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Spatial coherence of the thermal emission of a sphere
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Analytical expressions for calculating the energy density and spatial correlation function of thermal emission
by a homogeneous, isothermal sphere of arbitrary size and material are presented. The spectral distribution and
the power law governing the distance-dependent energy density are investigated in the near-field and far-field
regimes for silicon carbide (dielectric), silicon (semiconducting), and tungsten (metallic) spheres of various
size parameters ranging from X = 0.002 to 5. The spatial coherence of the thermal field emitted by spheres of
different size and material is also studied in both radial and polar directions, and the effect of localized surface
phonons (LSPhs) on the correlation length and angle is elucidated. It is shown that the energy density follows
a power law of d−2 (d is the observation distance) in the far field independent of the size and material of the
sphere. The power law in the near field is strongly dependent on the material, size parameter, and the ratio
d
a (a is the sphere radius). In the near field, the energy density follows a power law of d−6 when X � 1 and
d
a � 1 (similar to an electric point dipole). With increasing X or decreasing d

a , the contribution of multipoles
to the energy density increases resulting in an increase in the power of d until the power law converges to that
for a semi-infinite medium (d−2.5, d−0.5, and d−3.5 for silicon carbide, silicon, and tungsten, respectively, in the
intermediate near field, and d−3.5, d−3.5, and d−2.5 for silicon carbide, silicon, and tungsten, respectively, in the
extreme near field.). It is also found that the spatial correlation length in the radial direction is approximately
on the order of λ, 0.1λ, and 0.001λ in the far-field, intermediate near-field, and extreme near-field regimes,
respectively, when the multipolar LSPhs are not supported. The correlation angle in the extreme near field is
strongly dependent on the sphere size parameter, such that it decreases by three orders of magnitude (from
0.5π to 0.001π ) when X increases from 0.002 to 5. The dependence of the correlation angle on X decreases
significantly in the intermediate near-field and far-field regimes, and the correlation angle retains the same order
of magnitude (0.15π − 0.7π ) for all considered X s in these two regimes. While the excitation of dipolar LSPhs
does not affect the correlation length and angle of the thermal field, the multipolar LSPhs reduce the spatial
coherence in both directions.

DOI: 10.1103/PhysRevB.101.165424

I. INTRODUCTION

Thermal radiation is traditionally considered to be spatially
incoherent. However, this is not entirely true as the thermally
generated electromagnetic waves can exhibit a high degree
of spatial coherence in both near-field (d � λ where d and
λ are the observation distance and thermal wavelength, re-
spectively) and far-field (d > λ) regimes.

While far-field blackbody radiation is spatially correlated
over a distance on the order of λ/2 [1], highly correlated
far-field emission can be achieved by engineering materials at
the subwavelength scale [2–11], for example, using gratings
[2,3,5,7,11] or multilayers of thin films [4,8,9].

Thermal radiation in the near field can have various coher-
ence behaviors depending on the geometry, material proper-
ties, and crystalline structure of the source as well as the obser-
vation distance. The coherence of thermal near field is mostly
studied within the framework of fluctuational electrodynamics
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[12], and most of these studies are focused on planar media,
i.e., semi-infinite media [1,5,13–15], thin films [16,17], and
multilayer hyperbolic media [18]. For a semi-infinite planar
source, the spatial coherence of the thermal near field has been
studied in the intermediate near-field (d � λ) and extreme
near-field (d � λ) regimes. When the source does not support
surface polaritons, the coherence length in the intermediate
regime has the same order of magnitude as the minimum
of the skin depth, δ, and the wavelength [13]. As such, a
coherence length much smaller than the thermal wavelength is
found for metals which have small skin depths. The excitation
of surface polaritons significantly modifies the coherence of
the thermal field in the intermediate regime. In this case,
the fields are correlated over a distance on the scale of the
propagation length of the surface polariton [1,5,13,14]. The
coherence length in the extreme near-field regime is much
smaller than that in the intermediate regime. In this case, the
coherence length is equal to the observation distance from
the source, d [1]. The spatial coherence of thermal emission
has also been studied for dielectric and metallic thin films
[16,17]. In the intermediate regime, the waveguide modes
of a dielectric (heavily doped silicon) thin film result in a
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long-range coherence (1.34λ) for the thermal field [16]. In
the extreme near-field regime, a very small coherence length
(1.13×10−4λ) is obtained for the thermal field. The short
coherence length of the thermal emission in this regime is
attributed to the divergence of the electric field in the vicinity
of point charges induced at the source surface. The spatial
coherence of the thermal field emitted by metallic thin films
has been studied in the extreme near-field regime [17]. The
coherence length in the polariton frequency band increases
due to the excitation of surface plasmon polaritons, while the
coherence length outside this band is λ/2. In the polariton
frequency band, the coherence length strongly depends on
the film thickness and can be larger than 10λ. Spatial co-
herence of the thermal near field has also been studied for
a multilayer hyperbolic (ε‖ε⊥ < 0, where ε‖ and ε⊥ are the
dielectric functions parallel and perpendicular to the optical
axis, respectively) semi-infinite medium [18]. The correlation
length of thermal emission by a type I (ε‖ < 0 and ε⊥ > 0) hy-
perbolic semi-infinite medium, which cannot support surface
polaritons, is on the order of 0.1λ and λ in the extreme and
intermediate near-field regimes, respectively. Unlike type I, a
type II (ε‖ > 0 and ε⊥ < 0) hyperbolic medium can support
surface polaritons resulting in a large correlation length on the
order of 10λ in the intermediate near field. In the extreme near
field, however, the correlation length for a type II hyperbolic
medium is the same as that for the type I, i.e., on the order of
0.1λ. The nonlocal effects on the spatial correlation of thermal
emission in the extreme near-field regime have been studied
for semi-infinite planar media using approximate macroscopic
models [15]. The coherence length of the extreme near field is
calculated for polar crystals and an electron plasma. For polar
crystals, a correlation length equal to the lattice constant is
obtained for thermal emission at subnanometer distances. For
electron plasma, the minimum coherence length is set by the
Thomas-Fermi screening length [15].

