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We study hybridization of collective plasmon and Carlson-Goldman-Artemenko-Volkov modes in a hybrid
system, consisting of two-dimensional layers of electron gas in the normal state and superconductor, coupled
by long-range Coulomb forces. The interaction between these collective modes is not possible in a regular
single-layer two-dimensional system since they exist in nonoverlapping domains of dimensionless parameter ωτ ,
where ω is the external electromagnetic field frequency and τ is electron-scattering time. Thus, in a single-layer
structure, these modes are mutually exclusive. However, the coupling may become possible in a hybrid system
consisting of two separated in space materials with different properties, in particular, the electron-scattering time.
We investigate the electromagnetic power absorption by the hybrid system and reveal the conditions necessary
for the hybridization of collective modes.

DOI: 10.1103/PhysRevB.101.165430

I. INTRODUCTION

Mesoscopic systems in normal (not superconducting) state
lodge elementary excitations, such as excitons and plasmons.
They determine the response of the material to external per-
turbations. Plasmons represent collective modes of particle
density fluctuations and play an essential role in the material
response to external alternating electromagnetic (EM) fields.
Their dispersion law and damping strongly depend on the
dimensionality of the system. Indeed, in the case of three-
dimensional (3D) electron plasma, the plasmon branch is with
a good accuracy dispersionless, whereas two-dimensional
(2D) plasmons are characterized by a square-root dispersion
relation and vanish in the long-wavelength limit (at least,
in the framework of the quasistatic approximation). Many-
component 2D systems like an electron-hole 2D gas are
characterized by two plasmon branches with linear (acoustic
plasmon) and square-root (optical plasmon) dispersions.

If with a decrease of temperature the system undertakes
a phase transition to another state like a Bose-Einstein or
superconducting (SC) condensate, the ground state changes
and new elementary excitations describing low-energy prop-
erties of the system arise. This can lead to drastic modification
of the material response to external EM fields, which be-
comes especially important in view of recent progress in plas-
monics, optoelectronics, and high-temperature condensation
phenomena.

In the pioneering work of Bardeen, Cooper, and Schriffer
(BCS) [1], only single-particle excitations characterized by
the SC gap were studied. Later, Anderson [2], Bogoliubov
et al. [3], and Vaks, Galitskii, and Larkin [4] developed a more
extensive theory, which includes the collective excitations of
Cooper pairs. They showed that in a neutral Fermi system with
an attractive interaction between fermions collective modes
possess a soundlike dispersion. A charged Fermi system,

instead, demonstrates the collective modes with the frequency
pushed towards the plasmon frequency of the 3D charged
electron gas. This frequency is usually much larger than
the BCS gap and consequently it does not play a role in
conventional phenomena in superconductors.

These modes correspond to oscillations of the SC order
parameter. More precisely, the Anderson-Bogoliubov mode
represents the oscillation of the phase of the order parameter,
whereas the Higgs mode corresponds to the oscillations of its
amplitude. These collective modes play a crucial role in the
gauge-invariant response of superconductors to external EM
perturbations [5].

Later on, Carlson and Goldman [6–8] experimentally dis-
covered another type of collective modes, which occur in the
vicinity of the transition temperature Tc − T � Tc in super-
conductors. This experimental finding stimulated theoretical
studies. In the dirty-sample case, there was suggested the
model of Schmid and Schön [9], whereas in the clean (low-
disorder) limit there was developed the model by Artemenko
and Volkov (AV) [10,11]. Qualitatively, the AV mode cor-
responds to the out-of-phase oscillations of normal and SC
currents in such a way that it prevents the emergence of net
charges in the system. The frequency of this mode is smaller
than the plasmon frequency of normal 3D electrons, thus
suppressing the interaction between them.

