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A combination of density functional theory (DFT) and an efficient calculation method based on atomistic
kinetic Monte Carlo simulations (AKMC) is used to investigate the interdependence of oxygen (O) and vacancy
(v) diffusion in bcc Fe and in dilute iron alloys with the substitutional atoms Y and Ti. Both O and v are
considered as mobile while the substitutional atoms are assumed to be immobile. DFT is applied to determine
the binding energy between O and v for different distances, the migration barriers for O in the environment
of v, and the corresponding barriers of v in the vicinity of O. In agreement with previous work O and v have
a very strong binding at the first-neighbor distance. On the other hand, the calculations show that the Ov pair
at the sixth-neighbor distance is instable. The simultaneous jumps of both O and v compensate the lack of
jump paths that would occur due to this instability. The DFT results are employed to determine the diffusion
coefficient of O and v using the AKMC-based calculation method. At first a model system with fixed O and v
concentrations is studied. It is found that even a small v content of some parts per million can lead to a strong
reduction of the O diffusivity. A similar effect is obtained for v diffusion under the influence of O. Furthermore,
investigations on the interdependence of O and v diffusion in the first phase of thermal processing of oxide
dispersion strengthened iron alloys are performed, and the influence of the substitutional atoms Y and Ti is
studied. A simple thermodynamic model is employed to determine the concentration of O, Y, and Ti monomers
as well as the total v concentration, for a typical total content of O, Y, and Ti. These results are used in calculations
of the diffusion coefficients of O and v. Not only a strong mutual dependence but also a significant influence of Y
on O diffusion is found. Finally, O and v diffusivities in a system with an O content close to the thermal solubility
are calculated, where the monomer and total concentrations are determined by two different thermodynamic
models. Even for such a low amount of O in the alloy the diffusion coefficients differ strongly from those in
perfect bcc Fe.
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I. INTRODUCTION

Materials properties are decisively influenced by diffusion
processes. Very often diffusion cannot be avoided during fab-
rication and application. Therefore, many efforts were made to
understand the underlying atomic-level mechanisms (see [1]).
It was found that diffusion proceeds via interstitial sites if the
size of the migrating atom is smaller than that of the host
atoms. Foreign atoms with sizes similar to or larger than those
of the host material diffuse via the vacancy or the interstitialcy
mechanism. In this case vacancies and self-interstitials must
be available. Since at thermal equilibrium the concentration of
these point defects is very low, the migration via the vacancy
and the interstitialcy mechanism is much slower than that via
the interstitial sites.

Dilute iron-based ferritic alloys are used as structural ma-
terials for a plethora of applications. These alloys contain
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foreign atoms intentionally employed to improve certain prop-
erties as well as unwanted impurities introduced during man-
ufacturing. The diffusion of a certain foreign atom may be
influenced by other foreign atoms and intrinsic point defects.
Recently, the authors of this work have investigated theoreti-
cally how the presence of substitutional atoms such as Al, Si,
P, S, Ti, Cr, Mn, Ni, Y, Mo, and W affects the oxygen (O)
diffusion in bcc Fe [2]. Depending on the interaction between
oxygen and a foreign atom the influence on O diffusion may
be strong or weak. For example, in the case of Ti, with
a concentration of about 0.1 at. %, at 500 K the diffusion
coefficient of oxygen is three orders of magnitudes lower than
that in pure bcc Fe. On the other hand, at the same temperature
and concentration, the influence of Si on oxygen diffusion is
negligible. The most stable position of oxygen in bcc Fe is
the octahedral interstitial site. In perfect bcc Fe as well as
in a dilute alloy with substitutional atoms oxygen diffuses
mainly via nearest-neighbor jumps between these sites [2].
Therefore, the oxygen diffusion is much faster than that of the
substitutional foreign atoms so that these atoms were assumed
to be immobile. However, if oxygen diffusion is investigated
under the influence of vacancies, the vacancy mobility cannot
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be neglected, since the migration barrier in perfect bcc Fe is
not much higher than that of oxygen.

Under conditions of thermal equilibrium, the oxygen as
well as the vacancy concentration in pure bcc Fe is very
small. However, Schuler et al. [3] demonstrated that even an
oxygen concentration in the order of the thermal solubility
limit may lead to a significant increase of the total vacancy
(v) concentration. This is due to the strong attraction between
O and v.

Due to the extremely low solubility of oxygen [4–8] the
measurement of oxygen diffusion in iron is difficult. Only
a few experimental data are available. They were obtained
many years ago using the method of internal oxidation of
solutes which have a higher affinity to oxygen than iron
[4–9]. Frank et al. [9] performed a critical review of ex-
perimental data published before 1967 and derived a value
for the diffusion activation energy. In 1967 Swisher and
Turkdogan [5] determined the oxygen diffusion coefficient
in bcc Fe from measurements at temperatures above about
970 K. In 1986 Takada et al. [6–8] published diffusion data
obtained from experiments at temperatures between 1023 and
1173 K, i.e., mainly for the paramagnetic state of bcc Fe. The
lack of experimental data directly obtained from an oxygen
concentration profile in pure bcc Fe and for a sufficiently wide
temperature range is an important motivation for theoretical
investigations on oxygen diffusion, with the focus on a better
understanding of the atomic-level mechanisms.

Barouh et al. [10] investigated by density functional yheory
(DFT) calculations the mobility of clusters formed by the in-
terstitial solutes carbon, nitrogen, and oxygen with vacancies.
The main motivation for this work was the fact that these
foreign atoms attract the vacancy, so that they may possibly
migrate as pairs or clusters. In the oxygen case the attraction
is much stronger than for C and N. Barouh et al. [10] found
that the decisive migration barriers for the Ov pair and the
O2v cluster are higher than the barrier for the O monomer,
whereas the relevant barrier for the Ov3 cluster is similar
to that for the monomer. That means that an extraordinarily
high vacancy concentration is required to obtain an effective
oxygen diffusion coefficient that is higher than in perfect iron.
Shang et al. [11] used DFT to determine the migration barrier
of oxygen in the vicinity of a vacancy and found that this
barrier is much higher than in perfect Fe. This is in agreement
with the results of Barouh et al. [10]. Furthermore, Shang
et al. [11] claimed that their findings lead to a reasonable
agreement with the measured oxygen diffusion coefficient
[5–9]. However, this agreement could be only obtained since
these authors assumed that every migration barrier of oxygen
has a height as in the close environment of the vacancy.
This does not correspond to reality, since the equilibrium
concentration of vacancies in bcc Fe is very small, so that
oxygen is mainly moving in pure iron where the migration
barrier is much lower. Also the assumption of Shang et al. [11]
that during O diffusion the position of the vacancy is fixed is
not realistic (see above).

The focus of the present work is on the mutual dependence
of oxygen and vacancy diffusion in bcc Fe and dilute iron
alloys. DFT calculations are used to determine the binding
energy between oxygen and the vacancy for different dis-
tances, and to obtain the migration barriers for oxygen in

the environment of a vacancy and for the vacancy in the
environment of an oxygen atom. Using the data determined
by DFT as inputs for a recently developed efficient calculation
method [12] that is based on atomistic kinetic Monte Carlo
(AKMC) simulations, the simultaneous migration of O and
v is considered. At first the diffusion coefficients of oxygen
in a model system with fixed vacancy concentrations, the
diffusion coefficients of the vacancy for fixed oxygen con-
centrations, and the diffusivity of the Ov pair are determined.
In reality the vacancy and oxygen concentrations in dilute
Fe-based alloys are determined by the thermal equilibrium
with other foreign atoms and intrinsic defects or are affected
by external conditions. Vacancy concentrations significantly
above the equilibrium value in pure bcc Fe may occur due to
irradiation, strong plastic deformation, mechanical alloying,
etc. An example of the latter case is the production of oxide
dispersion strengthened (ODS) Fe-based alloys using powder
technology. In this work the oxygen and vacancy diffusion
in the first stage of thermal processing of the ODS alloys is
investigated using the DFT data for binding and migration
energies. Since the initial powder contains not only relatively
high concentrations of oxygen and vacancies but also Y and
Ti, the influence of these most relevant substitutional solutes
is also considered. In contrast to O and v the substitutional
atoms Y and Ti can be assumed to be immobile. In the last
part of the work O and v diffusion is studied for pure bcc Fe
with an oxygen content close to the thermal solubility. The
calculated diffusion coefficient of oxygen is compared with
the few available experimental data.