While spatial coherence of thermal emission by planar
media has been extensively studied, spatial coherence for
finite, nonplanar media is almost unexplored. In the only study
concerned with nonplanar media [19], the spatial coherence
of an incident electric field scattered by a single lossless
(nonemitting) sphere with X = 1 (X is the size parameter) and
a chain of spheres with X = 0.3 is studied. The scattering of
incident field by the spheres is studied using electromagnetic
multiple-scattering theory. The single sphere has a constant
(with wavelength) and real dielectric function (thus it does
not emit thermal radiation), and it does not support localized
surface modes. A coherence length on the order of several
wavelengths (∼5λ) is found at the near-field distances from
dielectric spheres. It is also shown that spheres with larger
dielectric function show a higher degree of coherence. The
spatial correlation of the thermal field is also studied for a
chain of lossless silicon nanospheres with X = 0.3 as well as
for a chain of metallic nanospheres of the same size with a
dielectric function given by the Drude model. In both cases,
the coherence length varies significantly with the observation
location from the chain.

Spatial coherence of thermal emission by spheres is of
significance as they are used for engineering thermal emission
in manmade materials such as Mie-resonance-based metama-
terials [20–23]. However, the spatial coherence of the thermal

field emitted by a single sphere is not fully understood yet.
The spatial correlation function for an emitting sphere has not
been formulated so far, and the effects of the localized surface
phonons (LSPhs), material, and sphere size parameter on
spatial coherence in the extreme near-field, intermediate near-
field, and far-field regimes have not been investigated yet.
Additionally, while the far-field emissive power of spheres
with various size parameters is discussed in several studies
[24–27], there has not been any analysis of the near-field
thermal emission by a sphere.

In this paper, we use the analytical expressions of the elec-
tric and magnetic fields thermally emitted by a sphere [24] to
calculate the energy density and spatial correlation function.
The spectrum and the power laws governing near-field and
far-field energy density for spheres of various size parameters
and materials are studied. Silicon carbide (SiC), silicon (Si),
and tungsten (W) are considered in this study. The spatial
coherence of the thermal field emitted by a sphere is also
investigated in both radial and polar directions. The effects of
size parameter, LSPhs, and material on the spatial coherence
of thermal emission are discussed, and the correlation length
and angle in the extreme near-field, intermediate near-field,
and far-field regimes are quantified.

This paper is organized as follows. Analytical expressions
for energy density and spatial correlation function of the
thermal field are presented in Sec. II. These expressions are
then used in Sec. III to study the spectral and total (spectrally
integrated) energy density. The spatial coherence along radial
and polar directions is discussed in Sec. IV, and the conclud-
ing remarks are provided in Sec. V.

FIG. 1. A homogeneous sphere of radius a, temperature T , and
dielectric function ε is emitting in free space. The spatial correlation
of the thermal electric fields at points r1, E(r1, ω), and r2, E(r2, ω),
is of interest. Parameter d shows the distance of observation point r1

from the sphere surface.
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FIG. 2. Total energy density emitted by a (a) SiC, (b) Si, and (c) W sphere versus observation distance d normalized by λmax (=9.66 μm).
The insets show the total energy density in the extreme near-field distances ( d

λmax
< 0.01).