In the meanwhile, the coupling between single-particle
and collective modes in hybrid systems consisting of a 2D
electron layer and a 2D condensate of Bose particles repre-
sents actively developing areas of research recently [12–14].
In particular, there emerge such phenomena as the magne-
toplasmon Fano resonances in uniform magnetic fields [15]
and amplification of the incident light [16,17]. The progress
in theoretical proposals and the lack of well-established ex-
perimental platforms motivate the study of the interplay of
different collective modes in hybrid systems. In this paper,
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FIG. 1. System schematic. A hybrid structure consisting of a
superconducting layer located at z = d and a semiconductor layer
at z = −d . The layers are thus separated by the distance 2d
and surrounded by the environment with the effective dielectric
constant ε.

we investigate the hybridization of collective plasmon and AV
modes in a hybrid semiconductor-superconductor structure
(where one of the subsystems is in the SC state). As we
have already pointed out, the plasmon mode has a gapless
dispersion in the 2D case. We will show that it opens a
possibility of interaction between AV modes and plasmons.

At first sight, despite the gaplessness of the plasmon mode,
the interaction between them is not possible since the AV
mode exists in the domain ωτ � 1 (here τ is electron-
impurity scattering time), whereas the plasmon mode exists at
ωτ � 1, and these two conditions do not overlap. However,
their interaction can become possible if the normal electron-
gas layer (having the plasmon mode) and the SC layer (hosting
the AV mode) are separated in space and electrons in each
layer have different scattering times. Thus, if we denote as
τn the scattering time of electrons in the normal layer and τs

the one for quasiparticles in the SC layer, the simultaneous
existence of AV and plasmon modes is possible when τ−1

s >

ω > τ−1
n . This is a necessary criterion for the coexistence of

both the modes in one sample. However, it is not a sufficient
condition for their hybridization. What are the other condi-
tions? This is the main question which we address in this
paper.

II. LONGITUDINAL DIELECTRIC FUNCTION AND THE
DISPERSION RELATION

Let us consider a 2D layer of a semiconductor containing
normal electrons with the equilibrium density Nn in the vicin-
ity of a 2D SC layer containing both normal single-electron
excitations above the SC gap �(T ), where T is temperature
(we will use �/T � 1), and SC Cooper pairs described by
the order parameter (Fig. 1). The total electron density in the
SC layer is Ns, whereas the density of SC electrons we denote
as ns.

Furthermore, we expose the system to an external EM
field, which represents a plane wave with 3D wave vector
Q = (k, Qz ), where the 2D wave vector k = (Qx, Qy) is its

in-plane projection. The field creates electric currents in both
the layers:

js = σs
(
E0 + Ei

s

)
, jn = σn

(
E0 + Ei

n

)
, (1)

where E0 is the in-plane component of external EM field,
which we assume to be equal in both layers (valid as long
as Qzd � 1); Ei

n,s are the internal EM fields, induced in the
corresponding layers due to the oscillations of the particle
densities;

σn = e2Nnτn/mn

1 − iωτn
(2)

is a conventional dynamical Drude conductivity of the degen-
erate electron gas in the semiconductor, with mn being the
electron effective mass; σs describes the current response of
single-particle excitations in the SC layer. It should be noted
that in Eq. (1) we omitted the factor exp(ikr − iωt ) since
all the time and in-plane position-dependent quantities are
proportional to this factor.

The induced fields depend on z, Ei
n,s ≡ Ei(z = ±d ), where

Ei can be expressed via the scalar potential in the framework
of quasistatic approximation, Ei = −∇ϕi. The scalar poten-
tial, in turn, satisfies the Poisson equation(

d2

dz2
− k2

)
ϕi(z) = −4π

ε
[δρsδ(z − d ) + δρnδ(z + d )],

(3)

where δρn,s are deviations of charge densities from their equi-
librium values, and ε is a dielectric function of the material.
Combining (1) and (3) with the continuity equation, we find(

1 + 2π ik
εω

σs

2π ik
εω

e−2kdσn

2π ik
εω

e−2kdσs

1 + 2π ik
εω

σn

)(
δρs

δρn

)
= kE0

ω

(
σs

σn

)
(4)

and (
js
jn

)
=

([
1 + 2π ik

εω
(1 − e−2kd )σn

]
σs[

1 + 2π ik
εω

(1 − e−2kd )σs
]
σn

)
E0

ε(k, ω)
, (5)

where we have introduced the longitudinal dielectric function

ε(k, ω) =
(

1 + 2π ik

εω
σs

)(
1 + 2π ik

εω
σn

)

+
(

2πke−2kd

εω

)2

σsσn. (6)

Here and in what follows we assume that k and E0 only have
x in-plane components.

