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Electrostatic potential shape of gate-defined quantum point contacts
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Quantum point contacts (QPCs) are fundamental building blocks of nanoelectronic circuits. For their emission
dynamics as well as for interaction effects such as the 0.7 anomaly the details of the electrostatic potential are
important, but the precise potential shapes are usually unknown. Here, we measure the one-dimensional subband
spacings of various QPCs as a function of their conductance and compare our findings with models of lateral
parabolic versus hard-wall confinement. We find that a gate-defined QPC near pinch-off is compatible with the
parabolic saddle-point scenario. However, as the number of populated subbands is increased, Coulomb screening
flattens the potential bottom and a description in terms of a finite hard-wall potential becomes more realistic.
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I. INTRODUCTION

Given the importance of quantum point contacts (QPCs)
as fundamental building blocks of nanoelectronic circuits and
the vast amount of literature on them [1–5], surprisingly little
is known about the shape of their electrostatic potential as
a function of the gate voltages. However, knowledge of the
precise confinement potential is crucial for understanding
interaction effects in QPCs [6–9] as well as their carrier
emission dynamics [10,11], which is central for optimizing
a quantum electronic circuit. The lateral confinement defines
the mode structure of the one-dimensional (1D) channel,
while the longitudinal potential shape governs the coupling of
the 1D modes into the surrounding two-dimensional electron
system (2DES). Populating the 1D channel with electrons
by increasing the voltage applied to the split gates enhances
Coulomb screening inside the constriction. As a consequence,
the lateral confinement potential undergoes a transition from
an unscreened approximately parabolic shape near pinch-off
towards a screened potential for many occupied 1D sub-
bands. Such a transition had been theoretically predicted [12].
Here, we experimentally demonstrate it using transport spec-
troscopy at finite source-drain voltage.

Details of the confinement vary between individual devices
produced by various layouts based on different methods,
which include the field effect [2,3], etching [13] or oxida-
tion [14] techniques, and more [15,16]. The manifestation
of 1D conductance quantization, G = NGQ with GQ = 2e2/h
and N = 1, 2, 3, . . . , at cryogenic temperatures is often seen
as a quality feature of QPCs. An “optimally” designed QPC
has several conductance steps that are approximately equidis-
tant in gate voltage as the QPC is opened up, starting from

*maxgeier@zedat.fu-berlin.de
†Present address: Department of Physics, Paderborn University,

Warburger Straße 100, 33098 Paderborn, Germany

pinch-off at G = 0. It is tempting to interpret the presence
of equidistant conductance steps [2,17–21] as a signature of
a parabolic transverse confinement potential as introduced
in Ref. [22], since such a potential has transverse modes
at equally spaced energies. However, this interpretation is
questionable, as the distance of the conductance steps as a
function of the gate voltage is not one-to-one related to the
energy spacing of the 1D modes [20,23].

We study QPCs of two designs, but both defined using
gate voltages by means of the electric field effect. In agree-
ment with previous publications [4,9,21,22], our findings are
consistent with a parabolic confinement potential near the
pinch-off point of the QPCs. However, as the conductance of
a QPC is increased, more and more carriers populate the 1D
subbands and thereby arrange themselves to partially screen
the electric field induced by the applied gate voltages. The
resulting effective potential is then a function of the position
of all charges, which also includes the usually not well-known
distribution of surface states and charged bulk defects. A
precise theoretical description of this screening effect requires
a 3D self-consistent calculation, solving the classical Poisson
equations together with the quantum mechanical Schrödinger
equations [12,24,25]. A self-consistent Poisson-Schrödinger
calculation performed for a set of fictitious boundary condi-
tions and for the case of a standard split-gate-defined QPC
suggests a transition from a parabolic lateral confinement
for N = 1 towards a truncated parabola and, eventually, a
hard-wall confinement as N is increased [12]. To test this
scenario we measure nonlinear response transport through our
QPC from which we identify the energy spacings between
its highest occupied 1D modes. We compare our results to
the two extreme scenarios for the lateral electrostatic confine-
ment: parabolic confinement, as, e.g., in Refs. [19], [20], [26],
and [27], and a hard-wall confinement, as, e.g., in Refs. [28]
and [29]. Our results are inconsistent with parabolic confine-
ment for N � 4 but are consistent with a transition from a
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parabolic lateral confinement at N = 1 towards a hard-wall
potential as the QPCs are opened up.

