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Influence of interface induced valley-Zeeman and spin-orbit couplings on transport
in heterostructures of graphene on WSe2
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We investigate the electronic dispersion and transport properties of graphene/WSe2 heterostructures in the
presence of a proximity induced spin-orbit coupling (SOC) using a low-energy Hamiltonian, with different types
of symmetry breaking terms, obtained from a four-band, first and second nearest-neighbour tight-binding (TB)
one. The competition between different perturbation terms leads to inverted SOC bands. Further, we study the
effect of symmetry breaking terms on ac and dc transport by evaluating the corresponding conductivities within
linear response theory. The scattering-independent part of the valley-Hall conductivity, as a function of the Fermi
energy EF , is mostly negative in the ranges −λR � EF and EF � λR when the strength λR of the Rashba SOC
increases except for a very narrow region around EF = 0 in which it peaks sharply upward. The scattering-
dependent diffusive conductivity increases linearly with electron density, is directly proportional to λR in the
low- and high-density regimes, but weakens for λR = 0. We investigate the optical response in the presence of a
SOC-tunable band gap for variable EF . An interesting feature of this SOC tuning is that it can be used to switch
on and off the Drude-type intraband response. Furthermore, the ac conductivity exhibits interband responses due
to the Rashba SOC. We also show that the valley-Hall conductivity changes sign when EF is comparable to λR

and vanishes at higher values of EF . It also exhibits a strong dependence on temperature and a considerable
structure as a function of the frequency.
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I. INTRODUCTION

Two-dimensional (2D) materials have become a hot topic
in solid state physics, especially since the discovery of
graphene, both theoretically and experimentally because of
their prominent mechanical, optical, electrical, and magnetic
properties [1]. Recently graphene has attracted a lot of at-
tention in the field of spintronics due to its large electronic
mobility, low spin-orbit coupling (SOC), negligible hyperfine
interaction and gate tunability [2]. For a clear example, it has
been proven that graphene exhibits a very long spin relaxation
length even at room temperature [3,4]. Due to the weak SOC
though, it is not a suitable candidate for the observation of
important spin-dependent phenomena including the spin-Hall
effect [5] and anomalous Hall effect [6].

To render graphene useful in spintronics, several exper-
imental groups used different techniques to tailor the SOC
strength in it through coupling with foreign atoms or materials
[7–13], such as graphene hydrogenation [14,15] or fluorina-
tion [16] as well as heavy adatom decoration [17,18]. How-
ever, these approaches not only reduce the transport quality,
but also make it difficult to reproduce [14,15] and detect
[16–18] the induced SOC. To overcome these difficulties,
graphene is recently grown on different novel 2D materials,
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which are ideal candidates to induce SOC via proximity ef-
fects [19–25]. Hexagonal boron nitride (BN) has a weak SOC,
and therefore, is not a suitable substrate for the proximity
effect [26]. The family of 2D transition metal dichalcogenides
(TMDCs) are the next best candidates, which have large
direct band gaps and giant intrinsic SOC [27,28]. In this
respect, graphene on TMDCs has been investigated for trans-
port [29–31] as well as intriguing technological applications,
including field-effect tunneling transistors (FETTs), radio-
frequency oscillators, and efficient phototransistors [32–37].
Also, the proximity induced SOC in graphene/TMDCs het-
erostructures has recently been shown to depend [38,39] on
the twist angle between the lattice of graphene and that of the
TMDC.

In addition, it has been found in room-temperature exper-
imental studies of the spin-Hall effect that few-layer WS2

induces a large SOC in graphene, about 17 meV [40] as com-
pared to the very weak one in pristine graphene [41]. Also,
it has been unambiguously demonstrated experimentally that
a room-temperature spin-Hall effect in graphene is induced
by MoS2 proximity [42]. Moreover, when graphene is placed
on a multilayer WS2 substrate, an additional valley-Zeeman
SOC, due to the broken sublattice symmetry, along with the
Rashba SOC have been predicted theoretically and observed
experimentally [25,43–45]. This SOC induces a spin splitting
of degenerate bands, with out-of-plane spin polarization at the
K and K ′ points, and an opposite spin splitting in different
valleys. Analogous to the Zeeman splitting, the SOC is termed
valley-Zeeman because the effective Zeeman fields are valley-
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FIG. 1. (a) Real-space graphene with �a1 and �a2 the primitive lat-
tice vectors. (b) Graphene’s first Brillouin zone and high-symmetry
points �, K , and M in reciprocal space. Its primitive lattice vectors
are �b1 and �b2. (c) Schematic representation of graphene on a WSe2

substrate.

dependent. It is the dominant SOC in TMDCs and is also
predicted to be induced in graphene on TMDCs [25,43–45].
To our knowledge though, apart from some spin-transport
studies [46] and two experimental magneto-transport studies
[47], neither ac and dc scattering-dependent charge transport
nor the simultaneous effect of valley-Zeeman and Rashba
SOCs have been theoretically studied in graphene on TMDCs.

In this work we study in detail the effect of the valley-
Zeeman and Rashba-type SOCs on ac and dc transport in
graphene/WSe2 heterostructures. There results a mexican hat
dispersion [48] contrary to other family memebers of TMDCs,
e.g., MoS2, WS2, etc. [49]. Such a dispersion leads to more
features in the optical conductivity when the Fermi level
moves between the minimum and maximum of the mexican
hat. Also, we compare our results with those for pristine
graphene.