Equation (6) is similar in form to the standard one, describ-
ing generic two-component systems. Equation ε(k, ω) = 0
determines the dispersion and damping of collective modes.
The key quantity here is σs, which has to be found accounting
for the interaction of single-particle excitations in the SC layer
with the Cooper pair condensate.

Let us, first, switch off the interaction between the layers
and analyze the collective modes in each layer separately.
Formally, the noninteracting case corresponds to putting d →
∞ in Eq. (6). Then ε(k, ω) = 0 splits into two independent
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conditions:

1 + 2π ik

εω
σn = 0, 1 + 2π ik

εω
σs = 0. (7)

Let us consider these cases separately.

A. Plasmons in the layer containing
two-dimensional electron gas

Substituting Eq. (2) in (7), we find the plasmon dispersion
and its damping due to the electron-impurity scattering:

ω = ωn

√
1 − 1

(2ωnτn)2
− i

2τn
, ωn =

√
2πe2kNn

εmn
. (8)

The plasmon exists if 2ωnτn > 1. In the case of weak scatter-
ing, when ωnτn � 1, the plasmon damping is much smaller
in comparison with its frequency, and in the EM power
absorption spectrum the plasmons are seen as well-resolved
resonances. The spatial dispersion of Drude conductivity (2)
does not play a role in (8) and can be neglected if ω � kvn,
where vn is the Fermi velocity of electrons in the semicon-
ducting layer.

B. Artemenko-Volkov modes in the SC layer

To find the dispersion law of the AV mode, we have to,
first, find the conductivity σs of single-particle excitations
above the SC gap. In their original work [10], Artemenko and
Volkov used the quasiclassical approach based on the kinetic
equations. Later, the validity of their results was confirmed by
the quantum field theory methods [18]. We will thus follow
the simpler original Boltzmann equation approach, where the
AV modes are found by analyzing the longitudinal dielectric
function (7). The calculation of σs for a 3D superconductor
can be found elsewhere [19], and we adopt it for the 2D SC
layer just presenting here the result (see the Appendix for the
details of the derivation):

σs = σ0s
ω2 − u2k2 + iωηs + ik2v2

s ωτsJω

ω2 − u2k2 + ik2v2
s ωτsJω

, (9)

where

σ0s = e2Nsτs

ms
, u = vs

√
7ζ (3)

2π3

�

T
,

ηs = ns

Ns

1

τs
, Jω = ln(1/ωτs)

π
. (10)

Here we introduced a static Drude conductivity of normal
electrons in the SC layer, σ0s; vs is the Fermi velocity in the
SC layer; u is the phase velocity of the AV mode (see the
description below); ζ (3) is the Riemann zeta function. We
note also that u � vs.

Formula (9) is valid under the conditions ω, kvs, τ−1
s �

� � T and (τskvs)2 � ωτs � 1 [19]. Using these assump-
tions and combining Eqs. (9) and (7), we find

1 + i
ω2

s τs

ω

(
1 + i

ωηs

ω2 − u2k2 + ik2v2
s ωτsJω

)
= 0,

where ωs =
√

2πe2kNs

εms
. (11)
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FIG. 2. Dimensionless complex-valued eigenfrequency � = ωτs

as a function of dimensionless wave vector q = (ωsτs )2 for an
isolated SC layer. We use aB/(vsτs ) = 1/10, �/T = 1/10. The red
curve stands for the dispersion Re � whereas the dotted black curve
shows the absolute value of the damping |Im �|. Inset: Zoom-in of
the low-wave-vector domain, where the qAB mode is visible and not
suppressed by the damping.