II. TRANSPORT SPECTROSCOPY OF QUANTUM
POINT CONTACTS

Our QPCs are formed using the electric field effect in a 2D
electron system embedded 107 nm beneath the surface of a
(Al,Ga)As/GaAs heterostructure. The 2DES’s Fermi energy
and mobility measured at cryogenic temperatures are EF �
10.9 meV and μe � 2.6 × 106 cm2/V s for QPC1 and similar
for QPC2. We performed all measurements in a helium-3
evaporation cryostat at temperatures near T = 250 mK. In
Figs. 1(a) and 1(d), we present scanning electron microscope
images of the two QPC samples and sketches of the gate
layouts. For QPC1 shown in Fig. 1(a) we use a standard split-
gate layout and define the 1D constriction of the 2DES by
applying a negative voltage Vg to both gates, while the 2DES
and a back gate approximately 500 μm below the surface
are at ground potential. The resulting linear response pinch-
off curve, G(Vg)/GQ, is presented in Fig. 1(b). It features
clear and, for N < 6, nearly equidistant steps of quantized
conductance. To create the second QPC2 [see Fig. 1(d)], we
use a global top gate to globally deplete the 2DES. Only below
a screen gate placed in between the top gate and the 2DES
we induce a finite density of free electrons [30]. The screen
gate shapes a narrow constriction, i.e., a QPC between 2D
leads. Both the QPC conductance and the carrier density in
the leads are controlled by the combination of the voltages Vt

and Vs applied to the top gate and screen gate, respectively. We
present example pinch-off curves G(Vt ) for fixed Vs = 0.5 V
and G(Vs) for constant Vt = −3.4 V in Fig. 1(e). Note that
the screen gate voltage is restricted to Vs � 0.5 V as a larger
Vs causes a leakage current from the gate into the 2DES (as
expected for a Schottky barrier).

All our pinch-off curves feature smooth transitions be-
tween quantized conductance plateaus. They indicate that the
potential varies slowly and smoothly in current direction,
reminiscent of a parabolic potential profile in the longitudinal
direction, which results in reflectionless contacts between
constriction and leads.

Quantized conductance is a consequence of the energy
quantization in a 1D channel caused by the lateral confinement
of the constriction. To experimentally determine the energies
of the 1D modes we need a known energy scale to compare
with. For this reason we measure the differential conductance
g = dI/dV (e.g., using a lock-in amplifier) as a function
of the source-drain voltage V along the pinch-off curves.
In Figs. 1(c) and 1(f) we plot the differential transconduc-
tances dg/dVg (dg/dVt) for the two QPCs as a function of
the gate voltage and the bias voltage VQPC (defined below)
dropping across the QPC. In these plots steps of the con-
ductance G(Vg,VQPC) [G(Vt,VQPC)] appear as lines of positive
differential transconductance (white). Red lines are a guide
for the eye, indicating resonances between the 1D modes
and the chemical potentials of the source and drain leads.
Along the N th line of positive (negative) slope counted from
the bottom of the plot, the N th 1D subband bottom energy
is equal to the chemical potential in the source (drain) lead,
εN = μS (εN = μD). The lines frame diamond-shaped regions

around VQPC = 0. Within these regions the conductance takes
the quantized values G = NGQ. Intersection points at VQPC =
0 indicate steps of the linear response pinch-off curves, i.e.,
G = (N − 0.5)GQ. At intersection points at finite VQPC �= 0
the chemical potential drop across a QPC equals the energy
spacing between the corresponding 1D modes, |μS − μD| =
eVQPC = εN − εM . The additional curved lines of enhanced
differential transconductance within the N = 1 diamond indi-
cate the 0.7 anomaly [5–9], which is not a topic of this article.

