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Theory of neutron diffraction on traveling and standing surface acoustic waves (SAWs) is considered. Results
of experiment on observation of neutron diffraction by a SAW traveling both along and against the direction of
a neutron wave, as well as a standing SAW, are presented. The experimental results are mostly consistent with
theoretical predictions.
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I. INTRODUCTION

Unlike conventional acousto-optics, the history of which
dates back almost 90 years [1–5], x-ray [6–9] and neutron
[10–14] acousto-optics arose half a century later. In neutron
experiments, similar to x-ray experiments, Bragg diffraction
on an ultrasound (US) excited crystal was initially investi-
gated. Later these experiments were complemented by studies
of influence of acoustic waves excited on the surface of a
crystal on Bragg diffraction of neutrons [15–17].

As for neutron diffraction on a surface wave itself, the
possibility of existence of this phenomenon was first dis-
cussed in Ref. [18] as a possible reason for inelastic neutron
scattering, which leads to a decrease in the storage time
of ultracold neutrons (UCNs) in traps. The first—and until
recently, only—experiment [19] on the observation of neutron
diffraction by traveling surface acoustic wave (SAW) was
carried out much later. In Ref. [20], neutron diffraction on
acoustic wave traveling on the surface of a thin film was
considered as a possible method for studying the properties
of such films. Theoretical consideration of inelastic scattering
of UCNs by waves traveling along the surface of a liquid has
been the subject of papers [21,22].

Unlike electromagnetic waves with velocities of many
orders of magnitude higher than the velocity of a SAW,
velocity of thermal and cold neutrons is usually several times
lower than the velocity of a SAW. In the case of the slowest
UCNs, difference in the velocities of US and neutron waves is
already several orders of magnitude. In this sense, physics of
neutron diffraction on US is very similar to the repeatedly ob-
served phenomenon of neutron diffraction on moving gratings
[23–25].

This work is devoted to the theoretical and experimental
study of neutron diffraction by SAW. A new appeal to this

problem is related to several circumstances. First, during
the time since the experiment [19], a significant progress in
neutron technique was achieved, thus allowing us to study
the phenomenon with better accuracy and in wide ranges of
neutron wavelengths and ultrasonic wave frequencies.

The second important circumstance is the desire to expand
the range of the studied phenomena and, in addition to diffrac-
tion by traveling SAWs, also observe diffraction on standing
waves. In the latter case, we deal with a nonstationary quan-
tum phenomenon of reflection from an oscillating potential,
very close to the previously observed reflection of neutrons
from a vibrating mirror [26].

It is known that in the SAW diffraction, the amplitude of
the first diffraction order essentially depends on the value of
the normal component of the wave vector in the substance
on the surface of which the wave runs [19]. This amplitude
is determined by Fresnel formulas and the dispersion law of
neutrons in the substance. However, when a Rayleigh wave
is excited on the surface of the substrate, a sufficiently thick
layer of matter is involved in the vibrational motion, the
thickness of which is of the order of the SAW wavelength.
For the typical values of frequency and amplitude of the
ultrasonic wave, the atoms in this layer move with alternating
acceleration with a magnitude reaching values of the order
of 108 m/s2. Therefore, measurement of the amplitudes of
diffraction orders can provide information on the dispersion
law of neutron waves in matter moving with giant acceleration
[27,28].

II. NEUTRON DIFFRACTION BY SURFACE
WAVES. THEORY

Everywhere below, we will talk about diffraction of cold
neutrons with a wavelength of several angstroms on surface
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FIG. 1. Sketch of a neutron diffraction on a stationary harmonic
grating.

waves generated on the surface of a substance. It is assumed
that neutrons incident on the surface of the medium at a
sufficiently small angle θ , so the intensity of the reflected
waves can be measured. The smallness of the angle and a
certain orientation of the surface relative to the crystallo-
graphic axes of the sample makes it impossible to fulfill the
Bragg condition, which allows one to completely ignore the
internal structure of the substance and consider the medium as
homogeneous. It is known that the dispersion law of neutron
waves in matter with good accuracy satisfies the equation

k2 = k2
0 − 4πρb, (1)

where k and k0 are wave numbers in medium and vacuum,
respectively, ρ is the number of nuclei per unit volume, and
b is the average bound coherent scattering (see Ref. [29]).
In the case of b = const, a similar relation takes place for
the components of wave vectors normal to the surface of the
medium k⊥ and k0⊥ [30]. When k0⊥ = k0 sin θ � √

4πρb, a
total external reflection takes place.

In previous works devoted to neutron diffraction on a
traveling wave [18,19] or on a moving grating [23–25], the
study was conducted in the rest system of the structure with
the subsequent transformation of the resulting wave function
into a laboratory coordinate system. As it will be shown
below, it is not necessary at all to resort to a transition to a
moving coordinate system to find a solution of the problem of
nonstationary diffraction on a traveling or standing wave.

From a methodological point of view, it seems useful to
start by solving a stationary problem in which the surface of
a substance has a sinusoidal shape. In the next two sections,
we will move on to the case of traveling and standing acoustic
waves.

A. Diffraction on a surface with harmonic profile

Let us consider a homogeneous medium characterized by a
certain scattering length density ρb, which corresponds to the
critical wave number kb = √

4πρb. The surface profile of the
medium is defined by a periodic harmonic function:

zS (x) = a sin(Qx). (2)

The x axis is directed along the averaged surface and the
z axis is directed normal to it into the interior of the medium
(Fig. 1). The sinusoidal shape of the surface Eq. (2) forms a
harmonic diffraction grating with a spatial period � along the

x axis, with Q = 2π/� being the minimum modulus of the
reciprocal lattice vector.