In the limiting case ω2
s τs � ω [19], there exists an analytical

solution:

ω2 = u2k2 − ik2v2
s ωτsJω − iωηs. (12)

We note again that this solution describes a weakly damped
soundlike AV mode in the frequency range(

�

T

)2

� ωτs � �

T
� 1. (13)

The numerical solution of Eq. (11) gives two collective
branches in the isolated 2D SC layer. The first dispersion is
presented in Fig. 2, where we use dimensionless frequency
� = ωτs and wave vector q = (ωsτs)2. Also, we use ms = mn,
aB = ε/e2ms in Fig. 2 and all the figures which follow. We see
that the AV mode characterized by the linear dispersion uk lies
above the almost horizontal part of the red-dotted line, which
stands for the lower bound (�/T )2 in Eq. (13).

The second mode is located in the low-q domain, as shown
in the inset in Fig. 2. At q � 1, this mode is weakly damped
due to the smallness of its imaginary part (≈ q) in comparison
with its eigenfrequency ≈ √

q. The dispersion of this mode
can be found analytically from Eq. (11). Indeed, in the limit
k → 0, Eq. (11) reduces to

1 + i
ω2

s τs

ω

(
1 + i

ηs

ω

)
= 0, (14)

which gives the dispersion of the 2D plasmon,

ω = ωs

√
ns

Ns

√
1 − Ns

ns

(ωsτs

2

)2
− i

ω2
s τs

2
, (15)

existing when ns/Ns > (ωsτs)2/4. On condition ns/Ns �
(ωsτs)2/4, formula (15) turns into nondamped 2D plasmon
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FIG. 3. Qualitative behavior of a noninteracting plasmon and AV
modes in the case of (a) vn > vs and (b) vs > vn. (The qAB mode is
not shown.)

oscillations of SC electrons:

ω ≈ ωs

√
ns

Ns
=

√
2πe2kns

εms
. (16)

It should be noted that in contrast with the normal-state
systems, where the plasmon exists if ωnτn � 1, the mode
Eq. (16) exists at ωsτs � 1. This mode recalls the Anderson-
Bogoliubov mode [2,3] studied at T = 0 in 3D superconduc-
tors. It represents plasmon oscillations of SC electrons, the
density of which at T = 0 equals to the total electron density
in the superconductor. The difference is that in our 2D case
at T 
= 0 this mode is determined by the density of SC elec-
trons ns 
= Ns. We will call it the quasi-Anderson-Bogoliubov
(qAB) mode. The qAB oscillations of the SC condensate at
T 
= 0 are accompanied by the appearance of induced charges
in the system which, obviously, interact with normal electrons.
They exist in a superconductor at nonzero temperatures and
play the role of a friction force influencing the oscillations of
the condensate. At Tc − T � Tc (the case which we consider
in this paper), the density of normal electrons in the SC layer
is of the order of total electron density Ns. It explains why the
imaginary part in Eq. (15) is proportional to ω2

s ∝ Ns.

III. INTERACTION BETWEEN THE MODES

We have already found that the plasmon mode of the SC
layer lies above the boundary of the particle-hole continuum,
ωn � kvn, whereas the AV mode has the phase velocity u �
vs. Hence there exist two limiting cases, depending on the
ratio between the Fermi velocities in SC, vs, and normal
two-dimensional electron gas (2DEG), vn, layers (Fig. 3). Let
us consider both of these scenarios independently.

A. Modes interaction if vn > vs

In this case, the dispersions of the modes do not intersect.
Thus at a given value of the wave vector k, these modes are
excited independently in the system at different frequencies
of external EM field. Nevertheless, the presence of the other
layer results in the interlayer Coulomb interaction of the
particles and produces an additional damping of the collective
mode which is excited. Let us analyze this damping.