II. MATHEMATICAL DERIVATION OF SPATIAL
CORRELATION FUNCTION

The problem under consideration is schematically shown
in Fig. 1. A sphere with an arbitrary radius, a, and
temperature, T , is thermally emitting in free space. The sphere
is described by a local, complex, and frequency-dependent
dielectric function ε = ε′ − iε′′ (eiωt dependence is used for
the time harmonic fields), and it is assumed that the sphere
is homogeneous, nonmagnetic, and in local thermodynamic
equilibrium. The spatial coherence of thermal electric fields
at two arbitrary points r1 and r2 located in free space, which
is characterized using the spatial correlation function, is of in-
terest. The spatial correlation function is defined as [16,28,29]

↔
W(r1, r2, ω)δ(ω − ω′) = 〈E(r1, ω) ⊗ E∗(r2, ω

′)〉, (1)

where E(r1, ω) and E(r2, ω) are the thermally emitted electric
fields at points r1 and r2, respectively; ⊗ denotes the dir-
ect product of two vectors; the superscript ∗ represents the
complex conjugate; and 〈· · · 〉 is the ensemble average. The
electric field emitted by the sphere can be obtained using
fluctuational electrodynamics [12,24]. The electric field at

point r in free space can be expanded in vector spherical
harmonics as [24,30]

E(r, ω) =
∞∑

n=1

n∑
m=−n

[QnmMnm(r, ω) + SnmNnm(r, ω)]. (2)

In Eq. (2), Mnm and Nnm are the vector spherical harmonics
that are given by the following equations [24]:

Mnm = hn(k0r)

(
im

sin θ
Pn

|m|θ̂ − Pn
′|m|

ϕ̂

)
eimϕ, (3a)

Nnm =
{

n(n + 1)

k0r
hn(k0r)Pn

|m|r̂ + 1

k0r

∂

∂r
[rhn(k0r)]Pn

′|m|
θ̂

+ im

k0r sin θ

∂

∂r
[rhn(k0r)]Pn

|m|ϕ̂
}

eimϕ, (3b)

where k0 is the magnitude of the wave vector in free space;
hn is the spherical Hankel function of the second order; i is
the imaginary unit; (r, θ , ϕ) are the components of vector
r in spherical coordinates; r̂, θ̂ , and ϕ̂ are the unit vectors
in spherical coordinates; Pn

|m| is the associated Legendre
polynomial defined as Pn

|m| ≡ Pn
|m|(cos θ ); and P′

n
|m| = ∂Pn

|m|
∂θ

.
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FIG. 3. Spectral energy density emitted by a SiC sphere with various size parameters in the (a) extreme near-field ( d
λmax

= 0.001), (b)

intermediate near-field ( d
λmax

= 0.1), and (c) far-field ( d
λmax

= 10) regimes.

It should be noted that Gaussian units are used in this paper.
The coefficients Qnm and Snm in Eq. (2) are given by [24]

Qnm = −Ãnm/qa2[hn(k0a) j′n(qa) − h′
n(k0a) jn(qa)], (4a)

Snm = B̃nm/k0a{ε[ahn(k0a)]′ jn(qa) − hn(k0a)[a jn(qa)]′},
(4b)

where q = √
εk0, jn is the spherical Bessel function of the first

kind, the prime denotes differentiation with respect to a, and
the coefficients Ãnm and B̃nm are found as [24]

Ãnm =
∫ a

0

k0(ε − 1)(qr)2 jn(qr)

2πγnm
√

ε

∫ π

−π

e−imϕdϕ

×
∫ π

0

(
im

sin θ
Pn

|m|Kθ + Pn
′|m|Kϕ

)
sin θdθdr, (5a)

B̃nm(r) = −
∫ a

0

qk0r(ε − 1)

2πγnm
√

ε

∂[r jn(qr)]

∂r

∫ π

−π

e−imϕdϕ

×
∫ π

0

(
KθPn

′|m| sin θ − imKϕPn
|m|

)
dθdr

−
∫ a

0

(ε − 1)q2r jn(qr)

2περnm

∫ π

−π

e−imϕdϕ

×
∫ π

0
KrPn

|m| sin θdθdr, (5b)

where γnm and ρnm in Eq. (5) are defined as

γnm = 2n(n + 1)(n + |m|)!
(2n + 1)(n − |m|)! , (6a)

ρnm = 2(n + |m|)!
(2n + 1)(n − |m|)! . (6b)

In Eq. (5), (Kr, Kθ , Kϕ ) are the spherical components of
vector K, where (ε − 1)K/4π is the thermally fluctuating
electric moment per unit volume [24]. The ensemble average
of the spatial correlation function of the spherical components
of vector K is given by the fluctuation-dissipation theorem
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FIG. 4. Normalized correlation function along the radial axis in the extreme near-field regime ( d
λmax

= 0.001) versus |r2−r1|
λ

at λ = 11 μm.
(a) Normalized Wθθ and Wrr for a SiC sphere with X = 0.002. (b) Normalized Wθθ for SiC spheres with various size parameters. (c) Normalized
Wθθ for SiC, Si, and W spheres with X = 0.2.

as [12,24]

〈Kα (r, ω)K∗
β (r′, ω′)〉 = 2h̄

r2 sin θ
coth

(
h̄ω

2kBT

)
Im

(
1

ε − 1

)

× δαβδ(r − r′)δ(ω − ω′), (7)

where h̄ and kB are the reduced Plank and Boltzmann con-
stants, respectively.