In Sec. II, we specify the Hamiltonian and obtain the
eigenvalues and eigenfunctions in the presence of symmetry
breaking terms. In Sec. III, we present general expressions for
the conductivities and provide numerical results. Conclusions
and a summary follow in Sec. IV.

II. FORMULATION

Graphene is a 2D, one-atom thick planar sheet of bonded
carbon atoms densely packed in a honeycomb structure as
shown in Fig. 1(a). The lattice structure can be viewed as
a triangular lattice with two sites A (red filled spheres) and
B (blue filled spheres) per unit cell. The arrows indicate the
primitive lattice vectors �a1 = a(1, 0) and �a2 = a(1/2,

√
3/2),

with a the triangular lattice constant of the structure, and span
the graphene lattice. Further, �a1 and �a2 generate the reciprocal
lattice vectors of the Brillouin zone, cf. Fig. 1(b), given by
�b1 = 4π/

√
3a(

√
3/2,−1/2) and �b2 = 4π/

√
3a(0, 1). From

the explicit expressions of �b1 and �b2 we find the two inequiv-

FIG. 2. Energy dispersion in a graphene/WSe2 heterostructure
using the TB model (1) along the path −M → −K → � → K → M
for (a) λci , λR = 0, (b) λci �= 0, λR = 0, (c) λci = 0, λR �= 0, and
(d) λci , λR �= 0.

alent Dirac points (valleys) given by �K = (4π/3a)(1, 0) and
�K ′ = (4π/3a)(1/2,

√
3/2).

The monolayer graphene system is described by the four-
band, second nearest-neighbour tight-binding (TB) Hamilto-
nian [23,48,50]

H =
∑

〈i, j〉,α
tc†iαc jα +

∑
iα

�ηci c
†
iαciα +

∑
〈〈i, j〉〉

�i jc
†
iαc jα′

+ 2i

3

∑
〈i, j〉

∑
αα′

c†iαc jα′
[
λR(s × d̂i j )z

]
αα′ . (1)

Here, �i j = iλciνi j sz/3
√

3, c†iα creates an electron with spin
polarization α at site i that belongs to sublattice A or B,
and 〈i, j〉 (〈〈i, j〉〉) runs over the nearest (second nearest)
neighboring sites. The second term is a staggered on-site
potential, which takes into account the effective energy dif-
ference experienced by atoms at the lattice sites A (ηci = +1)
and B (ηci = −1), respectively. The third and fourth terms
represent the proximity induced enhancement of the SOC
due to a weak hybridization with the heavy atoms in WSe2.
The third term is the valley-Zeeman SOC where νi j = +1,
if the second nearest hopping is anticlockwise with respect
to the positive z axis, and νi j = −1 if it is clockwise. The
last term is the Rashba SOC parametrized by λR. It arises
because the inversion symmetry is broken when the graphene
sheet is placed on top of WSe2 as shown in Fig. 1(c). Also,
d̂i j = di j/|di j |, where s = (sx, sy, sz ) is the Pauli spin matrix
and di j the vector connecting the sites i and j in the same
sublattice.

In Fig. 2, we plot the numerically evaluated energy disper-
sion of Eq. (1) to better understand the characteristics of the
induced intrinsic SOCs. Near the K point, for λci = λR = 0,
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the band structure has linear band crossings near k = 0 as can
be seen from Fig. 2(a). For λci �= 0 and λR = 0 the spectrum is
gapless and the spin degeneracy is broken away from k = 0,
see Fig. 2(b). Further, if only λR is present, the spectrum is
also gapless, cf. Fig. 2(c). However, a gap is created when
both λci and λR are finite, cf. Fig. 2(d).

We analyze the physics of electrons near the Fermi energy
using a low-energy effective Hamiltonian derived from Eq. (1)
and a Dirac theory around the K and K ′ valleys [23,43,45]. It
reads

Hs
η = vF (ησx px + σy py)+�σz+λσ0sη + λR(ηsyσx − sxσy).

(2)
Here, η = ±1 denotes the valleys K and K ′, � is the mass
term that breaks the inversion symmetry, λ = λci is the valley-
Zeeman SOC strength, λR the Rashba type SOC strength,
(σx, σy, σz) the Pauli matrix that corresponds to the pseudospin
(i.e., A-B sublattice), σ0 is the unit matrix in the sublattice
space, and vF (8.2 × 105 m/s) denotes the Fermi velocity of
Dirac fermions. For simplicity, we neglect the intrinsic SOC λi

and consider only the λR > λi case. Also, we expect that small
but finite values of λi do not qualitatively affect our results as
long as λ 	 λi. Further, we will also neglect the � term in our
numerical treatment because λ 	 �.