A plain monochromatic neutron wave �0(x, z, t ) with
wave vector k0, projections k0x = k0 cos θ0, k0z = k0 sin θ0,
and energy E0 = h̄ω0 = h̄2k2

0/2M, where M is the neutron
mass, is incident on the vacuum-medium interface at an angle
θ0 to the average surface:

�0(x, z, t ) = exp(ik0xx + ik0zz − iω0t ). (3)

As a result of diffraction on the grating, a set of diffracted
plane waves with wave vectors kn and amplitudes rn is formed
in the upper half-space (z � zS). Here n = 0,±1,±2, .. are
the numbers of diffraction orders. Similarly, a set of transmit-
ted (diffracted) waves with wave vectors qn and amplitudes
tn (Fig. 1) is formed in the lower half-space (z > zS). The
reflected and transmitted wave functions can be written as

�R(x, z, t ) =
∞∑

n=−∞
rn exp(iknxx − iknzz − iω0t ), (4a)

�T (x, z, t ) =
∞∑

n=−∞
tn exp(iqnxx + iqnzz − iω0t ), (4b)

where

knz = (
k2

0 − k2
nx

)1/2
, qnz = (

k2
nz − k2

b

)1/2
. (5)

In relations Eq. (5), the continuity condition for the tan-
gential components of the wave vectors qnx = knx is used.
The unknown quantities to be found are rn, knx, knz, and tn,
qnz. They can be obtained from the continuity conditions of
wave functions and their normal derivatives on the surface
z = zS (x):

�0(x, zS, t ) + �R(x, zS, t ) = �T (x, zS, t ), (6a)

d

dz
�0(x, z, t )z=zS + d

dz
�R(x, z, t )z=zS

= d

dz
�T (x, z, t )z=zS . (6b)

Formula Eq. (6b) is approximate. It is more correct to write
it taking into account the calculation of the derivative normal
to the surface at each local point (x, zS), which does not
coincide exactly with the normal derivative to the “average”
surface, i.e., along the z axis (see Ref. [31] for more details).
However, such an approximation is justified if the grating is
fairly smooth, i.e., the depth of its profile is much less than
the period: a � �. In the experiments described below, a ∼
10–20 Å, and � ≈ 50 μm.

Due to the stationarity of the problem, all waves have
the same frequency ω0, so in the further calculations of this
section we will omit the term iω0t in exponents Eqs. (3) and
(4), being interested only in the coordinate parts of the wave
functions. The wave function of incident neutrons Eq. (3) on
the surface of a medium with a sinusoidal profile Eq. (2) has
the form

�0(x, zS ) = exp(ik0xx) × exp[ik0za sin(Qx)]. (7)

Let us use a well-known relation to decompose the ex-
ponent of a special kind over Bessel functions of the first
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kind:

exp(iβ sin ϕ) =
∞∑

m=−∞
Jm(β ) exp(imϕ). (8)

Then

�0(x, zS ) =
∞∑

m=−∞
Jm(k0za) exp[i(k0x + mQ)x]. (9)

Thus, a plane monochromatic wave Eq. (3) incident on a
periodically deformed surface is represented by the sum of
plane waves Eq. (9) with amplitudes Jm and x projections of
wave vectors kmx = k0x + mQ. Similarly, the wave functions
of diffracted waves Eqs. (4) in the upper half-space and in the
medium can be represented as

�R(x, zS ) =
∑

n

∑
m′

rnJm′ (−knza) exp[i(knx + m′Q)x],

(10a)

�T (x, zS ) =
∑

n

∑
m′

tnJm′ (qnza) exp[i(knx + m′Q)x]. (10b)

Inserting relations Eqs. (9) and (10) into Eq. (6a), we write
the first continuity equation:

∞∑
m=−∞

Jm(k0za) exp[i(k0x + mQ)x]

+
∑

n

∑
m′

rnJm′ (−knza) exp[i(knx + m′Q)x]

=
∑

n

∑
m′

tnJm′ (qnza) exp[i(knx + m′Q)x]. (11)

Let us take into account that the boundary condition
Eq. (11) must be satisfied at any point x on the surface.
Hence it follows that k0x + mQ = knx + m′Q or knx = k0x +
(m − m′)Q. Since the difference of integers is also an integer,
by introducing the notation n = m − m′ and replacing the
summation index m′ = m − n in Eq. (11), we obtain

knx = k0 cos θn = k0x + nQ, (12)

where n and θn are diffraction order and angle, correspond-
ingly. In what follows, we restrict ourselves to considering
such quantities nQ in Eq. (12) so |knx| < k0, and, hence,
Im(knz ) = 0. Reducing exponentials in Eq. (11) with the same
exponents, we obtain the relation

Jm(k0za) +
∑

n

rnJm−n(−knza) =
∑

n

tnJm−n(qnza). (13a)

Similarly, from Eqs. (6b), (9), and (10), it follows that

k0zJm(k0za) −
∑

n

rnknzJm−n(−knza) =
∑

n

tnqnzJm−n(qnza).

(13b)

The system of equations Eqs. (13a) and (13b) determines a
solution for the amplitudes of diffraction orders rn and tn.

Significant simplification and simple analytical solutions
are obtained in the case usually realized in experiment, small
arguments ξ � 1 of Bessel function Jn(ξ ):

J0(ξ ) ≈ 1, J1(±ξ ) ≈ ±ξ/2, J−1(±ξ ) ≈ ∓ξ/2. (14)

In this case, it is sufficient to confine ourselves to the
terms with n = 0,±1 in Eq. (13) and consider the cases with
m = 0,±1, neglecting members of higher orders of smallness
r±1J±1, t±1J±1, J±2, and so on.