In the frequency range when the plasmon mode ex-
ists, ω ∼ ωn, ωnτn � 1, we can simplify formulas for the

conductivities (2) and (9),

σn ≈ e2Nn

−iωmn
, σs ≈ σs0 = e2Nsτs

ms
, (17)

and the dispersion equation ε(k, ω) = 0 reduces to(
1 − ω2

n

ω2

)(
1 + i

ω2
s τs

ω

)
= −iωsτs

ωnωs

ω2
e−4kd . (18)

Its iterative solution gives the renormalization of the plasmon
dispersion and an additional damping:

ω = ωn

(
1 − ωsτs

ωsτs(1 + e−4kd ) + 2i
√

Nn/Ns

4Nn/Ns + ω2
s τ

2
s (1 + e−4kd )2

e−4kd

)
.

(19)

We see that if kd is not very large and Nn/Ns � ω2
s τ

2
s the

presence of the SC layer can drastically change the plasmon
dispersion, resulting in a dramatic redshift of the plasmon
frequency.

If, instead, the frequency lies in the range of the AV mode,
ω ≈ uk, the Drude conductivity of electrons in the semicon-
ducting layer can be replaced by its static limit σn ≈ e2

nτn/mn,
and the dispersion equation reads(

1 + i
ω2

nτn

ω

)[
1 + i

ω2
s τs

ω

(
1 + i

ωηs

ω2 − u2k2 + ik2v2
s ωτsJω

)]

=
(

ω2
nτn

ω

)(
ω2

s τs

ω

)(
1+ i

ωηs

ω2− u2k2+ ik2v2
s ωτsJω

)
e−4kd .

(20)

The bare AV mode can exist under the condition ω2
s τs � ω, as

we have discussed above. Due to the relation ωnτn � ωsτs, we
can assume ω � ω2

s τs � ω2
nτn in Eq. (20), and we find that

the AV mode is not renormalized in the presence of the semi-
conducting layer (in the first-order perturbation theory with
respect to the parameter ω2

s τs/ω). One can find the next-order
corrections with respect to 1 � ω2

s τs/ω � ω2
nτn/ω; however,

they are small and we will not discuss them further.

B. Modes interaction if vn < vs

In this case, the density of electrons in the semiconducting
layer is smaller than the total density of electrons in the SC
layer, Nn < Ns. The intersection of the plasmon mode (of the
semiconducting layer) with both qAB and AV modes (of the
SC layer) is possible, depending on the system parameters, as
it is shown by dashed curves in Figs. 4 and 5.

We analyze the interaction between the modes numerically
(see solid curves presented in Figs. 4 and 5). The main con-
clusion is that the plasmon mode of the semiconducting layer
interacts with the qAB mode stronger than with the AV mode
since in the latter case the modes repel each other, shifting
their positions in the q axis. This situation can be explained
if we recall that the qAB mode corresponds to the oscillation
of SC elections and it is accompanied by the oscillations of
induced electric fields. In contrast, the AV mode corresponds
to the antiphase oscillations of SC and normal electrons in
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FIG. 4. Dispersions of hybrid modes in the system (solid curves).
The dispersions of bare qAB and plasmon modes are shown
in dashed red and blue curves, respectively. We use aB/vsτs =
1/10, �/T = 1/10, τn/τs = 100, Ns/Nn = 100; for solid curves,
d/vsτs = 100.

the SC layer resulting in the quasineutrality. Therefore, since
the interaction between the layers has Coulomb nature, it is
not surprising that the plasmon mode interacts with the qAB
mode much stronger.

IV. ELECTROMAGNETIC FIELD POWER ABSORPTION

Let us expose the system to an external EM field and
study light-matter interaction. We will do a numerical analysis
of EM power absorption Re ( jnE∗

0 ) [where jn is defined in
Eq. (5)] in the case when vs > vn and, thus, Nn < Ns. In the
opposite regime, the interaction of the modes is weak.