Upon diagonalizing Eq. (2) we obtain the dispersion

Eξ (k) = l
[
�2 + λ2 + h̄2v2

F k2 + 2λ2
R + 2s

√
ϒ

]1/2
, (3)

where ϒ = λ2
R(λ2

R − 2λ�) + h̄2v2
F k2(λ2

R + λ2) + λ2�2 and
ξ = {l, s}. Further, l = +1(−1) denotes the conduction (va-
lence) band and s = +1(−1) represents the spin-up (spin-
down) branches. Notice that Eq. (3) has a valley degeneracy
despite the valley-Zeeman term. The normalized eigenfunc-
tions for both valleys are

ψ+
ξ (k) = N+

ξ√
S0

⎛
⎜⎜⎜⎝

1

Aη

ξ eiφ

−iBη

ξ eiφ

−iCη

ξ e2iφ

⎞
⎟⎟⎟⎠eik·r, (4)

ψ−
ξ (k) = N−

ξ√
S0

⎛
⎜⎜⎜⎝

−Aη

ξ eiφ

1

iCη

ξ e2iφ

−iBη

ξ eiφ

⎞
⎟⎟⎟⎠eik·r, (5)

respectively, with

Nη

ξ = l
[
1 + (

Aη

ξ

)2 + (
Bη

ξ

)2 + (
Cη

ξ

)2]−1/2
, (6)

S0 = LxLy the area of the sample, and φ = tan−1(ky/kx ). Fur-
ther, Aη

ξ = (Eη

ξ − η� − ηλ)/h̄vF k, Bη

ξ = 2λR[(Eη

ξ )2 − (� +
λ)2]/h̄vF k[(Eη

ξ + ηλ)2 − �2 − h̄2v2
F k2], and Cη

ξ = 2λR(Eη

ξ −
η� − ηλ)/[(Eη

ξ + ηλ)2 − �2 − h̄2v2
F k2].

We plot Eq. (3) in Fig. 3 for different combinations of the
λ and λR terms whose realistic values fall in the ranges 5–6
and 10–15 meV, respectively, as determined experimentally
in Ref. [51]. Here, the larger values of SOCs are used just to
see well-resolved bands splitting. For λ = λR = 0, the band
structure has linear bands crossing near k = 0 for both valleys
as can be seen from panel (a). For λ �= 0 and λR = 0, the
energy dispersion is spin nondegenerate and valley degenerate

FIG. 3. Low-energy dispersion in a graphene/WSe2 heterostruc-
ture for � = 0 and different combinations of λ and λR.

with a gapless behavior as shown in panel (b). Further, the
energy dispersion shows the gapless behavior for λ = 0 and
λR �= 0, whereas it is spin split as seen from panel (c).
However, for λ and λR finite, the Rashba coupling not only
creates a gap between the conduction and valence band, by
mixing the spin-up and spin-down states, but also produces
an avoided crossing, see Fig. 1(d). The analytical form of the
momentum k1, at which an avoided crossing occurs, and of
the gap Eg = �1 are

k1 = 1

h̄vF

[ (λ2 + λ�)
(
λ2 + 2λ2

R − λ�
)

λ2 + λ2
R

]1/2
, (7)

�1 = 2λR

[λ2 + �(2λ + �)

λ2 + λ2
R

]1/2
. (8)

The density of states (DOS) per unit area corresponding
to Eq. (3) is given by D(E ) = ∑

ζ δ(E − Eζ ) with |ζ 〉 =
|ξ, η, k〉. For λR = 0, it takes the simple form

D(E ) = 1

2π h̄2v2
F

∑
ξ

∣∣∣∣E

l
− sλ

∣∣∣∣�
(

E

l
− sλ − �

)
, (9)

and for � = λ = 0 the form

D(E ) = 1

2π h̄2v2
F

∑
ξ

∣∣∣∣E

l
− sλR

∣∣∣∣�
(

E

l
− (s + 1)λR

)
. (10)

The DOS is shown in Fig. 4 for several values of λ and λR.
The black curve is for monolayer graphene, with λ = λR = 0,
and is included for comparison. The E+− and E++ dispersions
give rise to a square root singularity at E = λλR/

√
λ2 + λ2

R

and a step at E =
√

λ2 + 4λ2
R, respectively, as shown by the

black dot-dashed curve of Fig. 4. The origin of the singularity
is the mexican-hat energy dispersion, cf. Fig. 3. In addition,
the step emerges from the bottom of the E++ band and is a
van Hove singularity associated with the dispersion flattening
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FIG. 4. Density of states for (λ, λR ) = (0, 0), (λ, λR ) =
(3, 0) meV, (λ, λR ) = (0, 6) meV, and (λ, λR ) = (3, 6) meV. All
cases are for � = 0.

at this point. The square root singularity is calculated near the
mexican-hat minimum E = λλR/

√
λ2 + λ2

R at which D(E )
reads

D(E ) = k1

4π h̄

√
2m∗

E − �1
, (11)

with m∗ = λR(λ2 + λ2
R)3/2/2v2

F λ(λ2 + 2λ2
R) the effective

mass and E+,− = �1 + (h̄2/2m∗)(k − k1)2 the energy. This
singularity is similar to that of the one-dimensional density
of states. In the limit λR = 0 and λ �= 0, the DOS has a finite
value λ/2π h̄2v2

F at E = 0 (see blue dashed curve). For E � λ,
it increases linearly with E . Also, for λ = 0 and λR �= 0, it is
finite at E = 0 but has a step at E = 2λR, see the red dotted
curve.