(a) Case m = 0. Equations (13a) and (13b) in approxima-
tion Eq. (14) immediately lead to relations

1 + r0 = t0, k0z(1 − r0) = q0zt0, (15)

from which, for zero-order amplitudes, we obtain the well-
known Fresnel formulas for the reflection and refraction of
waves from a flat surface:

r0 = k0z − q0z

k0z + q0z
, t0 = 2k0z

k0z + q0z
, (16)

where q0z = (k2
0z − k2

b )1/2.
(b) Case m = 1. From Eq. (13a), it follows:

k0za(1 − r0)/2 + r1 = q0zat0/2 + t1. (17)

Taking into account the second expression in Eq. (15), one
obtains r1 = t1.

Similarly, from the continuity condition for the derivatives
Eq. (13b), taking into account expansion Eq. (14), we obtain

k2
0za(1 + r0)/2 − k1zr1 = q2

0zat0/2 + q1zt1, (18)

whence, after taking into account the relations 1 + r0 = t0
Eq. (15) and r1 = t1, we arrive at the expression for the
first-order diffraction reflection amplitude:

r1 = k0za
k0z − q0z

k1z + q1z
, (19)

where k1z = (k2
0z − 2k0xQ)1/2, q1z = (k2

0z − 2k0xQ − k2
b )1/2.

Hereinafter, we neglect the small quadratic terms ∼Q2, which
is justified for Q � k0x.

(c) Case m = −1. Quite similarly to the previous calcula-
tions, we obtain for the amplitudes of diffraction waves of the
minus first-order r−1 = t−1, and

r−1 = −k0za
k0z − q0z

k−1z + q−1z
, (20)

where k−1z = (k2
0z + 2k0xQ)1/2, q−1z = (k2

0z + 2k0xQ −
k2

b )1/2.
One should bear in mind that since the integral neutron flux

depends on the ratio between the angles of the incident and
diffracted waves, the intensity of the corresponding waves,
proportional to the flux density, is not equal to the square
of the wave amplitude modulus. Therefore, the reflection and
transmission coefficients have the form

Rn = knz

k0z
|rn|2, Tn = Re(qnz )

k0z
|tn|2. (21)

It is also useful to determine angular distribution of
diffracted waves. Taking into account the invariance of the to-
tal wave number, it is easy to obtain the following expressions
for diffraction angles from relation Eq. (12) (see also Fig. 1):

sin2 θn = sin2 θ0 − 2k0xnQ

k2
0

− n2Q2

k2
0

, (22a)

θ2
n

∼= θ2
0 − 2nQ/k0. (22b)
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B. Diffraction on a traveling surface acoustic wave

Having obtained in the previous Sec. II A the relations for
neutron diffraction by a static wave, it is easy to modify these
results for the case of a traveling SAW. The equation of the
surface of the medium along which acoustic wave runs now
has the following form:

zS (x, t ) = a sin(sQx − �t ), (23)

where � = 2π/T = 2πV/� is the frequency, Q = 2π/� =
�/V is the wave vector length, V is the velocity, and � is the
wavelength (spatial period) of the acoustic wave. The index
s in Eq. (23) determines direction of the traveling wave: s =
+1, if the wave runs in positive direction of the x axis, and
s = −1 for the negative case.

Reflected and transmitted diffracted waves of different
orders now possess different frequencies:

�R(x, z, t ) =
∞∑

n=−∞
rn exp(iknxx − iknzz − iωnt ), (24a)

�T (x, z, t ) =
∞∑

n=−∞
tn exp(iknxx + iqnzz − iωnt ). (24b)

The time dependence of the wave functions appearing here
requires taking it into account when writing the continuity
Eqs. (6). Having written down the boundary condition for the
incident wave on the surface of the medium, and using as
above expansion Eq. (8), we obtain instead of Eq. (9)

�0(x, zS, t ) =
∞∑

m=−∞
Jm(k0za) exp(ikmxx − iωmt ), (25)

where now kmx = k0x + smQ, ωm = ω0 + m�.
Thus, on an oscillating interface with a traveling SAW,

the incident plane wave takes the form of a sum of plane
waves not only with different amplitudes Jm and x projections
of wave vectors kmx, but also with different frequencies ωm.
In addition, projections of wave vectors also depend on the
parameter s, i.e., on the direction of the surface wave propa-
gation.

The further solution is quite similar to that described in the
previous section. Instead of expression Eq. (12), the relation
obtained after replacing the summation index now has the
form

knx = k0x + s(m − m′)Q = k0x + snQ. (26)

This should be supplemented with a similar expression for
frequencies

ωn = ω0 + (m − m′)� = ω0 + n�. (27)

The continuity equations on the interface zS = zS (x, t ) have
the same form as Eqs. (13), however, the z components of the
wave vectors in this expression now have the other form. Let
us consider this question in more detail.