Inserting Eq. (2) into Eq. (1) results in

Wαβ (r1, r2, ω)

=
∞∑

n=1

n∑
m=−n

∞∑
n′=1

n′∑
m′=−n′

〈[QnmMnmα
(r1, ω)+SnmNnmα

(r1, ω)]

× [Q∗
n′m′

β
M∗

n′m′
β
(r2, ω

′) + S∗
n′m′

β
N∗

n′m′
β
(r2, ω

′)]〉, (8)

where α, β = r, θ, ϕ. The vector spherical harmonics are de-
terministic. As such, they can be taken out of the ensemble

average, and Eq. (8) can be rewritten as follows:

Wαβ (r1, r2, ω)

=
∞∑

n=1

n∑
m=−n

∞∑
n′=1

n′∑
m′=−n′

[〈QnmQ∗
n′m′ 〉Mnmα

(r1, ω)M∗
n′m′

β

× (r2, ω
′) + 〈SnmS∗

n′m′ 〉Nnmα
(r1, ω)N∗

n′m′
β
(r2, ω

′)

+〈QnmS∗
n′m′ 〉Mnmα

(r1, ω)N∗
n′m′

β
(r2, ω

′)

+〈SnmQ∗
n′m′ 〉Nnmα

(r1, ω)M∗
n′m′

β
(r2, ω

′)]. (9)

The ensemble average of the products of coefficients S and Q
in Eq. (9) are obtained using the following equations:

〈QnmQ∗
n′m′ 〉 = k2

0 h̄

πγnm|Dn|2
coth

(
h̄ω

2kBT

)

× Im[ j∗n (qa) j′n(qa)]δnn′δmm′ , (10a)
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FIG. 5. Same as Fig. 4 for the intermediate near-field regime ( d
λmax

= 0.1).

〈SnmS∗
n′m′ 〉 = k2

0 h̄

πγnm|En|2
coth

(
h̄ω

2kBT

)

× Im

{
ε∗

[ | jn(qa)|2
a

+ j∗n (qa) j′n(qa)

]}

× δnn′δmm′ , (10b)

〈QnmS∗
n′m′ 〉 = 〈SnmQ∗

n′m′ 〉 = 0, (10c)

where

Dn = a[hn(k0a) j′n(qa) − h′
n(k0a) jn(qa)], (11a)

En = ε[ahn(k0a)]′ jn(qa) − hn(k0a)[a jn(qa)]′. (11b)

Using Eq. (10c) and the properties of the Kronecker delta
function in Eqs. (10a) and (10b), the correlation function in
Eq. (9) is reduced to

Wαβ (r1, r2, ω)

=
∞∑

n=1

n∑
m=−n

[〈|Qnm|2〉Mnmα
(r1, ω)M∗

nmβ
(r2, ω

′)

+〈|Snm|2〉Nnmα
(r1, ω)N∗

nmβ
(r2, ω

′)]. (12)

Equation (12) combined with Eqs. (3) and (10) provide the
spatial correlation function of the electric fields at points r1

and r2. These equations can also be used for finding the energy
density emitted by the sphere in free space. The electric
energy density, uE , at point r in free space is given by [31]

uE (r, ω) = 1

8π
〈|E(r, ω)|2〉, (13)

where based on Eq. (1), 〈|E(r, ω)|2〉 can be obtained by taking

the trace of
↔
W(r1, r2, ω) for r1 = r2 = r; i.e.,

uE (r, ω) = 1

8π
Tr[

↔
W(r, r, ω)]. (14)

Substituting for
↔
W from Eq. (12), the electric energy density

can then be written as

uE (r, ω) = 1

8π

∑
α=r,θ,ϕ

∞∑
n=1

n∑
m=−n

[〈|Qnm|2〉|Mnmα
(r, ω)|2

+〈|Snm|2〉|Nnmα
(r, ω)|2]. (15)
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FIG. 6. Same as Fig. 4 for the far-field regime ( d
λmax

= 10).