III. CONDUCTIVITIES

We consider a many-body system described by the Hamil-
tonian H = H0 + HI − R · F(t ), where H0 is the unperturbed
part, HI is a binary-type interaction (e.g., between electrons
and impurities or phonons), and −R · F(t ) is the interaction of
the system with the external field F(t) [52]. For conductivity
problems we have F(t ) = eE(t ), where E(t ) is the electric
field, e the electron charge, R = ∑

i ri, and ri the position
operator of electron i. In the representation in which H0 is
diagonal the many-body density operator ρ = ρd + ρnd has a
diagonal part ρd and a nondiagonal part ρnd . For weak electric
fields and weak scattering potentials, for which the first Born
approximation applies, the conductivity tensor has a diagonal
part σ d

μν and a nondiagonal part σ nd
μν ; the total conductivity is

σ T
μν = σ d

μν + σ nd
μν , μ, ν = x, y.

In general, we have two kinds of currents, diffusive and
hopping, with σ d

μν = σ dif
μν + σ col

μν , but usually only one of them
is present. If no magnetic field is present, the hop-ping term
σ col

μν vanishes identically and only the term σ dif
μν survives. For

elastic scattering it is given by [52]

σ d
μν (ω) = βe2

S0

∑
ζ

fζ (1 − fζ )
vνζ vμζ τζ

1 + iωτζ

, (12)

with τζ the momentum relaxation time, ω the frequency, and
vμζ the diagonal matrix elements of the velocity operator.
Further, fζ = [1 + exp[β(Eζ − EF )]]−1 is the Fermi-Dirac
distribution function, β = 1/kBT and T the temperature.

Regarding the contribution σ nd
μν one can use the iden-

tity fζ (1 − fζ ′ )[1 − exp[β(Eζ − Eζ ′ )]] = fζ − fζ ′ and cast
the original form in the more familiar one [52]

σ nd
μν (ω) = ih̄e2

S0

∑
ζ �=ζ ′

( fζ − fζ ′ ) vνζζ ′ vμζζ ′

(Eζ − Eζ ′ )(Eζ − Eζ ′ + h̄ω − i�)
, (13)

where the sum runs over all quantum numbers ζ and ζ ′ with
ζ �= ζ ′. The infinitesimal quantity ε in the original form has
been replaced by �ζ to account for the broadening of the
energy levels. In Eq. (13), vνζζ ′ and vμζζ ′ are the off-diagonal
matrix elements of the velocity operator. The relevant velocity
operators are given by vx = ∂H/h̄∂kx and vy = ∂H/h̄∂ky.
With ζ = {l, s, k, η} = {ξ, k, η} for brevity, they read

〈ζ |vx|ζ ′〉 = vF Nη

ξ Nη

ξ ′
(
Dη

ξ,ξ ′eiφ + F η

ξ,ξ ′e−iφ
)
δk,k′ , (14)

〈ζ ′|vy|ζ 〉 = ivF Nη

ξ Nη

ξ ′
(
Dη

ξ,ξ ′e−iφ − F η

ξ,ξ ′eiφ
)
δk,k′ , (15)

where Dη

ξ,ξ ′ = Aη

ξ ′ + Bη

ξCη

ξ ′ and F η

ξ,ξ ′ = Aη

ξ + Bη

ξ ′C
η

ξ .
We now calculate the conductivity σ nd

yx (iω) given by
Eq. (13). Further, the velocity matrix elements (14) and (15)
are diagonal in k, therefore k will be suppressed in order to
simplify the notation. The summation in Eq. (13) runs over
all quantum numbers ξ, ξ ′, η, η′, and k. The parameter �

ξξ ′
ηη′ ,

that takes into account the level broadening, is assumed to
be independent of the band and valley indices, i.e., �

ξξ ′
ηη′ = �.

Using Eqs. (14) and (15), we can express Eq. (13) as

σ nd
yx (iω) = e2h̄2v2

F

h

∑
ξξ ′

∫
dkk

(
Nη

ξ Nη

ξ ′
)2(

f η

ξk − f η

ξ ′k

)
�

η

ξξ ′
[(

�
η

ξξ ′ + h̄ω
)2 + �2

]
×[

�
η

ξξ ′ + h̄ω − i�)
][(

Dη

ξ,ξ ′
)2 − (

F η

ξ,ξ ′
)2]

, (16)

where �
η

ξξ ′ = Eη

ξk − Eη

ξ ′k . Further, in the limit � = ω = 0,
Eq. (16) reduces to

σ nd
yx = e2h̄2v2

F

h

∑
ξξ ′

∫
dkk

(
Nη

ξ Nη

ξ ′
)2(

f η

ξk − f η

ξ ′k

)
(
�

η

ξξ ′
)2

× [(
Dη

ξ,ξ ′
)2 − (

F η

ξ,ξ ′
)2]

. (17)

In the valley-Hall effect electrons from regions near the in-
equivalent K and K ′ valleys flow to opposite transverse edges
of the system, in the presence of SOCs when a longitudinal
electric field is applied [53,54]. The valley-Hall conductivity
corresponding to Eq. (16) is defined by

σ v
yx =

∑
ss′

σ nd
yx (η = +, s, s′) − σ nd

yx (η = −, s, s′). (18)

The spin-Hall conductivity σ s
yx, corresponding to Eq. (16),

is finite only when both the Kane-Mele and valley- Zeeman
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FIG. 5. Valley-Hall conductivity vs Fermi energy at T = 0.5 K.
For further clarity, the range −0.35 meV � EF � 0.35 meV is
shown in the inset without the λR = 0 curve.