Since the source-drain voltage V is applied across the
QPC and its leads (which is always the case, because of the
finite contact sizes even for a four-terminal measurement),
the voltage drop across a QPC is VQPC = V − Vlead = V −
RleadI [cf. sketch in Fig. 1(b)]. The lead resistance can be
directly determined from the linear response pinch-off curves
by forcing the conductance plateaus to their quantized values,
Rlead = V/I − (NGQ)−1. Our pinch-off curves in Figs. 1(b)
and 1(e) are already corrected for the lead resistances, while
for QPC1 we additionally plot the uncorrected curve, i.e., the
raw data, as a solid line. For completeness we present the lead
resistances for all three pinch-off curves in Fig. 2.

From these we determine the voltage drop across the QPC,
VQPC = V/(RleadG + 1), which is the x axis in Figs. 1(c)
and 1(f). The tapered shape of the region of plotted data is
a result of correcting for the lead resistances (we measured
between −8 mV � V � 8 mV).

At the intersection points marked by red squares in
Figs. 1(c) and 1(f) the bias VQPC is precisely equal to the
energy spacings between subsequent subbands,

δε(N ) = εN+1 − εN = eVQPC. (1)

We plot δε(N ) in Fig. 3 for all three pinch-off curves. Related
to the variations in geometry the three implementations of
QPCs have different subband spacings. However, as a general
feature we observe a strong decrease in δε(N ) as the QPCs are
opened and N is increased.

III. HARD-WALL VERSUS PARABOLIC LATERAL
CONFINEMENT

Given reflectionless contacts, the conductance of a QPC
is limited by its strongest lateral confinement in the center of
the constriction. The measured subband spacings are uniquely
related with this lateral confinement. In the following, we
compare the two most common models describing the lateral
confinement, namely, a hard-wall versus a parabolic potential.
These two models may be considered the extreme limits
of a “continuum” of realistic scenarios for the transverse
confinement.

A. Lateral hard-wall potential

For the lateral hard-wall potential we model the transverse
confinement potential �(y) as

�(y) =
{
�0, |y| � W/2,

∞, |y| > W/2,
(2)

where the two parameters W and �0 are the width and offset
of the hard-wall potential well. An offset can be caused by a
partial depletion of the constriction related to the incomplete
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FIG. 1. (a) Scanning electron microscope (SEM) picture of Ti/Au gates (light-gray regions) on the wafer surface (dark region) of QPC1

and sketch of the electric field effect device. Negative voltage Vg applied to the gates (yellow regions) is used to locally deplete the 2DES (blue
where conducting, gray where depleted) 107 nm beneath the surface. (b) Pinch-off curve G(Vg)/GQ of QPC1 using the source-drain voltage
V = −0.5 mV. Solid line, raw data; dotted line, corrected for lead resistance Rlead = 4.62 k�, which includes 4.4 k� resistance of external RC
filters. Inset: Simplified circuit diagram of the measurement. (c) Finite-bias spectroscopy of QPC1, dg/dVg(VQPC,Vg), accounting for the lead
resistance (see the text). Local maxima of dg/dVg (white lines) indicate transitions between adjacent conductance plateaus. (d) SEM picture
of a screen gate equivalent to that of QPC2. As shown in the sketch, the actual device is covered with a 130-nm-thick layer of cross-linked
PMMA which carries a global top gate. (e) Pinch-off curves of QPC2 corrected for a gate-voltage-dependent lead resistance, including a
constant 4.4-k� resistance of external RC filters (cf. Fig. 2): G(Vt )/GQ for Vs = 0.5 V and G(Vs )/GQ for Vt = −3.4 V at V = −0.1 mV. (f)
dg/dVg(VQPC,Vt ) of QPC2, accounting for the lead resistance. Additional lines and symbols in (c) and (f) are explained in the text.

screening in a semiconductor with a low carrier density. The
threshold energies for the transverse modes are

En = π2h̄2n2

2m�W 2
+ �0, (3)

where m� = 0.067m0 is the effective mass of the electrons in
GaAs, m0 being the free electron mass. Using Eq. (1) to relate
the bias voltage at the intersection points marked by the red
squares in Figs. 1(c) and 1(f) to the subband spacing δε(N ) =
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FIG. 2. Resistances Rlead of the leads to the QPCs [cf. sketch in
Fig. 1(b)]. For the split-gate design of QPC1 Rlead is constant, while
it is a function of gate voltages for QPC2.