The magnetic energy density, uH , can be obtained in a similar
way as the electric energy density. The magnetic energy
density at point r in free space is found using the magnetic
field at this point as [31]

uH (r, ω) = 1

8π
〈|H(r, ω)|2〉. (16)

The magnetic field at point r can be expanded in vector
spherical harmonics as [24]

H(r, ω) = i
∞∑

n=1

n∑
m=−n

[SnmMnm(r, ω) + QnmNnm(r, ω)]. (17)

Using Eq. (17) and following the same steps as those taken
for deriving the electric energy density, the magnetic energy
density is obtained as

uH (r, ω) = 1

8π

∑
α=r,θ,ϕ

∞∑
n=1

n∑
m=−n

[〈|Snm|2〉|Mnmα
(r, ω)|2

+〈|Qnm|2〉|Nnmα
(r, ω)|2]. (18)

Finally, the spectral energy density is found by adding Eq. (18)
and Eq. (15) as

u(r, ω) = 1

8π

∑
α=r,θ,ϕ

∞∑
n=1

n∑
m=−n

(〈|Snm|2〉 + 〈|Qnm|2〉)

× [|Mnmα
(r, ω)|2 + |Nnmα

(r, ω)|2]. (19)

III. ENERGY DENSITY

The total (spectrally integrated) and the spectral energy
density emitted by single spheres made of SiC (dielectric),
Si (semiconductor), and W (metal) is calculated at an obser-
vation distance, d = r − a, using the formalism described in
Sec. II. The total energy density is shown in Fig. 2 versus the
observation distance normalized by the dominant wavelength
of thermal radiation at 300 K (λmax = 9.66 μm), d

λmax
, for

four size parameters (X = 2πa
λmax

) of 0.002, 0.02, 0.2, and 5.
The energy density emitted by a semi-infinite medium [14]
as well as an electric point dipole [14] is also shown in
Fig. 2 for comparison. The energy density for all materials
increases with increasing the size parameter and decreasing
the observation distance.

165424-7



SAMAN ZARE AND SHEILA EDALATPOUR PHYSICAL REVIEW B 101, 165424 (2020)

FIG. 7. Normalized correlation length versus wavelength for a SiC sphere with (a) X = 0.002, (b) X = 0.02, (c) X = 0.2, and (d) X = 5.

In the far-field region ( d
λmax

> 10), the spheres behave as
electric point dipoles when their size is much smaller than
the wavelength inside the material (i.e., λ/n where n is the
refractive index of the sphere). As shown in Fig. 2, the far-field
energy density for SiC and Si spheres agrees well with that
predicted using the dipole approximation when X < 1. For W
spheres, which have a large refractive index, the agreement
between the energy density of the sphere and the dipole is
observed in the far field only for X = 0.002. The energy
density for all spheres follows a power law of d−2 in the
far field ( d

λmax
> 10) regardless of the size and material of

the sphere, which is similar to the far-field behavior of an
electric point dipole. The electric field generated by a dipole is
proportional to d−1 in the far field [32]. Consequently, based
on Eq. (13) (magnetic energy density is negligible), the energy
density of an electric dipole is proportional to d−2 in the far
field.

In the intermediate near-field distances (0.01� d
λmax

� 0.1),
the energy density of a sphere with X = 0.002 varies with
distance as d−6 similar to the behavior of an electric point
dipole. For an electric dipole, the electric field follows a
power law of d−3 in the intermediate near field [32,33], and

thus the energy density has a d−6 distance dependence. This
similarity to a dipole in distance dependence is because X � 1
and a � d in the intermediate near-field distances from a
sphere with X = 0.002. As the size of the sphere increases,
the energy density starts deviating from that of an electric
dipole. In this region, the energy density is governed by a d−5

power law for SiC, Si, and W spheres with X = 0.02. With
further increase in the size, the power of d becomes material
dependent and further increases until it converges to that for
a semi-infinite medium (X → ∞) when X = 5. For X = 5,
the power laws are d−2.5, d−0.5, and d−3.5 for SiC, Si, and W
spheres, respectively.

In the extreme near-field region ( d
λmax

< 0.01), the behavior
of the energy density for a sphere with X = 0.002, where
still a < d , is similar to that for a point dipole and the
energy density is governed by a power law of d−5 for all
three materials. With increasing the size parameter, however,
the size of the spheres becomes comparable to or greater
than d . As such, the sphere does not behave as a point
dipole anymore. Similar to the intermediate near-field regime,
the power of d becomes material dependent and increases
with increasing the size of the sphere. As shown in Fig. 2,
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FIG. 8. Normalized correlation function along the polar direction in the extreme near-field regime ( d
λmax

= 0.001) versus |θ2−θ1|
π

at
λ = 11 μm. (a) Normalized Wθθ , Wrr , and Wϕϕ for a SiC sphere with X = 0.002. (b) Normalized Wθθ for SiC spheres with various size
parameters. (c) Normalized Wθθ for SiC, Si, and W spheres with X = 0.2.

the energy density and its distance dependence eventually
approach those for a semi-infinite medium in the extreme near
field (d−2 for metals and d−3 for dielectrics and semicon-
ductors [1]).