II. DFT CALCULATIONS

A. Computational method

The calculations were performed within the framework
of DFT as implemented in the Vienna ab initio simulation
package (VASP) [13–15]. The VASP code uses pseudopoten-
tials generated by the projector-augmented wave [16,17] ap-
proach. Exchange and correlation effects are described by the
generalized gradient approximation with the Perdew-Burke-
Ernzerhof parametrization [18]. In the calculations a supercell
consisting of 4×4×4 bcc unit cells was considered and a
3×3×3 k point grid was employed for the Brillouin-zone
sampling within the Monkhorst-Pack scheme [19]. For the
integration in the reciprocal space the Methfessel-Paxton
smearing method [20] was applied with a width of 0.2 eV.
All calculations were carried out within the framework of
the spin-polarized formalism and with a plane-wave cutoff
energy of 500 eV. After introduction of foreign atoms or of
a vacancy into the supercell, the position of atoms as well as
the volume and shape of the supercell were relaxed so that
the total stress/pressure of the supercell tends to zero. The
convergence criteria were set to 10−2 eV/Å and 10−5 eV for
the residual force per atom and the change of total energy in
one iteration step, respectively. As shown in previous investi-
gations [21–26], oxygen prefers the octahedral interstitial sites
in bcc Fe, and the most stable site for vacancy is the bcc lattice
site.

Figure 1(a) [Fig. 1(b)] illustrates the neighboring octahe-
dral interstitial (substitutional) sites of a vacancy (oxygen) up
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FIG. 1. (a) Examples for octahedral interstitial sites of oxygen
(red) in the neighborhood of a vacancy (green). Neighbors inside
the interaction region considered in DFT calculations are marked by
black numbers. The gray spheres represent Fe atoms. (b) Examples
for bcc sites of the vacancy (green) in the neighborhood of an oxygen
atom (red). The meaning of the black numbers is the same as in (a).

to the tenth-neighbor position. The notation and numbering
of the neighbor positions is according to the scheme for the
underlying simple cubic lattice (see [2,10]) which consists
of bcc lattice sites and all octahedral interstitial sites of the
bcc lattice. Within this scheme oxygen cannot reside on third-
neighbor, fourth-neighbor, seventh-neighbor, eighth-neighbor,
etc., positions of the vacancy since these sites are already
occupied by iron atoms. Furthermore, there are two different
ninth-neighbor sites (9a and 9b).

The binding energy of an oxygen-vacancy (Ov) pair at a
certain distance is determined by

Ebind = E (Ov) + E0 − E (v) − E (O), (1)

with E0 as the total energy of the perfect bcc Fe supercell.
E (Ov), E (v), and E (O) denote the total energy of the su-
percell with the Ov pair, with a single vacancy, and a single
oxygen atom, respectively. Negative values of the binding
energy mean that the interaction is attractive.

The minimum energy paths and the respective migration
barriers were calculated using the standard nudged elastic
band (NEB) method [27,28] and, subsequently, the climbing-
image NEB method [29]. For comparison, also the solid-state

NEB [30] was employed in some cases. The results do not
differ significantly from those obtained by the combination
of standard NEB and climbing-image NEB. For all these
calculations the VTSTTOOLS [31] provided by the Henkelman
group at the University of Texas (Austin) were used.

The diffusion coefficient of the interstitial oxygen atom or
of the vacancy in perfect bcc Fe may be obtained from the
general formula [32]

D = npνl2

2d
, (2)

with the jump rate ν, jump length l , and the dimension of
the diffusion d , as well as the number of possible equivalent
jumps np of the diffusing atom (or vacancy) from a given
position. In the case of oxygen diffusion via jumps between
nearest-neighbor octahedral interstitial sites, the quantities np,
d , and l are given by

np = 4, d = 3, l = a/2 (a: lattice constant of bcc Fe),
(3)

while for the diffusion of the vacancy one obtains

np = 8, d = 3, l =
√

3

2
a. (4)

In general, the jump rate is given by

ν = ν0 exp

(
− Em

kBT

)
, (5)

with the migration barrier Em, the Boltzmann constant kB,
and the temperature T . In the high-temperature limit, which
is valid in all cases considered in this work, the attempt
frequency ν0 is determined by the Vineyard formula [33]:

ν0 =
∏3N−3

i=1 νmin,i∏3N−4
i=1 νSP,i

, (6)

where νmin,i and νSP,i are the vibrational frequencies of the
supercell with the diffusing oxygen (or vacancy) at the sad-
dle point (SP) and at an equilibrium (minimum) position,
respectively. These frequencies were calculated using the
method implemented in the VASP code which employs the
harmonic approximation and the frozen phonon approach
(see [26,34–36]).

B. Binding energy of oxygen-vacancy pairs at different distances

The binding energies of the Ov pair up to the tenth-
neighbor distance are summarized in Table I. The most at-
tractive state is found for the first-neighbor distance, and
the attraction is still appreciable at the second-neighbor
distance. With increasing distance, the interaction becomes
weaker. Most of the binding energy data determined in
the present work are consistent with previous DFT results
[10,11,21–23,25].

A peculiarity was found for O and v at the sixth-neighbor
distance. This state is not stable; i.e., during relaxation cal-
culation the vacancy moves to the first-neighbor distance
with respect to O. This result could be also reproduced with
supercells containing 3×3×3 and 5×5×5 bcc unit cells and
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TABLE I. Binding energy of the Ov pair at different distances between O and v (see Fig. 1). In this work the pair at the sixth-neighbor
distance was found to be not stable; i.e., the vacancy relaxes to the first-neighbor distance with respect to O. The value with the asterisk
(−0.34 eV) corresponds to the binding energy at a transition state which was found during the relaxation calculations (see text). DFT data
from the literature are also given.

Neighbor position 1 2 5 6 9a 9b 10

Ebind (eV) −1.596 −0.697 −0.126 −0.34* 0.019 0.138 0.015
−1.52 [10] −0.58 [10] −0.05 [10] −0.35 [10] 0.01 [25] 0.22 [25]
−1.53 [11] −0.65 [11] −0.08 [11] −0.37 [23]
−1.45 [21] −0.60 [21] −0.14 [23]
−1.65 [22] −0.75 [22]
−1.69 [23] −0.73 [23]

in a calculation with a higher precision (convergence cri-
teria 10−4 eV/Å and 10−9 eV for force and energy change,
respectively) for a supercell with 4×4×4 unit cells. For a
supercell with 4×4×4 bcc unit cells relaxation calculations
at constant volume were also performed, and the result was
very similar to that obtained by the other calculations. The
relaxation process was studied in more detail, and it was
found that before completely relaxing to the first-neighbor
distance a transition state of the Ov pair can be identified.
For this nonstable state a “quasi-binding energy” of about
−0.34 eV could be estimated. This value is very similar to
that obtained in previous DFT calculations (−0.37 eV [23],
−0.35 eV [10]) for the binding energy of the Ov pair at
the sixth-neighbor distance. In contrast to the result of this
work these authors consider the Ov pair at the sixth-neighbor
distance as (meta)stable. On the other hand, Barouh et al. [10]
found that the migration barrier for the vacancy jump from the
sixth- to the first-neighbor distance is 0, which is in accord
with the result of the present work, showing that the Ov pair
at the sixth-neighbor distance is not really stable.