SOCs are present. Hence, even in the presence of Rashba
SOC, σ s

yx vanishes [42]. Since a spin current is defined by
Js = (h̄/2e)(J↑ − J↓), we have to multiply σ v

yx by 1/2e [5,55].
Further, we find that charge Hall conductivity always vanishes

σ c
yx =

∑
ηss′

σ nd
yx (η, s, s′) = 0. (19)

The component σ nd
xx (iω) is also obtained from Eq. (13):

σ nd
xx (iω) = ie2h̄2v2

F

h

∑
ηξξ ′

∫
dkk

(
Nη

ξ Nη

ξ ′
)2(

f η

ξk − f η

ξ ′k

)
�

η

ξξ ′
[(

�
η

ξξ ′ + h̄ω
)2 + �2

]
×[(

�
η

ξξ ′ + h̄ω − i�
)][(

Dη

ξ,ξ ′
)2 + (

F η

ξ,ξ ′
)2]

. (20)

For λ = 0 and λR �= 0, Eq. (16) vanishes because the factor
(Dη

ξ,ξ ′ )2 − (F η

ξ,ξ ′ )2 becomes zero, whereas Eq. (20) survives.
Moreover, in the limit λ = λR = 0, Eq. (20) reduces to the op-
tical conductivity of pristine graphene, which is independent
of h̄ω and given by e2/2h [56].

We now consider the diagonal component σ d
xx given by

Eq. (12). Using Eq. (14), with ξ = ξ ′, we obtain

σ d
xx(iω) = e2v2

F β

π

∑
ηξ

∫
dkk

(
Nη

ξ

)4
f η

ξk

(
1 − f η

ξk

)

×
(
Aη

ξ + Bη

ξCη

ξ

)2
τ

η

ξk

1 + iωτ
η

ξk

. (21)

At very low temperatures, we can make the approximation
β f η

ξk (1 − f η

ξk ) ≈ δ(Eξ − EF ) and τ
η

ξk = τ
η

ξkF
because all states

untill the Fermi level are occupied.
In Fig. 5, we plot Eq. (16) in the dc limit (ω = 0) as

a function of EF for � = 0.2 meV, λ = 3 meV and for
different values of λR. When EF is in the gap, i.e., in the
range −λλR/

√
λ2 + λ2

R � EF � λλR/
√

λ2 + λ2
R, the valley-

Hall conductivity is quantized in units of 2e/2h similar to the
case of gapped graphene and topological insulators [53,57].

FIG. 6. Same as in Fig. 5 but for different values of T .

The reason is that the factor
∑

ηξξ ′ (N
η

ξ Nη

ξ ′ )2[(Dη

ξ,ξ ′ )2 −
(F η

ξ,ξ ′ )2]/(�η

ξξ ′ )2, called Berry curvature �(k), of Eq. (16) in
the limit ω = 0 has a peak, which is well covered by occu-
pied states for EF > λλR/

√
λ2 + λ2

R. As a consequence, the
valley-Hall conductivity approaches the quantized value. For
λλR/

√
λ2 + λ2

R � EF � λR, σ v
yx decreases with EF . Further,

as can be seen, when EF becomes comparable to λR, a sign
change occurs in the conductivity which later vanishes at
higher values of EF , EF 	

√
λ2 + 4λ2

R. The change in sign
is due to the Rashba coupling between the spin-up and spin-
down bands. Furthermore, this off-diagonal term in spin space
permits transitions between two conduction spin subbands
[see Eq. (3)], that could be interpreted as spin-flip transitions
near the band touching. In addition, the coupling strength
between opposite spin bands becomes weaker as λR increases.
As a result, the negative part of the conductivity due to the
spin-up band diminishes and σ v

yx shows the usual behavior of
gapped graphene and topological insulators [53,57]. Further,
as can be seen in the inset, the band gap increases with λR.
Also, the value of the conductivity at EF = 0 is due to the
finite one of � (= 0.2 meV); if we take � = 0, the conductivity
diverges at EF = 0 but its overall qualitative behavior remains
as shown.

We now take into account the effect of temperature T on
the valley-Hall conductivity contained in the Fermi function,
which is independent of electron-phonon interaction in the
first Born approximation [52]. The valley-Hall conductivity
is evaluated numerically with the help of Eq. (16) and plotted
in Fig. 6 for four values of T . We find a strong T dependence,
particularly when the Fermi level is in the gap. The quan-
tization of the valley-Hall conductivity is destroyed at high
values of T . This occurs when the thermal broadening kBT
becomes comparable to the energy gap. Notice that the effect
of temperature on σ v

yx is similar to that on the spin-Hall con-
ductivity in a graphene/MoS2 heterostructure by considering
valley-Zeeman and Kane-Mele SOCs in the absence of the
Rashba SOC.
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FIG. 7. Band structure near the Fermi energy EF in the presence
of SOC terms for λ = 8 meV and λR = 6 meV. The black dashed and
dotted lines show EF = 6.6 and 9.6 meV. The various gap energies,
indicated by �1, �2, etc. are displayed in Table I. Notice that for
EF = 9.6 meV the energy �a does not contribute to any transitions.