EN+1 − EN , we calculate the widths

W (N ) = π h̄

√
2N + 1

2mδε(N )
. (4)

Neglecting additional screening effects from the applied bias
voltage, these values of W (N ) apply everywhere along the
(almost-horizontal) lines connecting pairs of red squares [see
the yellow lines for N = 2 in Figs. 1(c) and 1(f)]. In particular,
this allows us to extend our estimate of the width W (N ) to
VQPC = 0, indicated for N = 2 by the small yellow circle in
Figs. 1(c) and 1(f). Substituting W in Eq. (3) with W (N ),
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FIG. 3. Subband spacings δε(N ) of both QPCs for the three
pinch-off curves presented in Fig. 1. Lines are guides for the eyes.
At the intersection of the two lines of QPC2 the gate voltages Vs

and Vt will be identical for both measurements. Error bars reflect the
uncertainties of the red lines in Figs. 1(c) and 1(d).

we then find the potential offset �0 using the relation EF �
EN + 0.5δε(N ), which gives

�0(N ) � EF − δε(N )

(
N2

2N + 1
+ 1

2

)
. (5)

The potential shift by 0.5δε(N ) accounts for the difference
between the N th subband bottom EN and the Fermi level EF in
the center of each diamond at VQPC = 0, assuming symmetric
coupling between the 1D constriction and both leads. [The
assumption of symmetric coupling is confirmed by the fact
that the lines connecting pairs of red squares in Figs. 1(c)
and 1(f) are almost horizontal.]

B. Lateral parabolic potential

To model a lateral parabolic potential we use

�(y) = �0 + mω2
y y2

2
, (6)

where ωy and �0 are the characteristic frequency and offset
of the parabolic potential well. In analogy to the analysis
assuming hard-wall potentials, we determine the two parame-
ters from the measured subband spacings. At the intersection
points indicated by red squares in Figs. 1(c) and 1(f), we find

h̄ωy(N ) = eVQPC = δε(N ), (7)

and in the centers of the diamonds at VQPC = 0, in addition,

�0(N ) � EF − Nh̄ωy . (8)

C. Comparison of the two potential shapes

We directly compare our results for the hard-wall potential
shown in Figs. 4(a)–4(c) and for the assumption of parabolic
confinement plotted in Figs. 4(d)–4(f). We present the param-
eters W and �0 as a function of the subband number N for
all three QPC implementations for the hard-wall potential in
Figs. 4(a) and 4(b) and ωy and �0 for the parabolic potential
in Figs. 4(d) and 4(e). The results are qualitatively similar
for the various implementations of QPCs; the variations in
W or ωy between QPCs indicate that the lateral confinement
potential of QPC2 is slightly wider compared to that of QPC1.
In Figs. 4(c) and 4(f), showing the actual potentials for QPC1,
for comparison we indicate the lithographic distance of 250
nm between the gates shown in the inset in Fig. 1(a). It
corresponds to the white area between regions of gray back-
ground. The width of the hard-wall potential slightly exceeds
the lithographic width for N = 9. QPC1 does not show further
plateaus for N > 9.

Comparing the two models a substantial difference is vis-
ible in �0(N ). While for N = 1 the potential offset is similar
for both models with �0/EF � 0.6, in the case of the hard-
wall potential it slowly decreases to �0/EF � 0.4 at N = 4
and stays approximately constant at that level as the QPC is
opened further. In contrast, the decrease in the offset �0(N )
of the parabolic potential with N is much steeper, such that
for N � 4 it moves below the bottom of the conduction band
in the 2D leads, indicated as the dashed line at � = 0. We are
not aware of a realistic mechanism that could lead to such an
overscreening of the negative voltages applied to the control
gates (Vg for QPC1 or Vt for QPC2).
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FIG. 4. Comparison between hard-wall (a–c) and parabolic (d–f) potential models of the lateral confinement. (a) Width of the hard-wall
potential W (N ). (b) Offset of the hard-wall potential �0(N ). (c) Shape of the hard-wall potential for 1 � N � 9, only for QPC1. (d) Curvature
of the parabolic potential ωy(N ). (e) Offset of the parabolic potential �0(N ). (f) Shape of the parabolic potential for 1 � N � 9, only for QPC1.
Error bars in (a), (b), (d), and (e) are calculated by error propagation from the error of δε(N ) (cf. Fig. 3).