From previous DFT calculations it is known that the incor-
poration of an oxygen atom on an octahedral interstitial site of
the bcc Fe lattice leads to considerable tetragonal distortion,
whereas the distortion due to the first-neighbor Ov pair is
much smaller (see [26]). In the present work tetragonal dis-
tortions are also found for first-, second-, and ninth-neighbor
Ov pairs. The instability of the sixth-neighbor pair could be
explained by the fact that such an atomic configuration causes
very strong distortions, leading to an immediate relaxation
towards the first-neighbor pair.

C. Migration barriers

1. Oxygen and vacancy migration in pure bcc Fe

The diffusion of oxygen in perfect bcc Fe was investigated
by several authors. It was found that oxygen migrates via
nearest octahedral interstitial sites with a tetrahedral site as
saddle point. The following jump barriers were obtained:
0.512 eV [2], 0.56 eV [10], 0.526 eV [11], 0.60 eV [21],
0.48 eV [23], and 0.451 eV [37]. Furthermore, for the oxygen
atom attempt frequencies of 15.76 THz [2] and of about
13 THz [11] were determined.

Vacancy migration from one bcc site to the nearest-
neighbor bcc site corresponds to a jump of a Fe atom in
the opposite direction. NEB calculations showed that the
minimum energy path is a straight line with a migration

barrier of 0.695 eV. This value is in good agreement with
previous DFT results (0.68 eV [26], 0.64 eV [34], 0.65 eV
[38], 0.67 eV [39], 0.68 eV [40], 0.66 eV [41], and 0.67 eV
[42]). The saddle point of the nearest-neighbor vacancy jump
corresponds to the atomic configuration with the jumping Fe
atom in the middle between the original and the final site
of the vacancy. It should be noticed that the jump distance
of the vacancy corresponds to a third-neighbor distance in
the underlying simple cubic lattice (see Sec. II A). Using
the calculation method described in Sec. II A, an attempt
frequency of 15.33 THz was obtained for the vacancy jump
in pure bcc Fe. This value is comparable with the result
(11.6 THz) of recent DFT calculations [43]. Investigations of
vacancy jumps over second- and third-neighbor distances of
the bcc lattice showed that in pure bcc Fe these long-distance
jumps consist of successive nearest-neighbor jumps between
bcc lattice sites. It is worth mentioning that different Fe atoms
take part in these successive nearest-neighbor jumps of the
vacancy.

Since the migration barriers of O (0.512 eV) and
v (0.695 eV) are in the same order of magnitude, the mobility
of both species must be considered in order to determine the
diffusion coefficient of oxygen in bcc Fe in the presence of
a vacancy and to calculate the diffusion coefficient of the
vacancy in the presence of oxygen. This is different from
previous investigations [2] on the influence of substitutional
foreign atoms on the migration of oxygen, with O as the only
mobile species.

2. Vacancy influence on oxygen migration barriers, and oxygen
influence on vacancy migration barriers

(a) Cage jumps of oxygen. Since the presence of a va-
cancy is related to additional free volume, the oxygen atom
can jump from one nearest-neighbor site with respect to the
vacancy to another. The corresponding jump length is the
second-neighbor distance between octahedral interstitial sites.
This process is called cage jump [10] and is illustrated in
Fig. 2. A barrier height of 0.576 eV was obtained from NEB
calculations. Barouh et al. [10] got a lower value (0.40 eV)
which might be explained by the fact that they used the DFT
code SIESTA and the drag method to determine migration
barriers. The value of 0.576 eV is slightly higher than that
for the first-neighbor jump of oxygen in pure Fe (0.512 eV,
see Sec. II C 1), but considerably lower compared to barriers
which must be overcome by O and v to escape the state of
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FIG. 2. Minimum energy path of the cage jump of oxygen. The
large green sphere represents the vacancy.

the nearest-neighbor Ov pair (see below). Therefore, the cage
jump is the most probable jump once oxygen and vacancy
are trapped at this strong attractive state. However, as already
pointed out by Barouh et al. [10] the cage jump of oxygen
around the first-neighbor vacancy does not really contribute to
net diffusion of oxygen, the vacancy, and the oxygen-vacancy
pair.

(b) Nearest-neighbor O and v jumps as well as simultaneous
jumps of O and v. In order to calculate the possible migration
barriers by the NEB method two cases were considered: (i)
oxygen jumps if the vacancy position is fixed, and (ii) vacancy
jumps if the oxygen position is fixed. The connectivity plot
depicted in Fig. 3(a) illustrates all potential jumps of O and
v within the interaction region, i.e., up to the tenth-neighbor
distance. The dotted and dashed lines mark jumps that are
not possible in reality, due to the instability of the Ov pair
at the sixth-neighbor distance (see above) and because of
the problem with the vacancy jump between states 2 and 5
(see below), respectively.

Figure 3(b) shows the barriers for oxygen jumps between
nearest-neighbor octahedral sites, in the neighborhood of the
vacancy (1-2, 2-5, 5-10, and 9b-10), as well as the barrier
for the cage jump. The values for the O jumps from 1 to 2
and 2 to 1 as well as from 2 to 5 and 5 to 2 are consistent
with results of Barouh et al. [10]. The data for vacancy jumps
between nearest-neighbor bcc lattice sites, in the neighbor-
hood of oxygen (1-2, 2-9a, 5-10, 9a-10), are also given in
Fig. 3(b). As already mentioned, in the present work migration
barriers were determined up to the tenth-neighbor distance. It
is assumed that at larger distances the interaction between O
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FIG. 3. Graphical representation of possible jumps of oxygen
and the vacancy between different neighbor positions (connectivity
plots). Potential jumps (O: red; v: green) including the sixth-neighbor
position are depicted in (a). However, the instability of the Ov pair
at the sixth-neighbor distance makes jumps marked by dotted lines
impossible. For other reasons (see text) the direct vacancy jump
marked by the dashed line is not possible. (b) illustrates the really
relevant neighbor positions and jumps. Jump barriers for forward and
backward jumps are given in eV, e.g., for oxygen jump from 2 to 5
the barrier is 0.769 eV, while it is 0.198 eV for the jump from 5 to 2.
In both figures the binding energy of the Ov pair at a given distance
is marked by blue color. The black italic numbers in (b) show the
binding energies and migration barriers modified due to the rule of
detailed balance (see text).
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and v is negligible so that in this region the migration energies
of both species correspond to that in pure bcc Fe.

If the Ov pair at the sixth-neighbor distance were stable,
both O and v could jump between the fifth and the sixth neigh-
bor as well as between the neighbors 9a and 6; see Fig. 3(a).
These two cases are worth investigating in more detail. Due to
the instability of the Ov pair at the sixth-neighbor distance
the attempt of an oxygen jump from 5 towards 6 causes a
simultaneous (or coupled) vacancy jump so that finally both
species are at the first-neighbor distance. NEB calculations
yield a barrier of 0.442 eV for such a simultaneous jump of
both O and v. Figure 4 shows the initial, intermediate, and final
atomic configurations for this case. The opposite jump has a
much higher barrier (1.912 eV). Also the attempt of an oxygen
jump from 9a towards 6 leads to a simultaneous v jump
which results in a final configuration with both species at the
first-neighbor distance. The barrier of this simultaneous jump
is 0.285 eV, and the initial, intermediate, and final atomic
configurations are also depicted in Fig. 4. The barrier for the
opposite jump is 1.899 eV. It is interesting that in the cases
illustrated in Fig. 4 the relatively high barriers for the jumps
between 1 and 5 as well as between 1 and 9a are comparable
with the barrier for the jump of the vacancy from the first to
the second neighbor of O [Fig. 3(b)], and these barriers are
somewhat higher than the combination of successive jumps
of O from 1 to 2 and from 2 to 5 (1.667 eV). The two
simultaneous jumps of Fig. 4 are marked by magenta color
in the connectivity plot depicted in Fig. 3(b).

