereas for the bare
case it is slightly distorted (contour lines are curved due to
the enhanced scattering from the spinning object). This plot
also confirms the findings of Figs. 6(c) and 6(d).

Figure 7(a) depicts the phase of the total Poynting vector
of a bare rigid object of radius unity at frequency ω/(2π ) =
383 Hz, whereas Fig. 7(b) gives the same quantity for the rigid
object at frequency ω/(2π ) = 383 Hz, cloaked by a shell of
radius 1.2 m, density and bulk modulus corresponding to point
A in Fig. 6(c), i.e., ρ2 = 0.094ρ0 and κ2 = 0.246κ0. Next,
Figs. 7(c) and 7(d) give the same situation, but here ρ2 = ρ0

and κ2 = κ0; however, �2/(2π ) = −366 Hz and γ = 0.958,
corresponding to point B in Fig. 6(d). Both scenarios show
comparable scattering reduction, thus demonstrating the effi-
ciency of spinning shells in cloaking rigid objects.

FIG. 7. (a) Phase (normalized with π ) of the total Poynting
vectors of a bare rigid object of radius unity at frequency ω/(2π ) =
383 Hz. (b) Phase (normalized with π ) of the total Poynting vectors
of a rigid object of radius unity at frequency ω/(2π ) = 383 Hz,
cloaked by a shell of radius 1.2 m, density and bulk modulus
corresponding to point A in Fig. 6(c), i.e., ρ2 = 0.094ρ0 and κ2 =
0.246κ0. (c) Same as in (a). (d) Same as in (b) but here ρ2 = ρ0 and
κ2 = κ0; however, �2/(2π ) = −366 Hz and γ = 0.958, correspond-
ing to point B in Fig. 6(d).
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IV. CONCLUDING REMARKS

In summary, a detailed analysis of spinning acoustic ob-
jects and their scattering properties is proposed, and acoustic
cloaks based on the scattering cancellation technique are
designed. Here the main challenge is that the object to con-
ceal (cloak) is not at rest and experiences rotation along
its z axis (for cylinders) at constant angular speed (with a
few rotation cycles per second). Scattering by such acoustic
rotating objects is physically different from objects at rest
and possesses resonant Mie features at specific frequencies.
The cloaking mechanism introduced here presents several
advantages in comparison with zero-velocity cloaking, as it
may be more useful in realistic applications (where objects
are most of the time moving). Using a homogeneous layer of
the same properties as free space with a rotation (in the oppo-
site direction to the object), we are able to significantly reduce
the scattering from objects with various spinning speeds. It is
also shown that using purely a spinning shell, it is possible
to cancel the scattering from a rigid (hard-wall) object in a
similar manner as optimizing its density and bulk modulus,
which shows the versatility of this cloaking mechanism.

Experimental realization of this concept may be within
reach readily, as it only requires rotating objects and shells,
allowing for interesting applications in scenarios in which it is
desirable to suppress the scattering from obstacles that are in a
spinning movement (e.g., rotating components of cars or heli-
copter rotor blades) for noise reduction. The same concept can
also be generalized to other classes of waves, such as linear
surface water waves, flexural waves in thin plates, or beams.
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APPENDIX A: CHARACTERIZATION
OF THE SCT CLOAKING

To give a better view of the analytical results of Fig. 3,
Fig. 8 plots the same results but from a different view angle. In
order to characterize the efficiency of the cloaking mechanism
presented in this work, Fig. 9 gives the scattering response
versus frequency. For instance, Fig. 9 plots the normalized
SCS (σ scat

c /σ scat
b ) in logarithmic scale (where the subscripts

b and c refer to the SCS of the bare obstacle and cloaked
one, respectively) versus the wave frequency ω/(2π ) and
the spinning frequency of the cloaking shell �2/(2π ), for
γ = 0.71 and an object of radius 1 m and spinning frequency
�1/(2π ) = 15 Hz, and the same physical parameters as the
surrounding, for both object and cloaking shell. The dark
blue regions represent the locations of optimized scattering
reduction, with values exceeding 30 dB (in absolute value).
This figure shows also that two cloaking peaks can be attained,
the first one around frequency 7.5 Hz, which is hardly tun-
able, whereas the second one can be controlled by varying
the spinning frequency of the cloaking shell. This is shown
more clearly in Fig. 9(c), which gives the normalized SCS
versus wave frequency ω/(2π ) for various values of �2/(2π ),

FIG. 8. Same as in Fig. 3 but with a rotated view to highlight the
different solutions of Eqs. (17)–(20).