Various transition energies, which play an important role
in the optical conductivity, are shown in Fig. 7 for λ, λR �= 0.
Their analytical expressions are displayed in Table I. Notice
that for EF = 6.6 meV, the energies �a and �b, indicated
with black arrows, become also important in optical transi-
tions, since EF crosses the curve E+− at two values of the
momentum. However, for EF = 9.6 meV, only �b contributes
to optical transitions because EF cuts E+− curve only at one
value of the momentum. In Fig. 8, we show possible allowed
interband and intraband transitions by contrasting the case
λ �= 0, λR = 0 in the upper panels and the case λ = 0, λR �= 0
in the lower panels. The blue arrows represent the interband
transitions E+− → E++ for 0 < EF < λ and 0 < EF < λR

as can be seen in Fig. 8 (b) and (d). The black arrows
represent the allowed interband transitions E−+ → E+−(E++)
and E−− → E+−(E++) for EF = 0 and EF �= 0, repectively,
while the red arrows indicate intraband transitions that occur
near EF .

Now we present results for the real part of Eqs. (20)
and (21) (Reσxx = Reσ d

xx + Reσ nd
xx ), evaluated numerically,

versus h̄ω using a Lorentzian form of Dirac delta function
and taking � = 0.2 meV for T �= 0. We start from the upper

FIG. 8. Band structure near the Fermi energy EF in the presence
of SOC terms for λ = 8 meV and λR = 6 meV. Black and red arrows
represent possible interband transitions. Red arrows indicate the
Drude type intraband transitions. (a) λ �= 0, λR, EF = 0. (b) λ �= 0,
λR = 0, EF = 1 meV. (c) λR �= 0, λ, EF = 0. (d) λR �= 0, λR = 0,
EF = 2.8 meV.

panel of Fig. 9 by considering the case λ �= 0 and λR = 0.
The transitions are vertical for photon’s momentum q ∼ 0 and
connect the filled valence band to empty conduction band,
see Fig. 8(a). For the case of EF = 0, intraband response
appears due to the transition E+− → E+− and has a δ function
form, centered around h̄ω = 0, which broadens the peak
when any kind of scattering is taken into account. Further,
intraband responses occur when the Fermi level is located
away from the Dirac point. For h̄ω = 2λ we obtain another
Dirac delta peak due to the transition from E−− → E+−,
which is also broadened through iπδ(x) = lim�→ 0(1/x −
i�), cf. Eq. (20). For 0 < EF < λ, the new absorption peaks
appear at h̄ω = 2EF and h̄ω = 2(EF + λ) due to the pos-
sible transitions E−− → E+− and E−+ → E+−. For EF >

λ, the absorption peaks disappear below h̄ω < 2λ because
the transition E−− → E+− is no longer possible due to the
filling of states below the Fermi level that are Pauli blocked.
Further, the Drude peak persists at low h̄ω, but now two other

TABLE I. Band gap energies involved in optical transitions, cf. Fig. 7, for λ = 8 meV, λR = 6 meV, and two values of EF .

Transition energies Formula EF = 6.6 meV EF = 9.6 meV

�1 2λλR/
√

λ2 + λ2
R 9.6 9.6

�2 2
√

(4λ4 + 4λ4
R + 9λ2λ2

R )/(λ2 + λ2
R ) 41.2 41.2

�01 2λ 16 16

�02 2
√

λ2 + 4λ2
R 28.8 28.8

�a 2
√

2λ2 + 2λ2
R + E 2

F − 2M − 2L 32.2

�b 2
√

2λ2 + 2λ2
R + E 2

F + 2M + 2L 50 57.4

M = √
(λ2 + λ2

R )E 2
F − λ2λ2

R, L = √
λ4

R + (λ2 + λ2
R )(E 2

F + λ2 ± 2M )
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FIG. 9. Real part of longitudinal conductivity vs photon energy
at T = 0.5 K. The upper panel is for λR = 0 and the lower one is for
λR �= 0.

pieces of interband transitions emerge with onsets at �a + EF

and �b + EF .
In the lower panel of Fig. 9, we show the results for real

part of the longitudinal conductivity for λ = 0, λR �= 0 for
different values of EF . For EF = 0, we can see that there
is a peak at 2λR which is the separation between E−− and
E+− bands. In addition, there is a kink at 4λR due to the
transition E−+ → E++. As we increase the Fermi level, say,
0 < EF < λR and EF > λR, the peak becomes sharper and
we see a onset of a Drude contribution at low h̄ω due to in-
traband transitions E+− → E+− and E++ → E++ in contrast
to EF = 0 case (black dot-dashed curve). Further, for finite
values of EF , we see the steps at 2EF similar to monolayer
graphene (λ = λR = 0) as well as features at �a + EF , �b −
EF , and �b + EF above which we attain the flat absorption
like pristine graphene [56]. Note that our results are simi-
lar to bilayer graphene [58,59]. But here, the Rashba SOC,
which allows the interband transitions between opposite spin
bands, gives rise to the absorption peaks, while these peaks in
bilayer graphene are due to interlayer hopping between two
graphene sheets.

FIG. 10. Same as in Fig. 9 but for λ, λR �= 0.