A barrier for the direct vacancy jump between the second
and the fifth neighbor of O could be not determined by the
NEB method due to lacking convergence. Therefore, these
jumps are not considered in the present work. It might be
possible that Barouh et al. [10] faced a similar problem, since
they did not show results for those jumps. Obviously, the
difficulty to determine the above-mentioned barriers is caused
by the negligible barrier (0.003 eV) for the O jump between
the second and the first neighbor of v: If v attempts to jump
from the second to the fifth neighbor of O, at first the oxygen
atom may migrate to the first-neighbor octahedral interstitial
site of v. Then, the first simultaneous jump mechanism as
described above may occur, i.e., O and v are initially at
the first-neighbor distance, and finally at the fifth-neighbor
distance. These assumptions are supported by the fact that the
(not fully convergent) NEB calculations for the direct vacancy
jump between the second and the fifth neighbor of oxygen
yield a local minimum with an atomic configuration and a
binding energy which correspond to O at the first-neighbor
site of the v.

III. AKMC BASICS AND DETERMINATION OF
DIFFUSION COEFFICIENTS IN A MODEL SYSTEM

In order to use the NEB data for migration barriers in
AKMC simulations in a consistent manner, the rule of detailed
balance must be obeyed:

Ei, j
m − E j,i

m = E j
bind − Ei

bind (7)

(see, e.g., [2]) for all the O and v jumps shown in the
connectivity plot of Fig. 3(b). Ek

bind and Ek,l
m are the binding

energy between O and v at the kth-neighbor distance and

FIG. 4. Atomic configurations illustrating the simultaneous
(or coupled) jumps between the first- and the fifth-neighbor position
(a) and between the neighbor positions 1 and 9a (b). The scale on the
ordinate concerns the binding energy of the Ov pair (see Table I).

the migration barrier for the jump between the kth and lth-
neighbor distance, respectively. In present AKMC simulations
the binding energy of the Ov pair at and beyond the ninth-
neighbor distance was set to zero and in these regions the
migration energy of O and v was set to the corresponding
values in pure bcc Fe. Therefore, some of the NEB barriers
at the rim of the interaction region had to be modified using
Eq. (7). The modified data are also shown in Fig. 3(b).
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In AKMC simulations a rigid lattice consisting of bcc
lattice sites and octahedral interstitial sites is used. Therefore,
the simultaneous (or coupled) jumps must be described in an
approximate manner. In the case shown in Fig. 4(a), in the
forward direction v jumps from the first- to the sixth-neighbor
position (barrier 1.912) eV); afterwards O is simply shifted
to the fifth-neighbor position of v. In the opposite direction
O jumps from the fifth- to the sixth-neighbor position of
v (barrier 0.442 eV); then v is shifted to the first-neighbor
position of O. The jump depicted in Fig. 4(b) is also modeled
in two steps. In one direction v jumps to the sixth-neighbor
distance (barrier 1.899 eV) followed by the shift of O to the
neighbor position 9a. In the other direction, O jumps to the
sixth- neighbor distance (barrier 0.304 eV, correction due to
detailed balance), followed by a shift of v to the first-neighbor
distance of O.

The AKMC simulations used in this work are based on
the residence time algorithm. Details of the calculation pro-
cedure were described in previous papers [2,12]. However,
in the present work not only oxygen but also the vacancy is
considered as mobile. In Ref. [12] an efficient method was
developed to determine the diffusion coefficient of oxygen in
bcc Fe under the influence of a low concentration of foreign
atoms at the substitutional site. Such a procedure is also used
in this work. In the following two subsections a model system
with fixed vacancy or oxygen concentrations is considered in
order to demonstrate the effect of vacancies on O diffusion
and the influence of oxygen on v diffusion. In Secs. IV and V
more realistic examples are studied.

A. Diffusion coefficient of oxygen in the presence of vacancies

For a given temperature and a given (sufficiently low)
concentration of vacancies the diffusion coefficient of O can
be determined by [12]

D = tfree

ttotal
Dfree + tinter

ttotal
Dinter, (8a)

with

ttotal = tfree + tinter (8b)

(see also Supplemental Material [44]).
The first and second terms are related to the diffusion of

oxygen in perfect bcc Fe and within the region of interaction
between oxygen and a vacancy, respectively. Dfree denotes
the diffusivity of oxygen in pure Fe, and Dinter denotes the
diffusivity of oxygen in the interaction region. As already
mentioned in Sec. II A the value of Dfree can be obtained by
the analytical expression

Dfree = a2

6
νfree

0 exp

(−E free
m

kBT

)
, (9)

with the attempt frequency νfree
0 = 15.76 THz and the migra-

tion barrier E free
m = 0.512 eV, while a = 2.832 Å is the lattice

constant in bcc Fe. The diffusion coefficient Dinter must be
determined by AKMC simulations taking into account that O
as well as v are mobile. In the dilute limit, which is considered
throughout the present work for the concentrations of species

that influence O (or v) diffusion, Dinter is nearly independent
of the concentration of these species, i.e., nearly independent
of the size of the AKMC simulations cell; see Ref. [12].
Therefore, Dinter can be determined by AKMC calculations
for only one specific v concentration. In the interaction region
the jumps are simulated using the attempt frequencies νfree

0 for
O and v (see Sec. II C 1) and barriers according to Fig. 3(b).
The quantities tfree and tinter denote the sum of the time
periods for diffusion outside and inside the interaction region,
respectively, and ttotal is the total diffusion time.

The time ratios in Eq. (8a) are given by the analytical
expressions [12],

tfree

ttotal
= 1 − ∑

i NiCv

1 − ∑
i NiCv + ∑

i Ni exp
(−Ei

bind (Ov)
kBT

)
Cv

i = 1, 2, 5,

(10a)

tinter

ttotal
=

∑
i Ni exp

(−Ei
bind (Ov)

kBT

)
Cv

1 − ∑
i NiCv + ∑

i Ni exp
(−Ei

bind (Ov)
kBT

)
Cv

,

(N1 = 2, N2 = 4, N5 = 8), (10b)

with the vacancy concentration Cv, and the binding energy
Ei

bind(Ov) of the Ov pair at the ith-neighbor distance (see
Table I, neighbor denotation according to Fig. 1); Ni is
the number of possible vacancy sites at the ith-neighbor
distance from O. Here neighbors beyond i = 5 are not
taken into account because of the low binding energy.
Note that in the dilute limit

∑
i NiCv is small compared to∑

i Ni exp(−Ei
bind (Ov)

kBT )Cv.
At this point it must be emphasized that the use of

Eqs. (8)–(10) to calculate the diffusion coefficient D for
different vacancy concentrations is much more efficient than
performing separate AKMC calculations for each concentra-
tion using simulation cells with different sizes. The method
outlined above requires only one AKMC simulation to deter-
mine Dinter and in the remaining calculations one can employ
analytical expressions for Dfree and the time ratios. In this
work Dinter was obtained by AKMC simulations for a vacancy
concentration of 0.0977 at. %, i.e., using a simulation box
consisting of 8 × 8 × 8 bcc unit cells with one mobile O
atom and one mobile vacancy. In the Arrhenius plot Dinter (T )
is almost a straight line, from which the effective activation
energy of about 2.0 eV was derived. The time ratios tfree/ttotal

and tinter/ttotal are depicted in Fig. 5, for vacancy concentra-
tions of 0.0015, 0.0122, 0.0977, 0.2315, 0.4000, and 0.7813
at. %. With increasing temperature, tinter/ttotal decreases while
tfree/ttotal increases. Due to the strong attraction, in particular
at the first-neighbor distance, the quantity tfree/ttotal rapidly
decreases if the vacancy concentration increases. For concen-
trations above 0.0977% tfree/ttotal is nearly zero and tinter/ttotal

is nearly 1, even at elevated temperatures. At low temperature
tfree/ttotal converges to zero and tinter/ttotal approaches 1.