The spectral energy density emitted by a SiC sphere in
the extreme near-field, intermediate near-field, and far-field
regimes is shown in Figs. 3(a)–3(c), respectively, for various
size parameters ranging from 0.002 to 5. Spheres with sizes
smaller than or comparable to the wavelength can support
LSPh modes when Re[ε] ≈ −(l + 1)/l , where l = 1, 2, 3, . . .

is the order of the mode [34]. The excitation of LSPhs
increases thermal emission resonantly resulting in sharp peaks
in the energy density. The peaks in the energy density spectra
of Fig. 3 are labeled with the order of the associated LSPh
modes. As seen from Figs. 3(a) and (3b), at a given near-field
distance, the order of the excited LSPh modes increases from
l = 1 (dipole mode) to l → � (surface phonon-polariton
mode of a semi-infinite medium) as the size parameter in-
creases from X = 0.002 to X = 5. Also, the higher-order
modes become more dominant in the energy density spectra as

X increases. However, in the far-field regime [Fig. 3(c)], the
dipole mode dominates the energy density regardless of the
size when X � 1 (i.e., when the sphere is smaller or compara-
ble to the wavelength). When X > 1, the LSPh peaks are sup-
pressed and broadened due to the retardation effects [35,36].
In addition to the LSPh modes, large electrical losses (i.e.,
large values of Im[ε]) can result in peaks in the energy density
when the sphere size is comparable to or larger than the wave-
length. The spectral energy density for the Si and W spheres
does not show any peaks and mostly follows the spectrum of a
blackbody.

IV. SPATIAL COHERENCE

The formalism developed in Sec. II is used to study the
spatial coherence of thermal radiation by a single sphere for
various materials, observation distances, and size parameters.

The correlation function matrix,
↔
W, is calculated for two

points [r1 = (r1, θ1, ϕ1) and r2 = (r2, θ2, ϕ2)] along the radial
direction, i.e., when θ1 = θ2 = θ and ϕ1 = ϕ2 = ϕ [see the
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FIG. 9. Same as Fig. 8 for the intermediate near-field regime ( d
λmax

= 0.1).

inset of Fig. 4(a)] as well as along the polar direction, i.e.,
when r1 = r2 = r and ϕ1 = ϕ2 = ϕ [see the inset of Fig. 8(a)].
The spatial correlation of thermal emission is calculated at
three observation distances (d = r1 − a) of d

λmax
= 0.001 (lo-

cated in the extreme near field), d
λmax

= 0.1 (located in the

intermediate near field), and d
λmax

= 10 (located in the far
field). While point r1 is fixed at one of these observation
locations, the distance of point r2 from r1 is increased until
the correlation function drops to negligible values. The com-
ponents of the correlation function are normalized by their
values at r1 = r2. The correlation function is first calculated
for a wavelength of λ = 11 μm at which localized surface
phonons (LSPhs) are not excited. Then, the effect of the
LSPhs on the coherence of thermal emission is discussed.

A. Spatial correlation along radial direction

Spatial correlation along the radial direction is studied in
this subsection. Because of the spherical symmetry in this
case, any arbitrary value can be assigned to θ and ϕ. In our
calculations, θ = π

2 and ϕ = 0 are selected [see the inset of
Fig. 4(a)]. It should also be mentioned that Wθθ and Wϕϕ are
equal due to spherical symmetry.

Figure 4 shows the diagonal components of the spatial cor-
relation function in the extreme near-field regime. Figure 4(a)
compares radial (Wrr) and polar (Wθθ ) components of the
correlation function for a SiC sphere with X = 0.002. The
radial and polar components are the same, and both exhibit
an extremely short spatial correlation length in the extreme
near field such that they decay rapidly within a distance of
about 0.002λ. The equality of Wθθ and Wrr are also observed
for X = 0.2 and 5 (the results are not shown). The polar
component (Wθθ ) for a SiC sphere is compared for various size
parameters in Fig. 4(b). In this region, the correlation function
of the SiC sphere with X = 0.002 is similar to that of a dipole.
The SiC spheres with X = 0.2 and 5 show larger correlation
lengths compared to the sphere with X = 0.002. The corre-
lation function for these two size parameters converge to the
one for a semi-infinite medium in the extreme near field. Still,
the spatial correlation length for spheres with X = 0.2 and 5 is
limited to a small fraction of wavelength (∼0.006λ) in the ex-
treme near field. The polar component of correlation function
for a sphere with X = 0.2 is compared for different materials
in Fig. 4(c). As seen from this figure, the spatial coherence
is material independent. To summarize, the correlation length
at the extreme near-field distances from the sphere is very
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FIG. 10. Same as Fig. 8 for the far-field regime ( d
λmax

= 10).

short (a few thousandths of a wavelength), slightly increases
with the size of the sphere, and does not depend on the
material.