From Eq. (27), we can obtain an explicit form for the
squares of the modules of wave vectors of different orders.
Indeed, the total energy of neutrons is h̄ωn = h̄2k2

n/2M. From
here, after simple transformations, we get

k2
n = 2M

h̄2 [h̄(ω0 + n�)] = k2
0 + 2nQkV , (28)

where kV = MV/h̄, which is formally equal to the magni-
tude of the wave vector of a neutron moving with a speed
of V . Knowing the values of the squared wave vectors of
diffracted waves in the upper hemisphere Eq. (28) and their
x-projections Eq. (26), it is easy to obtain expressions for their
z projections:

k2
nz = k2

n − k2
nx = k2

0z + 2nQ(kV − sk0x ) − n2Q2. (29)

The squared modules of the wave vectors in the medium
differ from vacuum values on k2

b = 4πρb, hence

q2
nz = k2

0z + 2nQ(kV − sk0x ) − n2Q2 − k2
b . (30)

Having thus determined the values of the z projections
of the wave vectors, we can now calculate the amplitudes
rn, tn, reflectivities Rn, and transmittances Tn Eqs. (21) of the
diffracted waves. In the case of small SAW amplitudes, when
expansions Eq. (14) are valid, we obtain for the amplitudes
of waves of n = 0,±1 diffraction orders the same relations
Eqs. (16), (19), and (20) as in the case of a stationary grating,
corrected, however, with new expressions for knz Eq. (29)
and qnz Eq. (30). Reflectivities for the first three orders,
which were experimentally measured in the present paper (see
Sec. III), have the following form:

R0 =
∣∣∣∣k0z − q0z

k0z + q0z

∣∣∣∣
2

, R±1 = k0zk±1za
2

∣∣∣∣ k0z − q0z

k±1z + q±1z

∣∣∣∣
2

. (31)

Equations (31) coincide with expressions Eqs. (11a) and
(11b) of Ref. [19].

Knowing the squares of the modules of wave vectors
Eq. (28) and their z-projections knz = kn sin θn Eq. (29), it is
easy to find diffraction angles θn. Given the smallness of the
wave vector Q and all diffraction angles, we obtain

θ2
n ≈ θ2

0 + 2
nQ

k0

(
kV

k0
− s

)
. (32)

A comparison of relations Eqs. (32) and (22) shows that if,
for the case of ordinary diffraction, the angle θn < θ0 for n >

0, then for the diffraction on a moving structure, the sign of
the deviation of the diffraction order from a specular reflected
zero-order wave depends also on the sign of the expression
[(kV /k0) − s].

In experiments on the diffraction of thermal neutrons on a
traveling surface wave kV > k0, the sign of deviation of the
n-order wave from the specular one is opposite to what takes
place in conventional diffraction at both possible values of the
parameter s.

C. Diffraction on a standing surface acoustic wave

The surface profile of the medium excited by a standing
SAW can be defined as follows:

zS (x, t ) = a1 sin(Qx − �t ) + a2 sin(−Qx − �t )

≡ a1 sin(Qx − �t ) − a2 sin(Qx + �t ), (33)

where a1,2 are the amplitudes of counterdirected surface
waves with wave vectors ±Q and frequency �.

Let us consider the boundary condition for a plane
monochromatic wave Eq. (3) incident on the vacuum/medium
interface excited by a standing SAW. On the interface z = zS ,
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the wave function Eq. (3) will take the following explicit form:
�0(x, zS, t ) = exp(ik0xx − iω0t )

× exp[ik0za1 sin(Qx − �t )]

× exp[−ik0za2 sin(Qx + �t )]. (34)
Using, as above, the expansion Eq. (8) of the exp(iβ sin ϕ)-

type exponent in a series in Bessel functions, we write relation
Eq. (34) as follows:
�0(x, zS, t ) = exp(ik0xx − iω0t )

×
( ∞∑

m=−∞
Jm(k0za1) exp[im(Qx − �t )]

)

×
( ∞∑

m′=−∞
Jm′ (−k0za2) exp[im′(Qx + �t )]

)
.

(35)

Expression for the derivative ∂�0(x, z, t )/∂z|z=zS on the
interface differs from formula Eq. (35) only by a factor
ik0z.

In contrast to the case of traveling SAW Eq. (25), where
one sum appeared over the Bessel functions, in Eq. (35)
there is a product of the sums, i.e., double sum over m
and m′, and subsequent calculations become more cumber-
some. Therefore, we will initially proceed from assumption
that the arguments of the Bessel functions kmza1,2 � 1 and
qmza1,2 � 1 are small both in Eq. (35) and in the expressions
for wave functions �R,T (x, zS, t ). In addition, we restrict
ourselves to the analysis of only zero and plus/minus first
orders, i.e., m, m′ = 0,±1. From Eq. (35), it follows that
the function �0(x, zS, t ) has, in this case, a form of nine
terms, of which only five have a nonvanishing order of
smallness:

�0(x, zS, t ) = J0(k0za1)J0(−k0za2) exp(ik0xx − iω0t ) + J−1(k0za1)J0(−k0za2) exp[i(k0x − Q)x − i(ω0 − �)t]

+ J0(k0za1)J−1(−k0za2) exp[i(k0x − Q)x − i(ω0 + �)t] + J0(k0za1)J1(−k0za2) exp[i(k0x + Q)x − i(ω0 − �)t]

+ J1(k0za1)J0(−k0za2) exp[i(k0x + Q)x − i(ω0 + �)t]. (36)

Thus, the incident and diffracted waves at the interface
are superpositions of five plane waves with the following
projections of wave vectors and frequencies:

knx = k0x + nQ, (37a)

ωm = ω0 + mQ, (37b)

where n, m = 0,±1. There are certain restrictions on the
possible values of the indices n and m. So, for the specular
reflection (n = 0) the frequency index m in Eq. (37b) can not
be equal to +1 or −1. For elastic scattering (m = 0), the index
n in the x projection of the wave vector Eq. (37a) in the frame
of this first-order approximation of smallness cannot be equal
to +1 or −1.

Having set one of the amplitudes a1 or a2 in Eq. (36) to
zero, it is easy to show that we automatically come to the
case of the considered above traveling SAW Eq. (25) with
either s = +1 (for a2 = 0) or s = −1 (for a1 = 0). In the
case of standing wave Eq. (36), compared to, e.g., traveling to
the right wave (s = +1), is characterized by the appearance
of two new waves with exponents exp(ik1xx − iω−1t ) and
exp(ik−1xx − iω1t ).