The real part of the longitudinal conductivity as a function
of the photon energy, for λ, λR �= 0, is show in Fig. 10 for
several values of EF : (i) just below the maximum of the mex-
ican hat, i.e., λλR/(λ2 + λ2

R)1/2 < EF < λ (ii) just above the
mexican hat, i.e., for λ < EF < (λ2 + 2λ2

R)1/2. For EF = 0,
we find a large absorption peak at approximately 2λR, which
corresponds to transitions between the two square-root sin-
gularities of the DOS, see Fig. 4, or transitions between
the two minima of the mexican hat structures of the E−−
and E−+ bands. As EF moves into the mexican hat, this
feature disappears because states below EF are occupied and,
therefore, Pauli blocked. Further, the major peaks are due to
the transitions E+− → E++, E−− → E−+, E−− → E++, and
E−+ → E++, respectively. The gap energies which contribute
to the onset of these transition peaks are indicated in Fig. 7 and
given analytically in Table I. Also, the conductivity retains the

FIG. 11. Valley-Hall conductivity vs photon energy for λR = 0
at T = 0.5 K.
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FIG. 12. Same as in Fig. 11 but with the upper panel for λR > λ

and the lower one for λR < λ.

flat absorption at sufficiently higher values of h̄ω similar to
pristine graphene [56].

Plots of the real part of σ v
yx for EF = 0 (black dotdashed

curve) and EF �= 0 (red and blue dashed curves) in the absence
of Rashba SOC (λR = 0) are shown in Fig. 11. In the dc
limit, the expected value of the valley-Hall conductivity is
obtained as can be seen in Fig. 5 (black curve). If the system
is illuminated by photons of frequency ω, the amplitude of the
absorption peaks is suppressed for EF = 0, while an increase
in it is observed for EF �= 0. For h̄ω = 2|λ|, a strong valley-
Hall response is observed for EF �= 0. Therefore it can be ex-
pected that a stronger valley-Hall response may be accessible
when the photon energy is tuned to the valley-Zeeman SOC.
For h̄ω > 2|λ|, σ v

yx decreases rapidly and approaches zero at
sufficiently higher values of h̄ω.

The real part of the valley-Hall conductivity is shown in
Fig. 12 for several values of EF . In the dc limit (ω = 0),
we obtain the quantized value of the valley-Hall conductivity
(Reσ v

yx = e/h) for EF = 0 (black curve in the upper panel). If
the system is subjected to photon of frequency ω, an increase
in the magnitude of the valley-Hall response is observed. The
absorption peaks occur at the same onset energies as indicated
in Fig. 7. For example, the first peak appeared when h̄ω =

FIG. 13. Longitudinal conductivity σ d
xx in units of e2/h vs elec-

tron concentration ne for different values of λ and λR. For further
clarity, the range 0.0000–0.0050 of ne is shown in inset.

2�1 or transition between the minima of the E−− and E+−
bands. Further, the change in sign of the conductivity is due
to the Rashba SOC, which is responsible for the coupling be-
tween spin-up and spin-down bands, e.g., the transition from
the maximum of mexican hat of E−− band to the minimum
of E++ band around k = 0. Furthermore, for finite values of
EF we obtain new features in the optical spectrum due to
the emergence of new transitions such as E+− → E++, e.g.,
some features are completely removed due to Pauli blocking.
Also, the valley-Hall response is diminished at sufficiently
high frequencies. However, in the case of λR < λ (lower
panel), the difference among the optical transition energies
is significantly enhanced due to larger values of λ and new
features emerge at the momenta at which EF crosses the E+−
band (see Fig. 7). Moreover, some of the optical transitions are
no longer possible, e.g., E−− → E+− when EF is just above

FIG. 14. Same as in Fig. 13 but for different values of λR.
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the mexican hat because the states below it are occupied and,
therefore, Pauli blocked (blue curve).

In Fig. 13, we plot σ d
xx, from Eq. (21), by evaluating

it numerically versus electron concentration (ne) and using
the expression of τ given in Appendix but evaluated at the
Fermi level, k = kF . The conductivity increases with EF and
therefore with the carrier density ne. The diffusive conduc-
tivity increases linearly with ne but cusplike features appear
when E++ band begin to occupied at specific values of ne

in contrast to pristine graphene [60,61]. This behavior makes
graphene/WS2 a suitable candidate for charge switches con-
trary to pristine graphene. The screening effect becomes sig-
nificantly weaker when only the λ term is present. Moreover,
the conductivity shown in Fig. 14 increases in the low-density
regime for λ = 0 and λR �= 0 as compared to the λ �= 0, λR =
0 and λ, λR �= 0 case. In the limit λ = λR = 0, we obtain the
result similar to pristine graphene [60,61].

IV. SUMMARY AND CONCLUSION

We studied the energy dispersion of graphene/WSe2 het-
erostructures by using a TB model in the presence of valley-
Zeeman and Rashba SOCs. We found that the effective
Hamiltonian (2) derived from the TB one (1) nicely captures
the low-energy physics near the K and K ′ valleys. We demon-
strated that the density of states has a finite value around
E = 0 in both cases λ �= 0, λR = 0, and λ = 0, λR �= 0. In
addition, it has a square root singularity when both λ and λR

are present. This singularity is similar to that in biased bilayer
graphene; however, here it is due to the Rashba SOC whereas
in biased bilayer graphene it is due to interlayer hopping.
We also found that the ac and dc valley-Hall conductivities
change sign in the presence of the λR term, which leads
to interband transitions. Also, the band gap is enhanced by
increasing the strength λR. Further, for λR 	 λ the valley-Hall
conductivity exhibits a behavior similar to that in gapped
graphene and topological insulators [53,57]. The screening
effect in the diffusive conductivity is dominant only when the
Rashba SOC is present, whereas it is significantly suppressed
for λ �= 0, λR = 0. Also, the conductivity increases with λR in
the low- and high-density regimes, see Fig. 14.