Figure 5 shows the normalized correlation function in the
intermediate near field. In this regime, the polar component
of the correlation function shows a longer spatial correlation
length than the radial component for a SiC sphere with X =
0.002, as shown in Fig. 5(a). The same behavior is observed
for X = 0.2 and 5 (the results are not shown). Also, the length
of coherence in this case is on the order of ∼0.1λ which
is much longer than that in the extreme near field. Similar
to the extreme near-field region, the spatial correlation for
the sphere with X = 0.002 in the intermediate near field is
similar to the one for a dipole. However, the enhancement
of spatial correlation with increasing the size parameter is
more significant in the intermediate near field than in the
extreme near field [Fig. 5(b)], such that the spatial coher-
ence for SiC spheres with X = 5 extends to distances on
the order of a wavelength (∼λ). Also, Fig. 5(c) shows that
Si and SiC spheres with X = 0.2 exhibit the same spatial
coherence in the intermediate near field, while the correlation
function decays more rapidly for a W sphere. To summarize,

in the intermediate near field, the correlation length is signif-
icantly longer than that in the extreme near field (between
two and three orders of magnitude depending on the size
parameter). Additionally, the spatial correlation is material
dependent, and it increases with increasing the size of the
sphere.

The normalized correlation function in the far-field regime
is plotted in Fig. 6. As illustrated in Fig. 6(a), the polar
component of the correlation function is larger than the radial
component. Also, the coherence length of thermal radiation is
significantly larger than that in the intermediate and extreme
near fields, such that it extends to distances on the order of
10λ. In addition, the spatial correlation agrees with the dipole
approximation in the far field and does not vary with size
parameter [Fig. 6(b)] and material [Fig. 6(c)].

To quantify the distance up to which the thermal field is
correlated, the correlation length is calculated. The correlation
length is defined as [16]

Lcor = 2
∫ ∞

0 |Tr[
↔
W(r1, r2, ω)]|2dx

|Tr[
↔
W(r1, r1, ω)]|2

, (20)
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FIG. 11. Normalized correlation angle versus wavelength for a SiC sphere with (a) X = 0.002, (b) X = 0.02, (c) X = 0.2, and (d) X = 5.

where x = |r2 − r1|. The correlation length normalized by
the wavelength is calculated for a SiC sphere with different
size parameters in the three regimes and is plotted versus
wavelength in Fig. 7. It is observed that the correlation
length significantly increases with increasing the observation
distance from the sphere for all size parameters. In addition,
the correlation length monotonically decreases with the wave-
length in the three regimes and for all size parameters except
for a few wavelengths at which the correlation length has
local minima and maxima. The wavelengths associated with
LSPhs and large electrical losses, which result in enhanced
thermal emission as shown in Figs. 3(a)–3(c), are marked in
Figs. 7(a)–7(d). It can be seen that the excitation of the dipolar
LSPhs (l = 1) of the sphere does not affect the correlation
length while the presence of the multipolar LSPhs (l > 1)
reduces the spatial correlation in the extreme and intermediate
near fields. With increasing the size parameter, the correlation
length in the extreme and intermediate near field converges to
that for a semi-infinite medium. Furthermore, the modes re-
sulting from large losses (Im[ε] → ∞) in the sphere increase
the correlation length of the thermal field.

B. Spatial correlation along polar direction

Spatial correlation along the polar direction is studied in
this subsection. In this case, points r1 and r2 are located
at the same radial distance and azimuthal angle (i.e., r1 =
r2 = r and ϕ1 = ϕ2 = ϕ) but have different polar angles
[see the inset of Fig. 8(a)]. In the calculations, θ1 = π

2 and
ϕ = 0, and three different values of r located in the extreme
near-field, intermediate near-field, and far-field regimes are
considered.

The normalized correlation function at an extreme near-
field distance of d

λmax
= 0.001 is plotted versus |θ2−θ1|

π
in Fig. 8.