It is obvious that the diffracted waves are characterized, as
before, by a discrete spectrum of frequencies ωm = ω0 + m�

that determine the magnitude of the wave vectors of corre-
sponding waves. For the reflected waves, they are defined by
obvious relation k2

m = (2M/h̄)ωm Eq. (28). The wave number
(wave vector length) depends only on one index m. If we
restrict ourself to m = 0,±1 orders, there are three such wave
numbers. At the same time, the x projections of the wave
vectors of the diffracted waves are determined by the relation
Eq. (37a) and they depend on the index n. Therefore, from
what has been said above about the expansion of the incident
wave, it follows that there will be five z projections of the
wave vectors, and hence the diffraction angles. Qualitatively,

this is easy to understand from Eq. (29), which determines
the z-projections knz of the waves diffracted on a traveling
wave. In addition to the diffraction order n, it also depends
on a parameter s that determines the direction of the SAW
propagation. In the considered case, a standing acoustic wave
Eq. (33) is a superposition of two counterpropagating waves.
Hence, for the description of the z projections of the wave
vectors of diffracted waves above and below the interface, we
will use in the following expressions, depending on the indices
n and m,

knz ≡ kn,m = (
k2

m − k2
nx

)1/2

= [
k2

0z + 2Q(mkV − nk0x )
]1/2

, (38a)

qnz ≡ qn,m = (
k2

n,m − k2
b

)1/2
, (38b)

where we neglected the small quadratic terms n2Q2. Here,
a combination of indices (n, m) are the following: (0,0),
(−1,−1), (−1,+1), (+1,−1), (1,1). It is easy to see that for
the specular reflection, k0,0 ≡ k0z and q0,0 ≡ q0z.

Knowledge of the magnitudes of wave vectors in vac-
uum km = k0 + mkV Q/k0 [see Eq. (28)] and corresponding
x-projections knx Eq. (37a) allows for determination of the
diffraction angles from the expression

km cos θn,m = k0 cos θ0 + nQ. (39)

From this, for small diffraction angles, it is easy to obtain
following expression for squares of diffraction angles:

θ2
n,m ≈ θ2

0 + 2Q

k0

(
m

kV

k0
− n

)
. (40)

The resulting diffraction pattern is illustrated by Fig. 2,
where incident plane wave with wave vector k0 as well
as all possible wave vectors kn,m are schematically shown.
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FIG. 2. The outer (red) and inner (blue) circles correspond to
neutrons with energies ω1 = ω0 + � and ω−1 = ω0 − �, respec-
tively. Here ω0 is the energy of incoming neutrons. Arrows indicate
wave vectors kn,m of reflected neutrons and x-projections k0x and
k0x ± Q are shown.

The amplitudes of the counterpropagating SAWs a1,2, on
which the given amplitudes of the reflected waves depend,
are shown in parentheses next to them. Figure 2 shows that
for kV > k0, which, as a rule, is true in neutron experiments,
the diffraction angles θn,m increase in the following order:
θ1,−1, θ−1,−1, θ0,0 = θ0, θ1,1, θ−1,1.

In the above notation, the wave functions of reflected and
transmitted waves are as follows:

�R(x, z, t ) =
∑

n

∑
m

rn,m exp(iknxx − ikn,mz − iωmt ), (41a)

�T (x, z, t ) =
∑

n

∑
m

tn,m exp(iknxx + iqn,mz − iωmt ). (41b)

Having written down the wave functions and their deriva-
tives at the interface z = zS (x, t ), and using, as above, the
expansion of the exponents of the form exp(iβ sin ϕ) in series
Eq. (8) in terms of the Bessel functions, we arrive at a system
of equations that determine the wave amplitudes rn,m and tn,m.
Considering only zero and plus or minus first orders when
solving this system, we obtain the following results for the
reflection coefficients of the corresponding orders:

R0,0 =
∣∣∣∣k0z − q0z

k0z + q0z

∣∣∣∣
2

, T0,0 =
∣∣∣∣ 2k0z

k0z + q0z

∣∣∣∣
2

, (42a)

Rn,m = k0zkn,ma2
n,m

∣∣∣∣ k0z − q0z

kn,m + qn,m

∣∣∣∣
2

, (n, m = ±1), (42b)

where kn,m and qn,m are defined in Eqs. (38), an,m = a1 for
n = m and an,m = a2 for n = −m.

We note here following important circumstance: If n = m,
then an,m = a1 and the reflection amplitudes rn,n depend only
on the SAW amplitude a1 and are completely independent
of the amplitude a2 of the counterpropagating wave. The
opposite situation takes place for n = −m. In other words,
each of these reflection amplitudes is absolutely insensitive to
the presence or absence of a standing SAW. For appearance of
these waves, only the presence of a traveling SAW in a certain
direction along the surface is necessary.

The general result is that the solution to the problem of
neutron diffraction by a standing acoustic wave is the sum of
the solutions for two SAWs traveling in the opposite direc-
tions. It seems, however, that the mere fact of representing
the equation of the surface of the medium as a superposition
of two counterpropagating waves is not enough for the result
to be a sum of solutions. The determining factor here is our
initial approximation of the smallness of the amplitude of
the surface vibration, which allows us to confine ourselves to
considering waves of only zero and first orders.

To illustrate this statement, we turn to the expansion
Eq. (35) of the incident wave on the oscillating surface
Eq. (33). Among the nine terms discussed above, there is, e.g.,
a term with phase φ = (k0x + 2Q)x − ω0t , describing elastic
scattering but with a change in the projection of the wave
vector on 2Q. This term with amplitude J1(k0za1)J1(−k0za2)
has an interference nature, though was discarded by us due to
the second-order smallness.