The dc valley-Hall conductivity changes sign when EF is
comparable to λR and vanishes at higher values of EF , cf.
Fig. 5. It also exhibits a strong temperature dependence when
the Fermi level in the gap, cf. Fig. 6.

The intraband response of the ac longitudinal conductivity
for λR = 0 (see upper panel of Fig. 9) shifts towards lower
photon energies when EF increases compared to λR �= 0 (see
lower panel of Figs. 9 and 10). We also noted the switching
on and off of the Drude response when the Fermi energy is
varied (see Fig. 10), which may be of interest in technological
applications. In addition, for λ, λR �= 0 new onsets in the
optical conductivity appear due to the shifting of the Fermi
level through the mexican hat structure (see Figs. 10 and 12),
which may be a promising feature in optical experiments. Our
findings may be pertinent to developing future spintronics and
valleytronics devices such as field-effect tunneling transistors,
memory devices, phototransistors, etc.
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APPENDIX: RELAXATION TIME

The relaxation time is generally a function of the incoming
electron’s wave vector and at low temperatures only states
near the Fermi level will contribute to transport and single-
particle properties. Below we provide expressions for the re-
laxation time at the Fermi energy in the limiting cases �, λ �=
0, λR = 0 and �, λ = 0, λR �= 0, because in these cases
the summation over final states can be performed analytically.
Within the first Born approximation the standard formula for
the momentum relaxation time has the form

1

τζ

= 1

τ
η

ξk

= 2πni

h̄

∑
ξ ′,η′,k′

|〈ξ, η, k|U (r)|ξ ′, η′, k′〉|2

× δ(Eξk − Eξ ′k′ )(1 − cos θ ), (A1)

where U (r) is the impurity potential, ni the impurity density,
and θ the angle between the initial k and final k′ wave vectors.
Equation (A1) holds only for elastic scattering (ξ = ξ ′, η =
η′, k = k′) and for central potentials U (r), i.e., U (r) = U (r).
The results for two types of impurity potentials are as follows.

Short-range impurities. We have U (r) = U0δ(r − ri)
where r and ri are the position vectors of the electron and
impurity, respectively, and U0 is the strength of potential.
In this case U (q) = U0 is the Fourier transform of U (r) =
(1/

√
LxLy)

∑
q U (q)eiq.r with |q| = 2k sin(θ/2). The results

are the following.
(i) λR = 0.

1

τ
η

skF

= V 2
0 ni

(
Nη

s

)4

h̄

√
�2 + (h̄vF k)2

(h̄vF )2

[(
Aη

s

)4 − (
Aη

s

)2 + 1
]
.

(A2)

In the limit �,λ = 0, the above result reduces to graphene
scattering time Eq. (24) of Ref. [60]

1

τkF

= V 2
0 nik

4h̄2vF
. (A3)

Also, for λ = 0, Eq. (A2) agrees with the result for topological
insulators [57].

(ii) �, λ = 0,

1

τ
η

skF

=
V 2

0 ni
(
Nη

s

)4
√

λ2
R + (h̄vF k)2

h̄3v2
F

× [[(
Aη

s

)2 + (
Bη

s

]2]2 + (
Cη

s

)4 − [
1 + (

Cη
s

)2]
× [(

Aη
s

)2 + (
Bη

s

)2] − 2
(
Cη

s

)2 + 1
]
. (A4)

Long-range impurities. We assume U (r) =
eQe−ksr/4πε0εr, where ks is the screening wave vector,
Q is the charge of the impurity, and ε the dielectric constant.
In this case, U (q) = 2πU0/

√
k2

s + q2 with U0 = eQ/4πε0ε.
The results are the following.
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(i) λR = 0

1

τ
η

skF

=
V 2

0 ni
(
Nη

s

)4
√

�2 + (
h̄vF k

)2

2h̄3v2
F k2

[[
1 + (

Aη
s

)4][
1 − as√

a2
s + 1

]
+ 2

(
Aη

s

)2
[

2a2
s − as(2a2

s + 1)√
a2

s + 1

]]
. (A5)

In the limit � = λ = 0, we set as = ks/2k and obtain the relaxation time in pristine graphene [62]

1

τkF

= V 2
0 ni

(
as − √

a2
s + 1

)2

4h̄2vF k
. (A6)

Moreover, for λ = 0, Eq. (A5) gives the relaxation time for topological insulators [57].
(ii) �,λ = 0

1

τ
η

skF

=
V 2

0 ni
(
Nη

s

)4
√

λ2
R + (h̄vF k)2

2h̄3v2
F k2

{
1 + [(

Aη
s

)2 + (
Bη

s

)2]2 + (
Cη

s

)4

[
1 − as√

a2
s + 1

]

+ 2
[
1 + (

Cη
s

)2][(
Aη

s

)2 + (
Bη

s

)2][
2a2

s − as
(
2a2

s + 1
)

√
a2

s + 1

]

− 2(Cη
s )2

[
1 + as√

a2
s + 1

+ 8a3
s

√
a2

s + 1 − 8a2
s

(
2a2

s + 1
)]}

. (A7)
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