Figure 6(a) illustrates the total diffusion coefficient of
oxygen in bcc Fe in dependence on the vacancy concentration.
The data of D are between the values of the diffusion coeffi-
cient of oxygen in pure Fe (Dfree) and that inside the region
influenced by the vacancy (Dinter). The presence of vacancies
significantly decreases the mobility of oxygen. For example,
at 800 K and a concentration of 0.0015 at. % the diffusion
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FIG. 5. The time ratios tfree/ttotal (a) and tinter/ttotal (b) for oxygen,
in dependence on temperature and vacancy concentration.

coefficient is five to six orders of magnitude lower than that
in pure bcc Fe. With increasing vacancy concentration the
reduction of D becomes slower and the value approaches
that of Dinter.This is mainly due to the quick decrease of
tfree/ttotal with increasing v concentration. Note that in this
work temperatures below 800 K were not considered, since
in these cases AKMC simulations require extremely long
computing times.

The total diffusion coefficient D can be also determined by

D = tfree

ttotal
Dfree (11)

if the interaction part tinter
ttotal

Dinter is negligibly small compared
to tfree

ttotal
Dfree [see Eq. (8a)]. It is found that at concentrations

of 0.0015, 0.0122, and 0.0977 at. % the total diffusion coeffi-
cient can be well reproduced by Eq. (11). At higher vacancy
concentrations results obtained by (11) deviate from those
determined by Eq. (8a). This is due to the fact that in these
cases both terms of Eq. (8a) must be taken into account; their
absolute values are very small but comparable.

The method described above may also be called the cluster
expansion approach of diffusion. In the present case an Ov
pair is temporarily formed during O migration. In our previous
work [2,12] the temporary formation of pairs consisting of
O and substitutional solutes was considered. In Secs. IV
and V the method is extended to further applications (see
also Supplemental Material [44]). A similar but more general

FIG. 6. The total diffusion coefficient of oxygen (a) for given
concentrations of vacancies, and the total diffusion coefficient of the
vacancy (b) for different oxygen concentrations. The corresponding
data of Dfree (cyan) and Dinter (violet) are also shown.

approach which is based on the self-consistent mean field
approach was recently developed by other authors [45–47].

B. Diffusion coefficient of the vacancy in the presence of oxygen

The method used in the last section to evaluate the diffu-
sion coefficient of oxygen is also applied to study vacancy
diffusion. The data for the diffusion coefficient of v in the
interaction region with O (Dinter) were determined by AKMC
simulations in a similar manner as Dinter for oxygen. Within
the statistical accuracy of the AKMC data Dinter for v is nearly
equal to Dinter for O, with an effective activation energy of
about 2.0 eV. The time ratios tfree/ttotal and tinter/ttotal used
in the determination of the vacancy diffusion coefficient are
calculated in a similar manner as in the case of the oxygen
diffusion coefficient. The value of Dfree for the vacancy is
given by

Dfree = a2νfree
0 exp

(−E free
m

kBT

)
, (12)

with E free
m = 0.695 eV and νfree

0 = 15.33 THz (see Sec. II A).
Considering both v and O jumps, AKMC simulations are
performed in order to determine the diffusion coefficient
of v in the interaction region with O. The total diffusion
coefficient of the vacancy is illustrated in Fig. 6(b) for oxygen
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FIG. 7. Diffusion coefficient of the Ov pair inside the interaction
region, determined by AKMC simulations, with one mobile oxygen
and one mobile vacancy.

concentrations of 0.0015, 0.0122, 0.0977, 0.2315, 0.4000, and
0.7813 at. %. The slope of these curves is slightly steeper than
that of the curves for O [Fig. 6(a)] because of the somewhat
steeper slope of Dfree for the vacancy. The influence of O on
the v diffusion coefficient is comparable with the influence
of v on O diffusion: At 800 K and an oxygen concentration of
0.0015 at. % the diffusion coefficient is about five to six orders
of magnitude lower than that in pure bcc Fe.

All the data presented in this work are strictly valid
for ferromagnetic iron, i.e., below the Curie temperature of
1043 K. The temperature dependence of the spontaneous
magnetization is not taken into account in the calculation of
the basic DFT data (binding and migration energy); i.e., for
bcc iron the ground-state value of magnetization is always
assumed. Furthermore, above about 1183 K the fcc phase
is most stable, and not bcc Fe. On the other hand, in this
work temperatures up to 2000 K are considered in order to
verify that the total diffusion coefficient of oxygen and of
the vacancy (see Fig. 6) approaches the corresponding values
for pure bcc Fe at sufficiently high temperature, and in order
to study the hypothetical high-temperature behavior of other
quantities.

C. Diffusion coefficient of the oxygen-vacancy pair

In AKMC simulations the position of the Ov pair is
defined as the middle point between oxygen and vacancy.
The calculation of the diffusion coefficient of the Ov pair
is very similar to the determination of Dinter for O and v.
Figure 7 depicts the result. The activation energy for Ov
migration is about 1.95 eV, i.e., only slightly smaller than the
activation energies found for Dinter of O and v (see above).
This value may be the result of a simultaneous jump from
first- to fifth-neighbor position, followed by an oxygen jump
from the fifth- to the second-neighbor position [see Fig. 3(b)].
Finally, O jumps to the first-neighbor position of v with a
negligible barrier of 0.003 eV. During this process the Ov pair
has moved by a distance of a first-neighbor distance in bcc Fe
(or a third-neighbor distance in the underlying simple cubic

FIG. 8. Minimum energy path for the migration of the Ov pair.
The scale concerns the binding energy of the Ov pair (see Table I).

lattice; see Sec. II A). The most probable minimum energy
path for the migration of the Ov pair is illustrated in detail
in Fig. 8. The scale in Fig. 8 concerns the binding energy of
the Ov pair. The difference between the lowest value (about
−1.6 eV; see also Table I) and the highest value gives about
1.95 eV, i.e., the activation energy extracted from Fig. 7 for Ov
pair migration. The present results are also in good agreement
with the global migration energy of 1.90 eV determined by
Barouh et al. [10] for the Ov pair. The dissociation energy
of the Ov pair calculated by the sum of the absolute value of
the first-neighbor binding energy and the oxygen migration
energy in pure bcc Fe is about 2.11 eV which is 0.16 eV
higher than the activation energy of pair migration. This
estimation shows that pair migration is more probable than
dissociation.

IV. OXYGEN AND VACANCY DIFFUSION IN THE FIRST
STAGE OF THERMAL PROCESSING OF OXIDE

DISPERSION STRENGTHENED Fe-BASED ALLOYS

In the calculation of the data shown in Figs. 5–7 constant
vacancy and oxygen concentrations are assumed which are
still rather low, but much higher than in pure bcc Fe at the ther-
mal equilibrium [3,6–9]. A supersaturation of vacancies can
occur under extreme conditions, e.g., under irradiation, plastic
deformation, and mechanical alloying. The latter method is
employed in the production of oxide dispersion strengthened
(ODS) Fe-based alloys using powder technology. These ma-
terials are considered as promising candidates for structural
materials of future fusion and fission reactors [48]. The me-
chanical alloying or milling process produces a lot of empty
volume which may be considered as an additional source of
vacancies. Furthermore, it is generally supposed that milling
of a mixture containing a Fe-based alloy as well as Ti and
Y2O3 leads to a nearly complete dissolution of yttria (Y2O3)
[49,50]. Typical total O, Y, and Ti concentrations (Ctotal

O , Ctotal
Y ,

Ctotal
Ti ) are 0.18, 0.12, and 1.05 at. %, respectively (for MA957
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alloy see [49–51]). These data are used in the following
considerations. Note that Ctotal

O is much higher than the thermal
solubility of oxygen in bcc Fe. The strong attraction between
oxygen and the vacancy, between O and Y, and between Y
and the vacancy (see below) is assumed to be decisive for
the high oxygen and Y incorporation ability of the ODS
Fe-based alloys. The thermal processing of the ODS alloy is
a complex and time consuming process which includes hot
isostatic pressing or hot extrusion, and additional annealing
(see, e.g., [52–56]). In the following the thermal treatment is
described in a very simple manner by assuming equilibrium
between O, Y, Ti, and vacancy monomers on the one hand
and Ov, vY, vTi, OY, and OTi pairs on the other hand. This
may correspond to the first phase of the thermal processing,
i.e., to the beginning of the formation of the characteristic
ODS clusters which contain O, v, Y and Ti. Any mechanical
effects such as pressure and deformation are neglected in these
considerations.