The second important circumstance is that the smallness of
the SAW amplitudes allowed us to confine ourselves to the
kinematic approximation, in which all diffraction orders do
not interact with each other and are independent. In the case
of a sufficiently “thick” grating, a dynamic approach to the
description of diffraction is required, in which the diffraction
orders are coupled. Such a case was considered in Ref. [32].

III. NEUTRON DIFFRACTION BY SURFACE
WAVES. EXPERIMENT

A. Measurement procedure and raw data treatment

The experiment was performed at the NREX reflectome-
ter of the FRM II reactor (Garching, Germany) [33] with
monochromatic (wavelength 4.3 Å with relative wavelength
resolution 2%) neutron having angular divergence of 0.04◦. A
YZ cut of a lithium niobate crystal (LiNbO3) with dimensions
60 x 20 x 3 mm3 was used as a sample. Two interdigital
transducers (IDTs) with an aperture of 5 mm were fabricated
by photolithography on the crystal surface. The IDTs allow
one to excite a SAW with a wavelength of � = 50 μm
and resonant frequency f = 69.8 MHz. In the YZ cut of
LiNbO3 crystal, a SAW propagates along the polar axis Z
with a velocity of V = 3488 m/s. During experiment, a
high-frequency electrical signal was supplied to one of the two
or both IDTs. In the first case, a SAW was excited propagating
almost along the neutron beam incident on the sample at a
grazing angle (s = 1). When voltage was supplied to another
IDT, a wave was excited in the opposite direction compared
to the first case (s = −1). To excite a standing surface wave
on the sample surface, a voltage was supplied synchronously
to both IDTs. The distance from the IDT to the edges of
the sample was 3–4 mm, so the area of the sample occupied
by SAW was 53 x 5mm2. To be sure that we illuminate
only the area with the SAW, a cadmium diaphragm with a
5-mm-wide slit was installed at the front end of the sample
with respect to the beam. The back end of the sample was
covered with a cadmium plate. In the experiment, we used
a position-sensitive detector [33] to measure angular distri-
bution of neutron intensity scattered from the sample surface
at a set of incident angles θ0. For every θ0, the detector was
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FIG. 3. Two-dimensional scattering map without US wave (a) and with s=-1 wave (b).

set to 2θ0, so the beam corresponding to specular reflection
always fell in the same region of the detector (so-called θ/2θ

geometry). The scattering angles θref were then calculated
using the sample-detector distance (2500 mm) and distance
between two position channels (1 mm) with accuracy of 1.24
arcmin, which later was taken into account in data treatment.

The aim of processing the experimental data was to deter-
mine the amplitudes and angles of diffracted waves. The raw
data were two-dimensional arrays, the visual representation of
which (two-dimensional scattering map) is shown in Fig. 3.
Each element of the array contains the number of detector
counts corresponding to a certain reflection angle for a given
angle of the incident beam. Figure 3(a) presents data obtained
in the absence of ultrasonic waves. Three bright bands are
clearly visible on it, corresponding to a direct beam partially
blocked by a beamstop a specularly reflected beam and a beam
caused by off-specular scattering due to the surface roughness
with a maximum near the critical angle (Yoneda scattering
[34]). In the presence of ultrasonic waves [Fig. 3(b)], this pic-
ture is supplemented by two bands, which are due to neutron
diffraction by the SAW. All reflected beams are characterized
by some, generally speaking, asymmetric, angular distribu-
tion. As for the specularly reflected beam, its angular distribu-
tion is determined by the conditions of formation of the inci-
dent beam, including the design of the crystal monochromator,
the geometry and physical features of the forming slits, and so
on. Upon reflection, an additional distortion of the beam shape
arises due to the nonideal flatness of the sample. Apparently,
the only way to find the angular distance between the specular
and diffracted beams is to calculate the difference between
the positions of the model functions that describe well the
physical angular distribution of the beams. In this case, one
has to make an assumption that the shape of all the beams is
completely identical. This assumption is not only natural, but,
apparently, the only possible one, since otherwise the concept
of the angular distance between extended and asymmetric
beams is uncertain. Moreover, the only requirement for these
fitting functions is a good description of the initial angular

distributions. There is probably a sufficiently large variety of
such model functions, the choice between which is to some
extent arbitrary. The specific form of these functions should
not be given any physical meaning.

To analyze data without a SAW, a fitting function of the
following form was used:

f0(x, x0J , AJ , σJ , μ) = y0 + FD(AD, x, x0D, σ1D, σ2D)

+ FR(AR, x, x0R, μ, σ1R, σ2R)

+ FY (AY , x, x0Y , σY ), (43)

where

FD(AD, x, x0D, σ1D, σ2D)

=
⎧⎨
⎩

AD exp
[
− (x−x0D )2

2σ 2
1D

]
, x � x0D

AD exp
[
− (x−x0D )2

2σ 2
2D

]
, x > x0D,

(44a)

FR(AR, x, x0R, σ1R, σ2R)

= μAR

(
2

π

)
σ1R

(x − x0R)2 + σ 2
1R

+(1 − μ)AR exp

[
− (x − x0R)2

2σ 2
2R

]
, (44b)

FY (AY , x, x0Y , σY )

= AY

(
2

π

)
σY

(x − x0Y )2 + σ 2
Y

. (44c)

Here symbols J = D, R,Y stand for direct (D), reflected
(R) beams, and Yoneda (Y ) peak; x0J is the positions of a peak
with an amplitude AJ and width σ1J , σ2J , and σY , μ is the
weight coefficient of the mixed Gauss-Lorentz distribution.