Figure 8(a) shows the diagonal components of the spatial
correlation function for a SiC sphere with X = 0.002. As seen
from this figure, the azimuthal component of the correlation
function (Wϕϕ) exhibits strong spatial coherence for all values
of |θ2−θ1|

π
, while the radial (Wrr) and polar (Wθθ ) components

decrease slowly with |θ2−θ1|
π

and become negligible at |θ2−θ1|
π

=
0.5. The effect of size parameter on Wθθ at the extreme near
field is shown in Fig. 8(b). It is seen that Wθθ decreases
significantly with increasing the size of the sphere, such that it
vanishes for the sphere with X = 5 within a separation angle
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(|θ2 − θ1|) of only about 0.01π . The same size dependence
is observed for Wrr and Wϕϕ (the results are not shown).
Figure 8(c) compares Wθθ for SiC, Si, and W spheres with
X = 0.2. This figure shows that the correlation function in
the extreme near field does not depend on the material of the
sphere. In summary, the spatial correlation in the extreme near
field decreases rapidly with increasing the size parameter and
is material independent.

The spatial coherence shows similar behavior in the in-
termediate near-field ( d

λmax
= 0.1) and far-field ( d

λmax
= 10)

regimes as shown in Figs. 9 and 10, respectively. As seen from
Figs. 9(a) and 10(a), Wϕϕ is equal to unity at all separation
angles, while Wrr and Wθθ (which are equal) slowly decrease
to zero when |θ2−θ1|

π
= 0.5. The size dependence of spatial

coherence in these two regimes is studied using Figs. 9(b) and
10(b), respectively. Unlike in the extreme near-field regime,
the spatial coherence of the SiC sphere does not drastically
decrease by increasing the size parameter in the intermediate
near-field and far-field regimes. Figures 9(c) and 10(c) com-
pare the spatial correlation for a sphere with X = 0.2 made of
SiC, Si, and W. The correlation function for the SiC sphere
is very close to that for the Si sphere, and it decreases from
1 at |θ2−θ1|

π
= 0 to 0 at |θ2−θ1|

π
= 0.5. The W sphere shows a

remarkably stronger spatial coherence along the polar angle,
such that the spatial correlation for the W sphere is almost
equal to 1 for all values of |θ2−θ1|

π
= 0. To summarize, the

spatial correlation at the intermediate near-field and far-field
distances is greater than that in the extreme near field, and it
is material dependent.

Analogous to the length of correlation, we define a corre-
lation angle for the spatial coherence as

�cor = 2
∫ π/2

0 |Tr[
↔
W(r1, r2, ω)]|2dx

|Tr[
↔
W(r1, r1, ω)]|2

, (21)

where x is defined as x = |θ2 − θ1|. The correlation angle is
plotted versus wavelength for SiC spheres with X = 0.002,
0.02, 0.2, and 5 in Figs. 11(a)–11(d), respectively. The wave-
lengths at which energy density has peaks due to the exci-
tation of LSPhs or the presence of large losses is marked in
Figs. 11(a)–11(d). It can be seen that the effect of LSPhs and
large losses on the correlation angle is the same as that on the
correlation length along the radial direction. While the dipolar

LSPhs (l = 1) do not significantly affect the correlation angle,
the multipolar LSPhs (l > 1) reduce the spatial correlation in
the extreme and intermediate near-field regimes. Additionally,
the modes due to the large losses in the sphere (Im[ε] → ∞)
increase the correlation angle in the intermediate near field.

V. CONCLUSIONS

The spectrum and spatial coherence of thermal emission
by a homogeneous and isothermal sphere were analyzed in
the extreme near-field, intermediate near-field, and far-field
regimes. The energy density and correlation function of a
sphere with an arbitrary size parameter and material were
formulated using fluctuational electrodynamics. The energy
density and spatial coherence along the radial and polar direc-
tions were studied for SiC, Si, and W spheres with X ranging
from 0.002 to 5. It was shown that the energy density follows
a power law of d−2 in the far field regardless of the size and
material of the sphere. In the near-field regime, the energy
density is governed by a power law of d−6 when X � 1 and
d
a � 1 (dipole approximation is valid). The power of d in
the near field increases with increasing X and decreasing d

a
until it eventually converges to that for a semi-infinite medium
(between d−0.5 and d−3.5 depending on material and the near-
field regime). It was also shown that the correlation length in
the radial direction increases by several orders of magnitude
from ∼0.001λ in the extreme near field to ∼0.1λ and ∼λ

in the intermediate near field and far field, respectively. The
correlation angle in the extreme near field is strongly size
dependent varying from 0.5π to 0.001π when X increases
from 0.002 to 5. In the intermediate near-field and far-field
regimes, the correlation angle has an order of magnitude of
∼0.1π . It was demonstrated that the multipolar LSPhs reduce
the spatial coherence along both radial and polar directions
in the extreme and intermediate near-field regimes, whereas
the dipolar LSPhs do not have any impacts on the spatial
coherence. The spectral and spatial properties of thermal
emission by a sphere are of great importance since spheres
are the building blocks for many manmade materials.
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