If only the most stable pairs,

Ov at first-neighbor distance (Ebind = −1.596 eV), and at
second-neighbor distance (−0.697 eV),

OY at second-neighbor distance (−1.01 eV [2]), and at
fifth-neighbor distance (−0.336 eV [2]),

OTi at first-neighbor distance (−0.372 eV [2]), and at
second-neighbor distance (−0.593 eV [2]),

vY at third-neighbor distance (−1.26 eV [57]), and

vTi at third-neighbor distance (−0.25 eV [43])

are taken into account, the following four equations must
be solved to determine the concentrations of O, Y, and Ti
monomers, CO, CY, and CTi, respectively, and the total vacancy
concentration Ctotal

v . These relations correspond to Lomer’s
equation [58] and are similar to expressions recently pub-
lished by Schuler et al. [3].

The equation for the total vacancy concentration Ctotal
v is

Ctotal
v = Cv{1 − Av + Bv}, (13a)

with

Av = 6CO + 8(CY + CTi),
(13b)

Bv = 2 exp

[
−E1

bind(Ov)

kBT

]
CO + 4 exp

[
−E2

bind(Ov)

kBT

]
CO

+8 exp

[
−E3

bind(vY)

kBT

]
CY + 8 exp

[
−E3

bind(vTi)

kBT

]
CTi.

(13c)

The equation for the total oxygen concentration Ctotal
O is

Ctotal
O = CO{1 − AO + BO}, (14a)

with

AO = 6Cv + 12CY + 6CTi, (14b)

BO = 2 exp

[
−E1

bind(Ov)

kBT

]
Cv + 4 exp

[
−E2

bind(Ov)

kBT

]
Cv

+ 4 exp

[
−E2

bind(OY)

kBT

]
CY + 8 exp

[
−E5

bind(OY)

kBT

]
CY

+ 2 exp

[
−E1

bind(OTi)

kBT

]
CTi + 4 exp

[
−E2

bind(OTi)

kBT

]
CTi.

(14c)

The equation for the total Y concentration Ctotal
Y is

Ctotal
Y = CY{1 − AY + BY}, (15a)

with

AY = 12CO + 8Cv, (15b)

BY = 4 exp

[
−E2

bind(OY)

kBT

]
CO + 8 exp

[
−E5

bind(OY)

kBT

]
CO

+ 8 exp

[
−E3

bind(vY)

kBT

]
Cv. (15c)

The equation for the total Ti concentration Ctotal
Ti is

Ctotal
Ti = CTi{1 − ATi + BTi}, (16a)

with

ATi = 6CO + 8Cv, (16b)

BTi = 2 exp

[
−E1

bind(OTi)

kBT

]
CO + 4 exp

[
−E2

bind(OTi)

kBT

]
CO

+ 8 exp

[
−E3

bind(vTi)

kBT

]
Cv. (16c)

E3
bind(vY) and E3

bind(vTi) denote binding energies at the
first-neighbor distance of the bcc lattice which corresponds
to the third-neighbor distance in the underlying simple cubic
lattice (see Sec. II A). Note that in bcc Fe the interaction
between Y and Ti is repulsive and is therefore not considered
in Eqs. (13)–(16) [59]. In these equations, the quantity B times
the corresponding monomer concentration characterizes the
concentration of the considered species (O, v, Y, Ti) within
pairs. The quantity 1 − A times the corresponding monomer
concentration characterizes the concentration of the species
which are not in pairs.

It must be mentioned that the thermodynamic approach
given in Eqs. (13)–(16) can be considered as a cluster ex-
pansion truncated after the pair term. A more general method
which allows the consideration of a larger cluster was devel-
oped recently by other authors [3,25,60].

In the thermal equilibrium the concentration of single
vacancies (monomers) is given by

Cv = exp

(
−E f

F

kBT

)
, (17)
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if only the vacancy formation energy at the (ferromagnetic)
ground state, E f

F , is taken into account. This is consistent with
Eqs. (13)–(16) where ground-state binding energies are used.
At elevated temperature the ground-state quantities should
be replaced by free formation and binding energies. In the
present work only the phonon and magnetic contributions to
the free formation energy of the vacancy F f are considered.
According to Schuler et al. [3] F f is determined by

F f (T ) = E f
P + (

E f
F − E f

P

)
M0(T )2

− T
[
S f

P + (
S f

F − S f
P

)
M0(T )2

]
, (18)

where E f
F , S f

F and E f
P , S f

P are the formation energy and en-
tropy in ferromagnetic and paramagnetic bcc Fe, respectively,
with E f

F = 2.12 eV, E f
P = 1.98 eV, S f

F ≈ 5kB, and S f
P ≈ 4kB

[3]. The quantity M0(T ) denotes the reduced magnetization
which varies between 1 (ferromagnetic ground state) and 0
(full paramagnetic state). For M0(T ) the experimental data of
Crangle and Goodman [61] are used. Using F f the monomer
vacancy concentration can be calculated by

Cv = exp

(−F f

kBT

)
. (19)

The solutions of Eqs. (13)–(16) with Cv from (17) or (19)
are shown in Fig. 9. The temperature dependence of the
monomer concentrations and of Ctotal

v is illustrated in Fig. 9(a).
The difference between the data for Ctotal

v obtained using Cv

from (17) or (19) is significant. In Fig. 9(b) the ratios Cv/Ctotal
v ,

Ctotal
v /Ctotal

O , CO/Ctotal
O , CY/Ctotal

Y , and CTi/Ctotal
Ti are depicted.

This figure clearly shows that most of the vacancies and most
of the O and Y atoms are bound in the corresponding pairs. At
very high temperature the values of Cv/Ctotal

v , CO/Ctotal
O , and

CY/Ctotal
Y obtained using Cv from Eq. (19) deviate from those

calculated using Cv from Eq. (17) [difference between dashed
and solid lines in Fig. 9(b)]. However, these temperatures are
not of practical relevance for the thermal processing of ODS
alloys. At lower temperature the three ratios show an increase.
Furthermore, CTi/Ctotal

Ti is close to 1, which means that most
of the Ti atoms are not bound in pairs. This is due to fact
that Ctotal

Ti is higher than Ctotal
O , Ctotal

Y , and Ctotal
v , and that the

attraction between Ti and the other species is relatively weak.
The ratios Ctotal

v /Ctotal
O calculated using Cv from Eqs. (17) or

(19) are very different since Cv determined by Eq. (19) is
significantly higher. However, in both cases the ratio is much
less than 1. This does not agree with the assumption made by
several authors [62–64] that in the production of ODS alloys
the total vacancy concentration can reach the same order of
magnitude as the total concentration of oxygen. On the other
hand, it must be emphasized that the data of Fig. 9 were
determined under the assumption of the equilibrium between
monomers and pairs. Including larger clusters containing O,
vacancies, Y, and Ti (see, e.g., [65]) may change the ra-
tio Ctotal

v /Ctotal
O and the other results. In this case equations

similar to (13c)–(16c) would contain additional terms with
concentrations of the clusters and binding energies of the
monomers to the cluster. Furthermore, it must be noticed
that the above considerations assume a compact Fe-based
material containing a given amount of foreign atoms, and the
total vacancy concentration is established by the thermal

FIG. 9. Temperature dependence of monomer concentrations Cv,
CO, CY, CTi, and of the total vacancy concentration Ctotal

v (a) as
well as the concentration ratios vs temperature (b). The data were
obtained by the solution of Eqs. (13)–(16), for the following total
concentrations of solutes: 0.18 at.% O, 0.12 at.% Y, and 1.05 at.% Ti.
The solid and dashed lines were determined using Cv from Eqs. (17)
and (19), respectively.

equilibrium. In reality, at the beginning of the thermal treat-
ment of ODS alloys the material is not compact but more
similar to a powder. Therefore, there are certainly additional
sources of vacancies so that their concentration should be
higher than in a compact material. Thus the data depicted in
Fig. 9(b) should be regarded as a lower limit for Ctotal

v /Ctotal
O .