First, we switch off the interaction between the layers. The
EM power absorption of an isolated semiconducting layer
is characterized by a standard Lorenz-shaped resonance at
the plasmon frequency. A more interesting situation arises in
the isolated SC layer due to the presence of both the qAB
and AV modes. The AV mode is quasineutral, and hence it
interacts with the external EM field weakly, thus the EM
power absorption is negligibly small. Indeed, the approximate
analytical solution Eq. (12) if substituted into Eq. (9) gives
σs = 0 and jn = 0 reflecting the quasineutral nature of the
AV mode and nearly zero EM power absorption. The exact
numerical calculation of the power absorption in the absence
of interaction between SC and semiconducting layers (d →
∞), presented in Fig. 6(a), supports this conclusion. At large
frequencies ω � ku, the absorption in Fig. 6(a) reaches a
plateau with the value equal to the static Drude absorption
of EM radiation of normal electrons in the SC layer, as it is
seen from Eq. (9). Indeed, at ω � ku the conductivity of the
SC layer resembles the static Drude conductivity σs ≈ σs0.
The arrow in Fig. 6(a) indicates EM power absorption at
the position of the AV mode which is negligibly small in
comparison with the power absorption corresponding to the
plateau value.
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FIG. 5. Dispersions of hybrid modes in the system (solid curves).
The dispersions of bare AV and plasmon modes are shown in dashed
red and blue curves, respectively. We use aB/vsτs = 1/10, �/T =
1/7, τn/τs = 100, Ns/Nn = 5000; for solid curves, d/vsτs = 10.

In contrast, the qAB mode strongly interacts with external
EM field and demonstrates a pronounced peak of absorption
with the amplitude much greater than the plateau value, as it
is shown in Fig. 6(b).

Furthermore, let us switch the interlayer interaction on
and consider the EM power absorption by the hybrid system
when the collective modes of the SC layer are hybridized
with the plasmon mode in the semiconducting layer (Fig. 7).
Figure 7(a) shows the EM power absorption by the hybrid
AV-plasmon modes. Weak hybridization of the modes results
in two new eigenmodes. One of them almost resembles the
original plasmon mode, and the other mostly possesses the
properties of the bare AV mode. From our previous discussion
of the light absorption by the bare modes, we expect that the
quasiplasmon mode (the hybrid mode which mostly inherited
the properties of the plasmon mode) will give a pronounced
resonance in the EM absorption spectrum, whereas the other,
quasi-AV mode (the hybrid mode which mostly inherited the
properties of the AV mode) will not be seen. This reasoning
is supported by the exact numerical calculations, shown in
Fig. 7(a). We see a single resonance at the frequency of the
quasiplasmon mode with a shifted position with respect to
bare plasmon dispersion and a pronounced Lorenz shape. The
quasi-AV mode is not seen in the figure.

At large �, the EM power absorption spectrum again
reaches the plateau with the value equal to the Drude con-
ductivity of the SC layer. The amplitude of the Lorenz-shaped
resonance is smaller than the value at the plateau since the to-
tal density of electrons in the semiconducting layer is smaller
than the density of electrons in the SC layer, Nn < Ns.

Finally, EM power absorption by the hybrid qAB-plasmon
mode demonstrates a double-resonance structure, indicating
that both the new modes formed from the original qAB and
plasmon modes (before the coupling) are extremely sensitive
to external EM radiation. We want to point out that such shape
of the spectrum can be attributed to the Fano resonance, which
is expected in hybrid Bose-Fermi systems [15]. And again, at
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FIG. 6. EM power absorption by the isolated SC layer as a func-
tion of dimensionless frequency � given in arbitrary units. (a) EM
power absorption by the AV mode. We use q = 0.4, aB/vsτs =
1/10, �/T = 1/7, τn/τs = 100, Ns/Nn = 5000. Inset: Absorption
spectrum at large values of �; (b) EM power absorption by the qAB
mode. We use q = 0.001, aB/vsτs = 1/10, �/T = 1/10, τn/τs =
100, Ns/Nn = 100.

large frequencies, the energy absorption reaches the plateau
with the value equal to the Drude conductivity absorption of
the SC layer.