IV. DISCUSSION AND SUMMARY

The main result of our simple analysis starting from the
measured subband spacings δε(N ) is that for N � 4 we
can exclude a parabolic lateral confinement potential for our
QPCs. Based on a self-consistent calculation it has been
suggested that the increasing population of the 1D constriction
with N as a QPC is opened up leads to an increased screening
of the electric field originating from the charged control gates.
For a gate-defined QPC, this process can cause a transition
from a parabolic confinement for the case of little screening,

i.e., N = 1 towards a truncated potential with a flat bottom at
larger N where many carriers populate the constriction [12].
Our findings support such a scenario. The hard-wall potential
presents a somewhat unrealistic extreme case of strong screen-
ing. Nevertheless, for N � 4 it seems more realistic than the
other extreme, namely the parabolic potential. The true shape
of the lateral confinement potential of a QPC for N � 4 likely
lies between these two extremes, maybe close to a truncated
parabola [12,31], i.e., a parabola with a flat bottom identical
to that of a hard-wall potential but with smoothly increasing
side walls of constant curvature as the case for a parabola.
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In summary, a parabolic saddle-point potential is likely
a realistic description of a QPC near pinch-off, although
our measurement can also be explained with a hard-wall
confinement in this regime. However, as the QPC is opened up
beyond N � 4, the parabolic lateral confinement turns out to
be a bad approximation. In this regime of enhanced screening,
a hard-wall potential is the better approximation.
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APPENDIX

1. Coupling between control gates and the QPC

The electrostatic potential shaping the QPCs is generated
and controlled via the field effect by applying voltages to
nearby metal gates. The size of the plateaus of quantized
conductance in the pinch-off curves as a function of the gate
voltage [cf. Figs. 1(b) and 1(e)] is proportional to the capac-
itive coupling between the control gates and the QPC, which
we approximate as a conducting 1D channel with the carrier
density n1D. We determine the approximate capacitance per
unit length between gate and QPC as

c1D = eδn1D/δVgate , (A1)

where δn1D is the carrier density increase as the voltage on
the control gate is increased by δVgate. If we take for δVgate the
voltage difference between two subsequent intersection points
of the source and drain resonances at VQPC = 0 in Figs. 1(c)
and 1(f), δn1D corresponds to the difference in the values
of n1D at these points with N versus N + 1 subbands being
populated. The 1D carrier density is

n1D(N ) =
∫ ∞

0
D1D(E ) f (E )dE , (A2)

where D1D = 1
π h̄

√
2m�

E is the 1D electron density of states
and f (E ) the Fermi-Dirac distribution. Given kBT � EF, we
approximate f (E ) = 1 for E < EF and f (E ) = 0 for E > EF.
Summing up all 1D modes which are actually populated for
the QPC tuned to the conductance G = NGQ, we find

n1D(N ) =
√

2m�

π h̄

N∑
n=1

∫ EF

En

1√
E − En

dE

=
√

8m�

π h̄

N∑
n=1

√
EF − En . (A3)

Inserting δn1D(N ) = n1D(N + 1) − n1D(N ) from Eq. (11) into
Eq. (A1), we finally determine the 1D capacitance density as

c1D(N ) =
√

8m�e2

π h̄

√
EF − EN+1

δVgate(N )
, (A4)
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FIG. 5. One-dimensional carrier density n1D(N ), assuming an
infinitely long hard-wall 1D channel of width W (N ) and depth EF −
�0(N ) of QPC1 (red squares; right-side axis) and the corresponding
1D capacitance density c1D(N ) (blue triangles; left-side axis).