In the following the diffusion coefficient of oxygen is
calculated for the dilute iron alloy using (i) the monomer
concentrations Cv, CY, and CTi shown in Fig. 9(a), or (ii) the
total concentrations Ctotal

v , Ctotal
Y , and Ctotal

Ti given in the above
text or depicted in Fig. 9(a) (Ctotal

v ). The reason why total
concentrations are considered is discussed below.

The oxygen diffusion coefficient is determined using ex-
pressions similar to Eqs. (8) and (10), but considering interac-
tions not only with v but also with Y and Ti:

D = tfree

ttotal
Dfree + tinter,v

ttotal
Dinter,v + tinter,Y

ttotal
Dinter,Y

+ tinter,Ti

ttotal
Dinter,Ti, (20a)

ttotal = tfree + tinter,v + tinter,Y + tinter,Ti, (20b)
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and

tfree

ttotal
= 1 − R1

R
, (21a)

tinter,v

ttotal
=

∑
i Ni exp

[−Ei
bind (Ov)

kBT

]
C∗

v

R
, (21b)

tinter,Y

ttotal
=

∑
j Nj exp

[−E j
bind (OY)

kBT

]
C∗

Y

R
, (21c)

tinter,Ti

ttotal
=

∑
k Nk exp

[−Ek
bind (OTi)

kBT

]
C∗

Ti

R
, (21d)

R1 =
∑

i

NiC
∗
v +

∑
j

NjC
∗
Y +

∑
k

NkC
∗
Ti, (21e)

R2 =
∑

i

Ni exp

[
−Ei

bind(Ov)

kBT

]
C∗

v

+
∑

j

Nj exp

[
−E j

bind(OY)

kBT

]
C∗

Y

+
∑

k

Nk exp

[
−Ek

bind(OTi)

kBT

]
C∗

Ti, (21f)

R = 1 − R1 + R2. (21g)

The data for Dinter,Y and Dinter,Ti are calculated by AKMC
simulations similarly to the determination of Dinter,v; see
Sec. III A. As in the determination of concentrations by
Eqs. (13)–(19), only the most attractive O-v, O-Y, and O-Ti
interactions are taken into account in Eq. (21). The star super-
script indicates that monomer or total concentrations are used
in two separate types of calculations as already mentioned
above. At first the diffusion coefficient is determined using
the monomer concentrations Cv, CY , and CTi. In reality the
diffusion of oxygen may be not only influenced by the v, Y,
and Ti monomers but also by pairs or larger clusters which
may contain v, Y, or Ti. In a very simple approximation the
total concentrations Ctotal

v , Ctotal
Y , and Ctotal

Ti may be used instead
of the monomer concentrations. This is not quite correct since
neither the binding energy of an oxygen atom with pairs or
larger clusters nor the migration barriers of oxygen in their
environment is equal to those in the case of monomers. On the
other hand, the calculation of the corresponding binding ener-
gies and migration barriers by DFT is an extensive task since
many different cluster configurations must be considered. In
order to get an idea about the influence of the cluster calcula-
tions are therefore performed using Ctotal

v , Ctotal
Y , and Ctotal

Ti .
Figure 10(a) depicts the results for the O diffusion. If only

the monomer concentrations Cv, CY, and CTi are taken into
account the diffusion coefficient is already significantly lower
than that in pure Fe. The use of either Eq. (17) or Eq. (19)
for Cv affects the result only at very high temperatures which
are not of practical relevance. Below the bcc-to-fcc transi-
tion temperature of 1183 K the effective diffusion activation
energy is about 1.1 eV. On the other hand, the use of total
concentrations Ctotal

v , Ctotal
Y , and Ctotal

Ti in Eq. (21) leads to an O
diffusion coefficient which is still lower than that obtained by
considering the monomer concentrations. A large difference
is obtained between the results determined using Cv from

FIG. 10. Total diffusion coefficients of O (a) and v (b) deter-
mined for the monomer or the total concentrations shown in Fig. 9(a)
and given in the text. The concentrations used in the calculations are
written close to the corresponding curves for the diffusion coefficient
using the same color. These curves were either obtained using Cv

from Eq. (17) (solid lines) or Cv from Eq. (19) (dashed lines).

Eq. (17) or Eq. (19). The latter case leads to the lowest oxygen
diffusion coefficient. This can be explained by the fact that
Ctotal

v is significantly higher than Cv [see Fig. 9(a)]. With Cv

from Eq. (17) or Eq. (19) the diffusion activation energy is
about 1.5 or 1.0 eV, respectively, in the temperature range
of bcc Fe. The influence of the substitutional foreign atoms
on the O diffusion coefficient becomes obvious by comparing
with data shown in Fig. 5 of Ref. [2], and in Fig. 6(a), and by
considering the concentrations shown in Fig. 9(a): For exam-
ple, at low temperature the black dashed curve in Fig. 10(a)
should be determined by the total concentration of Y (0.12
at. %) and/or Ti (1.05 at. %) since the total v concentration is
extremely low. Comparison with diagrams shown in Figs. 5(e)
and 5(i) of Ref. [2] clearly shows that the Y content dominates
the value of the O diffusion coefficient at temperatures around
800 K. On the other hand, at temperatures near 2000 K the
v content is on the order of some tenth of a percent [black
dashed line in Fig. 9(a)] and therefore determines the value of
the O diffusion coefficient, as one can see by comparing with
Fig. 6(a). A similar discussion could be performed concerning
the other curves depicted in Fig. 10(a).

Vacancy diffusion in the alloy containing O, Y, and Ti
was treated using a method similar to that employed in the
calculation of the oxygen diffusion coefficient. The results are
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shown in Fig. 10(b). The following cases were considered:
(i) Only the monomer concentrations CO, CY, and CTi [see
Fig. 9(a)] were taken into account. (ii) The (constant) total
concentrations Ctotal

O , Ctotal
Y , and Ctotal

Ti (data given above) were
used. Since the monomer concentrations of O, Y, and Ti
determined using either Eq. (17) or (19) for Cv are nearly
equal, see Fig. 9(a), the resulting values for v diffusion are
also not very different. The corresponding diffusion activation
energy is about 1.6 eV (below 1183 K). On the other hand,
in the calculation of the v diffusivity for the constant total
concentrations of O, Y, and Ti the quantity Cv need not be used
at all. In the latter case, at 800 K the v diffusion coefficient is
about seven orders of magnitude lower than that in perfect bcc
Fe, and the activation energy is about 2.13 eV. The comparison
of the red line in Fig. 10(b) with the green curve in Fig. 6(b)
reveals that the given total O concentration dominates the
v diffusion coefficient over the whole temperature range.
Thus the influence of Y and Ti is negligible which is due
to the weaker binding between v and Y as well as v and Ti
compared to that between v and O. Similarly, the blue curves
in Fig. 10(b) should be mainly determined by the monomer O
concentration.