V. ACTUAL PARAMETERS TO CONDUCT THE
EXPERIMENT AND LIMITATIONS

Let us discuss the actual parameters of the sample to be
used in the experiments. We will consider the qAB mode
first. The Drude model is applicable if kF l � 1, where l is
the mean free path of normal electrons. We choose Ns =
1014 cm−2 and ms = 0.5 m0, which are typical for super-
conductors based on transition-metal dichalcogenides [20].
Then kF l ≈ 1.38 × 1015 τs, and thus we can take τs = 10−14 s.
Note, with these parameters the resistivity amounts to kilo-
ohm (which corresponds to experimentally measured values),
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FIG. 7. EM power absorption by the hybrid system as a function
of dimensionless frequency � given in arbitrary units. (a) EM power
absorption by the AV-plasmon mode. We use q = 0.4, aB/vsτs =
1/10, �/T = 1/7, τn/τs = 100, Ns/Nn = 5000, d/vsτs = 10. Inset:
Absorption spectrum at large values of �; (b) EM power absorption
by the qAB-plasmon mode. We use q = 0.006, aB/vsτs = 1/10,
�/T = 1/10, τn/τs = 100, Ns/Nn = 100, d/vsτs = 100.

while the Bohr radius becomes aB ≈ ε × 10−10 m. For ε =
6, the dimensionless ratio aB/vF τs used in all the plots is
equal to 1/10, that corresponds to the interlayer distance d =
100vF τs = 1000aB = 600 nm. In the normal layer, we use
typical parameters Nn = 1012 cm−2 and τn = 10−12 s. They
give for the ratio of static conductivities σs0/σn(ω = 0) = 1.

Second, let us consider the AV mode. To bring the plasmon
and AV mode dispersions together, we need a change of
parameters. In our calculations, we make the ratio Ns/Nn

50 times bigger. If we keep Nn = 1012 cm−2 (the same as
before), then the scattering times τs and τn should become√

50 times smaller to keep the dimensionless ratios τs/τn

and aB/vF τs unchanged. Note, unlike the qAB mode, the AV
mode starts feeling the presence of plasmons in the normal
layer at order-of-magnitude smaller interlayer distances, d =
10vF τs = 100aB = 60 nm.
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In the calculations and plots, we used dimensionless
wave vector and frequency, � = ωτs ∼ 0.01. Then ω/2π ∼
0.1–1 THz, which corresponds to the wavelength of the order
of 0.1–1 mm. For q = 0.4 and 0.006 we find 2π/k ∼ 1 μm
and ≈70 μm, respectively, which corresponds to the period
of typical diffraction gratings (which are required in the
experiments to excite the plasmons).

Let us now discuss the limitations of our theoretical ap-
proach. When a normal 2DEG is in the vicinity of a 2D
superconductor, there might arise several phenomena, one of
which is the proximity effect [21,22], which might result in an
induced superconductivity in the semiconducting layer. In our
calculations, we used a relatively large 2DEG-superconductor
separation. Evidently, the smaller the separation, the more
pronounced the coupling between the qAB, AV, and plasmon
modes. However, at very small separations, there will arise
the proximity effect, which might quench the formation of
collective modes and should be accounted for in engineering
samples. It limits the separation distance to the coherence
length of the particular superconductor. For instance, the
coherence length amounts to several nanometers in the case
of high-Tc superconductors.