where δVgate(N ) is the width of the N th plateau of the
pinch-off curve (cf. Fig. 1) measured between the conduc-
tances (N + 0.5)GQ and (N − 0.5)GQ. Substituting EN+1 with
the according eigenenergy of the hard-wall potential using
Eq. (3), we can now determine c1D(N ). In Fig. 5, we present
the 1D capacitance density c1D(N ), which is the slope of the
also shown 1D carrier density n1D(N ). The strong decrease in
the capacitance with N for N � 4 is a direct signature of the
increase in the screening of the electric field of the gates with
a growing carrier density.

In addition, the variations in capacitance as a function of N
explain the counterintuitive result that the subband spacings
δε(N ) strongly vary in a region of almost-equal widths of the
plateaus of quantized conductance of the pinch-off curve [cf.
Figs. 1(b) and 1(e) and Fig. 3].

2. Width of the 1D constriction as a function of the gate voltage

In Fig. 4(a), we present the width of the hard-wall potential
W (N ). In Fig. 6, we plot W (Vg) for QPC1. Next, we compare
this result with the dependence of the depletion region of
a gate voltage using a different sample on the same wafer

-2.0 -1.8 -1.6 -1.4 -1.2

50
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200

250

300

W
(n

m
)

Vg (V)

FIG. 6. Width of the hard-wall potential W (Vg) for QPC1 [same
data as the W (N ) in Fig. 4(a)]. The slope of the red line is dW/dVg =
300 nm/V (cf. the text).
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FIG. 7. (a) QPC nominally identical to QPC1 for N = 4, coupled
to a hemispherical mirror which is defined by a negative gate voltage
Vm. (b) Conductance of the QPC as a function of Vm. (c) Fourier
transform of the conductance. From the peak value, we determine
the period δVm � 150 mV of the oscillations in (b).

material. The sample shown in Fig. 7(a) contains a QPC
nominally identical to QPC1 and a hemispherical mirror gate.
The two samples have been prepared in parallel and on the
same wafer. In Fig. 7(b) we present the conductance of the
QPC as a function of the voltage applied to the mirror gate.
The bare conductance (without mirror) is G = 4GQ. However,
with the 2DES below the mirror gate depleted it is reduced
by roughly a factor of 2, because of enhanced backscattering
through the QPC. At the same time, G(Vm) oscillates with
a visibility of 40%. Both the conductance reduction and the

oscillation are related to the formation of localized modes
inside the hemispherical resonator. The oscillation can be
interpreted in analogy to the oscillations of the standing wave
in a Fabry-Pérot resonator, while here, the coherent electrons
generate the standing wave. By increasing the gate voltage Vm,
we decrease the area of 2DES depleted next to the mirror
gate and thereby increase the length of the resonator (the
distance between the QPC and the mirror). Per period of the
conductance oscillation, the length of the resonator is reduced
by half of the Fermi wavelength dLres/dVm = 0.5λF/δVm

with the resonator length Lres. We determine the averaged
period from the fast Fourier transform of the oscillation [cf.
Fig. 7(c)] and find δVm � 150 mV. With λF = 45 nm, we
finally estimate the rate of the depletion length reduction as
dLres/dVm = 150 nm/V. Changing the voltage applied to the
QPC gates instead of the mirror gates results in the same
conclusion, while in this case the interference pattern appears
on top of the QPC pinch-off curve.

To estimate the depletion of the electron system between
the QPC gates, we have to add up the electric fields of both
gates. Based on the fact that the same voltage is applied
to both gates and the distance between gates is more than
two times larger than the distance between each gate and
the 2DES, we neglect any influences that a gate has on the
depletion caused by the other gate. From the slope of the red
line in Fig. 6 we find the dependence of the width of the
hard-wall potential W (Vg) as a function of the gate voltage
to be dW/dVg � 300 nm/V, twice as large as the effect of a
single-mirror gate. This finding supports the applicability of
the hard-wall model for QPCs with N � 4.
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