V. OXYGEN AND VACANCY DIFFUSION IN bcc Fe WITH
AN OXYGEN CONTENT CLOSE TO THE VALUE

OF THERMAL SOLUBILITY

The few experimental data on oxygen solubility in bcc
Fe were published many years ago [5,8,9] and were derived
from measurements and calculations performed in connection
with internal oxidation experiments. In the temperature range
between 800 and 1043 K the data obtained from the formula
of Takada et al. [8] differ from those of Frank et al. [9] by up to
one order of magnitude. The value of Swisher and Turkdogan.
[5] lies between these data sets (see Supplemental Material
[44]). In the present work the solubility data of Takada et al.
[8] are used. Furthermore, Murali et al. [26] calculated by
DFT the free formation energy of oxygen by considering
equilibrium between Fe and FeO. In the ferromagnetic tem-
perature range the oxygen concentration obtained from these
theoretical investigations is somewhat higher than that of
Takada et al. [8] (see Supplemental Material [44]).

At first the formalism of Sec. IV is employed. The oxygen
solubility is set equal to Ctotal

O , and Cv is calculated by Eq. (19).
In this manner the monomer O concentration CO, the total va-
cancy concentration Ctotal

v , and other quantities are determined
(see Supplemental Material [44]). Since both the oxygen
and the vacancy concentration are rather low, Eq. (11) can
be employed to determine the oxygen diffusion coefficient.
A similar relation is used for the vacancy diffusivity. The
results obtained by this method are depicted in Fig. 11. If
the monomer vacancy concentration Cv is used to determine
the time ratio tfree/ttotal in an expression similar to Eq. (10a),
the oxygen diffusion coefficient is lower than that for pure
bcc Fe but shows a relatively weak temperature dependence
[Fig. 11(a)]. This is due to the fact that the value of the free
formation energy of the vacancy according to Eq. (18) is not
very different from the absolute value of the binding energy
of the Ov pair. This may lead to a slight increase of the
time ratio tfree/ttotal with decreasing temperature while Dfree

FIG. 11. Total diffusion coefficients of O (a) and v (b) for the
case that the oxygen concentration is equal to the thermal solubility.
The black and blue curves were determined using monomer and
total concentrations, respectively, for O and v. These concentrations
were calculated by the method described in Sec. IV. The red and
magenta curves were obtained by a modified procedure where not
only the O-v interaction (as in Sec. IV) but also the O-Ov (or v-Ov)
interactions are taken into account (see Supplemental Material [44]).
The red and magenta curves were calculated for monomer and total
v or O concentrations, respectively. Note that in (b) the blue and
the magenta curves as well as the black and red curves are nearly
identical. The oxygen diffusion data determined by internal oxidation
experiments are marked by S [5], T [6–8], and F [9]. In the case
of S and T the thick lines show the temperature range in which the
measurements were performed. Note that the data of Swisher and
Turkdogan [5] are based on permeability measurements for δ-iron
[4] and are therefore only approximately valid for bcc Fe. The brown
dashed line was obtained using the activation energy given by Frank
et al. [9] and the preexponential factor from Eq. (9).

decreases. This peculiarity does not happen if the total va-
cancy concentration Ctotal

v is used instead of Cv. In this case
the oxygen diffusion coefficient is somewhat more similar to
the measured data although significant differences remain.
The motivation for using the total instead of monomer con-
centrations was discussed in Sec. IV. On the other hand,
Fig. 11(a) clearly shows the discrepancy between the ex-
perimental data of Swisher and Turkdogan [5] and Takada
et al. [6–8]. This underlines the need for further experimental
diffusion data directly obtained from an oxygen concentration
profile in a sufficiently pure and defect-free bcc Fe. Using the
preexponential factor from Eq. (9) and the diffusion activation
energy of Frank et al. [9] (0.98 eV) another “quasiexperimen-
tal” data set was obtained [see Fig. 11(a)].
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Schuler et al. [3] demonstrated that in the case of bcc Fe
with an oxygen content equal to the thermal solubility, not
only the Ov pair but also O2v are important in the determi-
nation of the total vacancy concentration. Following Ref. [3]
in the present work the formalism of Sec. IV was extended so
that not only Ov, but also O2v and Ov2 are considered (see
Supplemental Material [44]), with binding energies EO2v

bind =
−3.349 eV and EOv2

bind = −2.502 eV. That means it is assumed
that during O migration not only the Ov pair but also the O2v
cluster may be formed temporarily. Similar to the case without
O2v, calculations were performed assuming Cv or Ctotal

v for the
vacancy concentration. In both cases the diffusion activation
energy which determines the slope of the curves [red and
magenta curves in Fig. 11(a)] is higher than for the respec-
tive curves obtained without considering O2v. Figure 11(b)
shows the vacancy diffusion coefficient under the influence
of oxygen. Assuming the monomer concentration CO in the
relation for the time ratio tfree/ttotal leads to a somewhat higher
diffusion activation energy than using Ctotal

O . In both cases the
vacancy diffusion coefficient is much lower than that in pure
bcc Fe. Taking into account that during v migration not only
Ov but also Ov2 may be formed temporarily does not change
the results since in thermal equilibrium the concentration of
Ov2 is very small (see Supplemental Material [44]).

The results presented in this section demonstrate that the
presence of a very small amount of oxygen, in the order of the
thermal solubility, has a significant influence on both O and v
diffusion.

VI. SUMMARY AND CONCLUSIONS

The mutual dependence of O and v diffusion in bcc Fe and
dilute iron alloys was investigated using a combined com-
putational method. DFT calculations of the binding energy
between O and v at different distances and of the migration
barriers of O and v in the regions of their interaction revealed
significant special features. The findings of an extremely
strong binding of the Ov pair at the first-neighbor distance
and of the very high barrier to be overcome for leaving this
state are consistent with previous work. On the other hand, it
was shown that the Ov pair at the sixth-neighbor distance is
instable. This would lower the number of possible migration
paths for O and v in the interaction region. However, this
reduction is compensated by the simultaneous or coupled
jumps of O and v. Furthermore, the investigations showed
that a direct v jump from the second- to the fifth-neighbor
distance to O is not possible. Ultimately, these peculiarities
are due to the very strong attractive interaction of the Ov
pair at the first-neighbor state. The DFT results were used
as inputs for AKMC-based calculations of the diffusion co-
efficients of O and v. The consideration of a model system
with fixed v or O concentrations already demonstrated the
strong influence of vacancies on O diffusion and of oxygen
on v diffusion, leading to a significant decrease of the cor-

responding diffusion coefficients, even if the concentrations
are only on the order of some parts per million (ppm). As
a more realistic case, the diffusion of O and v during the
first stage of thermal processing of ODS alloys was investi-
gated. This system contains ODS-typical total concentrations
of O, Y, and Ti. In a simple model thermal equilibrium
between O, v, Y, and Ti monomers on the one hand and
Ov, OY, OTi, vY, and vTi pairs on the other hand was assumed.
Then the O, Y, and Ti monomer concentrations as well as the
total v concentration were determined. The O diffusion co-
efficients obtained for monomer or total concentrations show
a significant dependence on the vacancy and the Y content,
whereas the v diffusivity is only influenced by the presence
of oxygen. Furthermore, a system with an O content close to
the thermal solubility in iron was studied. The monomer O
concentration as well as the total v concentration was deter-
mined using two different models considering equilibrium of
O and v with Ov, or equilibrium of O and v with Ov and O2v
or Ov2. Despite the very small value of thermal solubility of
O in bcc Fe, both the O and v diffusion coefficient are very
different from that in pure iron. These findings also show that
not only the total v concentration or the effective v formation
energy is strongly affected by the very small O content, as
found by Schuler et al. [3], but also the diffusion coefficients
of v and O and the corresponding effective diffusion activation
energies. The results of the present work have important
consequences for planning and performing experiments on
O and v diffusion in dilute iron alloys. In particular, a very
precise knowledge of the concentrations of O and v, as well
as of other foreign atoms and traps such as dislocations, is
required. It is also recommended to use bcc Fe single crystals
in order to avoid the influence of grain boundaries in such
fundamental experiments. The results of the present work are
comprehensive and contribute to a better understanding of
the interplay between different atomic species and defects in
complex materials.
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