An electron in 2DEG with energy below � can tunnel into
the superconductor due to the Andreev scattering [23]. How-
ever, if the distance between the layers is large and most of the
electrons are paired, the probability of such tunneling is small.
If the superconductor is exposed to external light with the
frequency above �, the tunneling can be enhanced. Indeed,
external EM fields excite electron and hole quasiparticles
(which coexist with SC fluctuations in the superconductor).
In this case, in addition to the Andreev scattering, there occurs
common tunneling of quasiparticles into the superconductor.
Usually, this effect can also be disregarded when studying
collective modes. In particular, the frequency of the external
EM field which we consider in this paper (to excite the modes)
is smaller than �.

VI. CONCLUSION

We have studied analytically and numerically the coupling
of collective modes in a hybrid two-dimensional electron-gas–
superconductor structure in the vicinity of the critical temper-
ature of superconducting transition of the superconductor. The
layer containing the electron gas in the normal state can be
represented by a semiconductor or a metallic layer, used in
hybrid normal metal-superconductor contacts [12]. We have
shown that the superconducting layer lodges two collective
modes with drastically different physical properties, which
results in their different sensitivity to external electromagnetic
fields. As a result, these modes couple differently with the
plasmon mode of the normal electron gas spatially separated
from the superconducting layer. It manifests itself in different
spectra of the electromagnetic power absorption of the hybrid
system.
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APPENDIX: DERIVATION OF THE
CONDUCTIVITY IN 2D SYSTEMS

We present here the main steps of the derivation of conduc-
tivity (9) succeeding [19]. To find the form of SC conductivity
(which describes the linear response of the system to external
EM field, js = σsE), we can write the supercurrent within the
Bogoliubov–de Gennes approach:

js = ensps

ms
+ 2e

ms

∑
p

p fp(ps, φ), (A1)

where ps = (∇χ − 2eA)/2 = msVs, Vs is the velocity of SC
flow, χ is the phase of the order parameter, φ = eϕ + ∂tχ/2,
A and ϕ are the vector and scalar potentials, respectively,
and fp(ps, φ) ≡ fp = np(ps, φ) − n(0)

p is the nonequilibrium
contribution to the distribution function of excitations in the
superconductor. These excitations possess the following dis-
persion:

ζ̃p =
√

ξ̃ 2
p + �2 + pVs, with (A2)

ξ̃p = p2

2m
− μ + φ + p2

s

2m
, (A3)

and their distribution function np(ps, φ) ≡ np obeys the con-
ventional kinetic equation

∂np

∂t
+ ∂ζ̃p

∂p
∂np

∂r
− ∂ζ̃p

∂r
∂np

∂p
+ I{np} = 0, (A4)

where I{np} is the collision integral. Furthermore, we should
linearize (A4) over ps and φ, and then find the deviation fp and
substitute it in (A1). Then we can express ps and φ via electric
field strength E. For that we need three equations (accounting
for the fact that we deal with the vector ps, which has two
components). Two of them result from the definitions of ps

and φ:

∂ps

∂t
− ∇φ = eE, (A5)

while the third one is the continuity equation

e
∂δn

∂t
+ ∇js = 0. (A6)

Here δn is the deviation of electron density from equilibrium
and it takes the following form by linearization:

δn = 2
∑

p

{
fp

ξp

ζp
+ φ

[(
ξp

ζp

)2 ∂n(0)
p

∂ζp
− �2

2ζ 3
p

tanh
ζp

2T

]}
,

(A7)

where ξp = ξ̃p(ps = 0, ϕ = 0) and ζp = ζ̃p(ps = 0, ϕ = 0).
Solving the set of equations (A1), (A5), (A6), (A7), and
linearized (A4) we come up with formula (9) in the main text.

Note, [19] treats 3D superconductors. In the current 2D
problem (which we deal with in this paper), we suppose that
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the density of states of quasiparticles G(ξ ) does not include
any singularities in the vicinity of the Fermi energy, like in
[19]. It means that performing usual transformations

∑
p →

G(μ)
∫

dξ we arrive at the same integrals over ξ as in the 3D

case. Thus, the results are almost identical to ones reported in
[19]. They coincide if we replace 3 → 2 and take the electron
density per unit area (instead of the electron density per unit
volume).
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