When analyzing the data obtained in the presence of a
traveling SAW, the fitting function was supplemented by two
terms F±1 corresponding to diffracted waves of the ±1 order.
The shape of the latter was assumed to be identical to the
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(a) (b)

(c) (d)

FIG. 4. Intensity as a function of reflection angle for incidence angles of 0.31(a), 0.51(b), 0.56(c) and 0.64(d) degrees. Dashed curves are
approximating functions (44), points are experiment.

shape of the peak of the specularly reflected beam:

fAW (x, x0J , AJ , σJ , μ) = y0 + FD(AD, x, x0D, σ1D, σ2D)

+ FR(AR, x, x0R, μ, σ1R, σ2R)

+ FY (AY , x, x0Y , σY )

+ F+1(A+1, x, x0,+1, μ, σ1R, σ2R)

+ F−1(A−1, x, x0,−1, μ, σ1R, σ2R).

(45)

In this case, the free parameters were the amplitudes of the
specular and diffracted beams and their positions x0,±1. In the
case of a standing wave, there were three such functions (see
below).

For each of the three experiments, with a SAW running in
two directions, and with a standing wave, the treatment proce-
dure was repeated again. A complete measurement cycle with
waves traveling in two directions and with a standing wave
was carried out twice with slightly different amplitudes of the
US wave. The results obtained in these measurements are very
similar and the demonstration material below refers to only
one of these series. Examples of the obtained dependencies of
the counting rate on the channel number for the case when the

US wave propagated toward the neutron beam (s = −1) are
shown in Fig. 4.

B. Diffraction angles

The experimental data obtained as a result of the analysis
procedure described above were compared with the results of
calculations by formula Eq. (32). In the figures below, the
calculation results are shown by solid lines. Figure 5 shows
the results obtained in the traveling SAW mode.

In the case of excitation of a standing SAW, four beams
were recorded in both measurements, including a specular
beam. However, the beam with n = +1, m = +1 was not
detected during the experiment. The position of the remaining
three beams is in satisfactory agreement with calculation
Eq. (40) (see Fig. 6).

It can be seen that the positions of the diffraction peaks
are in a good agreement with the calculated values, and the
diffraction pattern arising from neutron diffraction by stand-
ing waves generally corresponds to the concept of additivity
of the diffraction pattern for two SAWs traveling in opposite
directions. An unexpected result consists of the appearance of
the so-called “anomalous” wave corresponding to the opposite
direction of propagation of the ultrasonic wave [lower curve
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FIG. 5. Angular distributions of diffracted beams depending on the incident angle for the s = +1 (a) and s = −1 (b) case. Fit and
experiments are shown by solid lines and dots. The index s of the direction of propagation of the SAW and order of reflection n are shown in
parentheses in form (s, n).

in Fig. 5(a)]. With regard to the absence of the beam with n =
+1, m = +1 during diffraction on a standing wave (Fig. 6),
it seems that it was not detected by the applied processing
procedure (see the discussion in Sec. III D below).

C. Intensity of diffracted waves

Since a SAW amplitude a was not measured at the exper-
iment, we fitted this parameter to the experimental data. The
calculations were carried out in the first order of smallness
of the parameter k0za, where k0z is the normal component
of the wave vector of incident neutrons. The intensity of the
specularly reflected beam (zero-order wave) was used as a
monitor; therefore, all experimental and theoretical results
were presented as the ratio of the intensity of the wave of
the corresponding order to the intensity of the specular beam
I±1(k0z ) = R±1(k0z )/R0(k0z ) [see expressions Eqs. (31)]. As a
result of the fit, we obtained a = 21 Å (s = +1), a = 22 Å

FIG. 6. Angular distributions of diffracted beams depending on
the incident angle for the case of standing SAW. Fit and experimental
data are shown by solid lines and dots. The order of reflection n and
index m are shown in parentheses in form (n, m).

(s = −1) for the traveling SAW (Fig. 7) and a = 13 Å for the
case of standing SAW (Fig. 8).

As it follows from Fig. 7, these amplitudes allow for
satisfactory agreement of data with the calculation for the case
of “normal” waves. As for the “anomalous” wave, convention-
ally indicated in Fig. 6 as (1, −1), then we will address the
question of its amplitude below (see Sec. III D).

In the measurements with a traveling wave (Fig. 7), the
dependence of the intensity on the incident angle for “normal”
waves was in satisfactory agreement with the calculation.
Similar agreement was obtained also for the case of standing
wave (Fig. 8), though some discrepancy was observed in the
behavior of the “tails” of minus one order for high incidence
angle. In this case, two moments should be taken into account.
First, in the conditions of traveling and standing waves, the
intensities of the corresponding orders differed about three
times, which made it difficult to analyze the picture with
standing waves. Second, as can be seen in Fig. 6, with an
increase in the incident angle, not only does the absolute
intensity of the wave of the corresponding order decrease, but
also the angular distance between adjacent beams decreases,
which also increases the analysis error.

D. Discussion of experimental results

The main experimental results can be summarized as
follows:

(1) The angular position of the beams of all diffraction
orders is in satisfactory agreement with the theory.

(2) The dependence of the intensity of diffracted waves on
the incidence angle is in good agreement with the calculation
performed up to the first order of the parameter k0za. Absolute
intensity values could not be compared with the calculation
due to the lack of data on the amplitude of the SAW.

(3) The experiment confirms the validity of the concept of
a standing SAW as a superposition of two traveling SAWs.