corresponding to the dashed colored lines in Fig. 9(a). The
phase (normalized with π ) of the total Poynting vector for
the cloaked object corresponding to the situation encircled in
Fig. 9(c) is given in Fig. 9(d) along with the contours of the
phases (black dashed lines). Moreover, in this scenario, we
wished to isolate the pure effects of scattering and scattering
cancellation due solely to spinning by assuming ρ1,2 = ρ0 and
κ1,2 = κ0. However, another interesting case is to consider
an object of ρ1 �= ρ0 and κ1 �= κ0. This scenario is plotted in
Fig. 9(b), where an object has ρ1 = ρ0 but κ1 = 0.1 × κ0 and
moderate spinning �1/(2π ) = 5 Hz. The shell has also the
same radius as in Fig. 9(a), ρ2 = ρ0, but κ2 = −0.11 × κ0.
This 2D plot shows that broadband scattering reduction can
be achieved for a large interval of spinning frequencies of
the shell. A particular scenario is plotted by the dashed curve
which corresponds to a specific �2/(2π ) = −5 Hz, and its
axis is shown. From this plot we can see that for most of the
frequency domain considered here, a scattering reduction of at
least 20 dB can be achieved, which shows that this technique
is efficient to cloak acoustic inhomogeneities with spinning
movement, by tailoring the shell’s physical properties.

APPENDIX B: DERIVATION OF THE ACOUSTIC
EQUATION IN SPINNING MEDIA

Let us consider a uniformly rotating medium as schema-
tized in Fig. 1(a). The usual equations of motion (momentum
conservation) and continuity (conservation of mass) need to
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FIG. 9. (a) Normalized SCS (σ scat
c /σ scat

b ) in logarithmic scale (where as before the subscripts b and c refer to the SCS of the obstacle and
cloaked structure, respectively) vs the wave frequency ω/(2π ) and the spinning frequency of the cloaking shell �2/(2π ), for γ = 0.71 and
an object of radius 1 m and spinning frequency �1/(2π ) = 15 Hz, and the same physical parameters as the surrounding, for both object and
cloaking shell. The dark blue regions represent the locations of optimized scattering reduction, with values exceeding 30 dB (in absolute value).
(b) Same as (a) but here the object has ρ1 = ρ0 but κ1 = 0.1 × κ0 and moderate spinning �1/(2π ) = 5 Hz. The shell has the same radius as in
(a), ρ2 = ρ0 but κ2 = −0.11 × κ0. The dashed curve corresponds to a specific �2/(2π ) = −5 Hz, and its axis is shown. (c) Normalized SCS
vs wave frequency ω/(2π ) for various values of �2/(2π ), corresponding to the dashed colored lines in (a). (d) Phase (normalized with π ) of
the total Poynting vectors for the cloaked object corresponding to the situation encircled with red dashed line in (c). The black dashed lines
represent the contours of the phases.

be modified [57–60,63,80]. If we consider no shear stresses
and body forces, it is shown that the momentum conservation
can be written as

ρ

(
Du
Dt ′

)
= −∇′P , (B1)

where the differential operators D/Dt ′ and ∇′ represent the
total time derivative and the spatial derivative, respectively, in
the reference frame R′ associated with the spinning disk. The
density ρ is assumed to be constant with respect to time due to
low compressibility and reasonable rates of rotation, as well
as small-amplitude sound waves, as usually assumed. Here
the total pressure P accounts for the pressure due to acoustic
waves as well as to the rotation of the structure, and u is the
total velocity.

In the reference frame R associated with the laboratory,
Eq. (B1) is transformed into

ρ

[
∂

∂t
+ (u · ∇ )

]
u = −∇P , (B2)

with u = u0 + v, with v the velocity of the acoustic wave,
and u0 = u0(r) the bulk velocity, with r being the position
vector with origin taken at the center of the rotating frame,

which corresponds to rotation. For a uniform spinning, we
have u0 = �reθ , with r = |r|, eθ the azimuthal unit vector
and � the angular velocity. By denoting P = p0 + p, with
p0 the time-independent pressure due to the frame motion
and p the pressure of the acoustic waves (due to the acoustic
perturbation), Eq. (B2) can be expressed as [80][

∂

∂t
+ (u0 · ∇ )

]
v + (v · ∇ ) · u0 = −ρ−1∇p . (B3)

For the mass conservation equation, a similar reasoning per-
mits to show that it can be expressed in the laboratory frame
R as [

∂

∂t
+ (u0 · ∇ )

]
p + c2ρ∇ · v = 0 , (B4)

using the fact that ∇ · u0 = 0 and noting c = √
κ/ρ, with κ

the bulk modulus of the structure.
Similarly, the boundary conditions at the interface between

two spinning media (or a spinning media and a medium at
rest) shall be modified [80]. For instance, the pressure p
is continuous across the interface. For the second boundary
condition, which is the normal component of the velocity
(n · v) in media at rest, it was shown in Ref. [80] that it should
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be replaced in the moving media by the displacement ψ ,
which is related to the pressure through the modified relation

ρ

(
∂

∂t
+ vn1

∂

∂n1

)
ψn2 = − ∂ p

∂n2
, (B5)

with vn1 = v · n1 and ψn2 = � · n2, where n1 is the direction
of the flow velocity and n2 is the normal to the considered
interface. It is also assumed here that a very thin membrane
separates both fluids from mixing and that the spinning of both
fluids is thus independent.
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