(4) Two circumstances distinguish experimental results
from theoretical expectations. This is the absence of a single
diffraction order (1,1) in measurements with a standing wave
(Fig. 6) and the appearance of an “anomalous” diffracted wave
in measurements with a SAW propagating along the neutron
beam [Fig. 5(a)].
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FIG. 7. Amplitudes of diffracted beams as a function of incident angle for the case of traveling wave of s = +1 (a) and s = −1 (b). Fit
and experimental data are shown by solid lines and dots. The index s of the direction of propagation of the SAW and order of reflection n are
shown in parentheses in the form (s, n).

First, we recall that all measurements were performed
twice, and there were no visible differences in the results
of these two measurements. Thus, both the absence of the
(+1,+1)-order wave in measurements with a standing wave
and the appearance of an “anomalous wave” that is absent in
measurements without a SAW cannot be regarded as an acci-
dent. However, these two facts should be treated differently.

The fact is that the absolute intensity of the diffraction
orders is rather small, therefore, the conditions for separating
the diffraction beam from the full two-dimensional pattern are
quite difficult. This is illustrated in particular by Fig. 3. It
clearly shows that small peaks of diffraction orders are often
located on the wings of much more intense beams. Figure 9
illustrates the difficulty of detecting diffraction orders (1,1)
and (−1,1). It shows absolute values of the reflectivities of
these waves together with the specular reflectivity. One can
see that the angular position of the maximums with n =
+1 practically coincides with the critical angle of the total
external reflection. Under these conditions, the background of
nonspecular reflection due to scattering on surface roughness
is relatively large. This makes it extremely difficult to isolate
diffracted beams with amplitudes three orders of magnitude
smaller than the specular reflectivity. This is especially true
for the beam (1,1) absent in data treatment, which, as can

be seen in Fig. 6, is located closer to the direct beam than the
detected beam (−1,1). As for the beams (−1,−1) and (1,−1),
the maximum of their intensity lies at relatively large incident
angles, where the intensity of the direct beam is significantly
weakened. Accordingly, the background conditions for their
registration are much better than for the beams with m = +1.

As for the observation of an “anomalous” wave, presence
of which was not predicted, the situation here is substantially
different, and an explanation should be sought for this fact. In
the case under consideration, the origin of the anomaly can be
associated either with the appearance of a wave of the second
diffraction order (s = +1, n = −2), or with the presence of
a wave traveling in the opposite direction compared to the
main wave, i.e., from s = −1, n = −1. The calculated angular
position of these two waves is very close and it is impossible
to draw a definite conclusion based on the analysis of the
angular picture. However, the relatively high intensity of this
wave, amounting to approximately 0.3 of the intensity of the
“normal” wave s = +1, n = −1, allows one to confidently
reject the hypothesis of a second-order wave, the intensity of
which should be tens of times lower.

Thus, the most probable reason for the appearance of this
beam is the presence of a counterpropagating wave (s = −1)
on the surface of the sample. The appearance of such a wave

FIG. 8. Amplitudes of diffracted beams as a function of incident angle for the case of standing SAW. Fit and experimental data are shown
by solid lines and dots. The order of reflection n and index m are shown in parentheses in the form (n, m).
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FIG. 9. Calculated “reflectivities” R for the case of four
diffracted waves in the standing SAW geometry for the amplitude
of SAW 13 Å in comparison with specular reflectivity.

can be due to both the unclosed initial portion of the sample
between the IDT and the sample edge, and the reflection of the
SAW from the trailing edge of the sample or from the second
(free) IDT.

However, we note that, having accepted this hypothesis,
we are faced with the need to answer the question about
the reason for the absence of an “anomalous” longitudinal
surface wave (s = 1) in measurements in the geometry of the
counterpropagating wave. There is no definite answer to this
question, and we can only appeal to the above considerations
about the difficulty of detecting weak beams near an intense
specular reflection beam.

IV. CONCLUSION

This paper presents results of a theoretical and experimen-
tal study of nonstationary neutron diffraction by SAWs. For
traveling and standing waves, the solution of the diffraction
problem was found by a unified method based on the expan-
sion of waves in spatial and frequency harmonics, followed
by matching at the interface of the wave functions of the

incident, diffracted, and transmitted waves. The found sys-
tems of equations completely determine the solution to the
problem. In a practically realizable approximation of the
smallness of parameter ξ = k0za (k0z is the normal component
of the wave vector of the incident wave, a is the amplitude
of the surface waves) the solution can be found analytically.
It is shown that the diffraction pattern by standing waves
found in this approximation can be represented as a result of
diffraction by two counterpropagating and completely inde-
pendent traveling surface waves. Expressions are given that
describe both the angular distribution and the amplitudes of
the corresponding diffracted waves. The results related to the
case of a traveling wave coincide with those given earlier in
Ref. [19], where the solution was obtained in a moving rest
frame of the surface structure.

Diffraction spectra were measured using a neutron reflec-
tometer with a fixed neutron wavelength of 0.43 nm and a
variable incident angle. The experiment showed that the posi-
tion of the waves of all diffraction orders and the dependence
of the intensity of the diffracted waves on the incidence angle
are in good agreement with the calculation performed up to
the first order of the parameter k0za. The absolute values of
the intensity could not be compared with the calculation due
to the lack of data on the amplitude of the SAW.

The results obtained for diffraction by a standing wave are
in complete agreement with the concept of it as a superposi-
tion of two traveling waves.

Two circumstances distinguish experimental results from
theoretical expectations. This is the absence of a single
diffraction order in measurements with a standing wave and
the appearance of an anomalous wave in measurements with
a wave traveling along the neutron beam. Possible sources of
these discrepancies in the work are discussed, but the final an-
swer about the methodological or fundamental origin of these
anomalies can be obtained only in subsequent experiments.
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