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Directional bonding explains the high conductance of atomic contacts in bcc metals

W. Dednam ,1,2,* C. Sabater ,2,† M. R. Calvo ,2 C. Untiedt ,2 J. J. Palacios ,3 A. E. Botha ,1 and M. J. Caturla 2

1Department of Physics, Science Campus, University of South Africa, Private Bag X6, Florida Park 1710, South Africa
2Departamento de Física Aplicada and Unidad Asociada CSIC, Universidad de Alicante,

Campus de San Vicente del Raspeig, E-03690 Alicante, Spain
3Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC),

and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain

(Received 12 August 2019; accepted 25 March 2020; published 20 April 2020)

Atomic-sized contacts of iron, created in scanning tunneling microscope break junctions, present unusually
high values of conductance compared to other metals. This result is counterintuitive since, at the nanoscale,
body-centered-cubic metals are expected to exhibit lower coordination than face-centered-cubic metals. In this
work we first perform classical molecular dynamics simulations of the contact rupture, using two different
interatomic potentials. The first potential is isotropic, and produces mostly single-atom prerupture contacts. The
second potential accounts for the directional bonding in the materials, and produces mostly highly coordinated
prerupture structures, generally consisting of more than one atom in contact. To compare the two different types
of structures with experiments, we use them as input to density functional theory electronic transport calculations
of the conductance. We find that the highly coordinated structures, obtained from the anisotropic potential, yield
higher conductances which are statistically in better agreement with those measured for body-centered-cubic
iron. We thus conclude that the directional bonding plays an important role in body-centered-cubic metals.
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I. INTRODUCTION

Stretching a metallic nanowire results in a progressive
reduction of its cross section at the weakest point, until it
finally breaks. From an atomistic viewpoint, when the mini-
mum cross section of the nanowire contains only a few atoms,
and for very slow stretching, the minimum cross section can
in fact decrease by one atom at a time [1,2]. It seems rea-
sonable to assume that the ultimate stable contact that holds
the metal together is a single atom. Indeed, measurements
of conductance for atomically sharp contacts seem to point
in this direction since the stable contact conductance before
rupture for most metals is just above one quantum, except
for some notable exceptions; such as, iron [3,4], tantalum,
molybdenum, and tungsten [5,6]. In fact, it is still widely
assumed that the chemical valence of the bridging atom
in single-atom contacts primarily determines the prerupture
conductance values [4,7,8].

Atomic-sized contacts are typically realized via mechani-
cally controllable break junctions (MCBJs) [9,10] or scanning
tunneling microscope break junctions (STM-BJs) [11,12]
and characterized through electron transport measurements.
Classical molecular dynamics (CMD) simulations and first-
principles transport calculations have been key in providing
interpretations of the experimental results [1]. In the past
decade, through the combination of experiments and simu-
lations, researchers have identified different atomic contact
geometries that may form just before rupture [13–16] and
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stated the important role played by the nearest-neighbor
atoms in the mechanical and electrical properties of these
structures [17].

Computationally, most of the systems studied so far have
been face-centered-cubic (fcc) crystals, which exhibit a high
probability to form single-atom contacts immediately before
rupture. However, recent calculations [3] show a clear mis-
match between experiment and theory in the case of body-
centered-cubic (bcc) iron. The reason behind this discrepancy
is not clear, since three factors could play a role: chemical
valence, crystal lattice structure, and/or magnetism.

To shed light on this question, we first perform CMD
simulations of the iron rupture process, using two different
interatomic potentials: one in which the bonding between
atoms is treated as isotropic, the other in which the bonds
also have covalent character. Density functional theory (DFT)
calculations on CMD snapshots of the atomic configurations
are then used to obtain the electronic transport properties (the
conductance) and to compare with experimental data obtained
from electron transport experiments in an STM-BJ at low
temperature (4.2 K).

II. EXPERIMENT

In the STM-BJ configuration, the electrode tip can collide
with and be withdrawn from the surface over continuous
cycles of rupture and formation of the atomic-sized contact.
The electrode tip consists of iron wire of nominal diameter
0.25 mm (with a purity of 99.99%), and is connected in
an electrical circuit as shown in Fig. 1(a), where a constant
bias voltage V = 100 mV is connected in series with the IV
converter amplifier and, in turn, to a resistor of interest (in
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FIG. 1. (a) Experimental STM-BJ setup. (b) Traces of conduc-
tance. (c) Histogram of conductance constructed from more than 500
rupture traces of iron.

our case an atomic-sized contact). We express conductance
that is the inverse of the resistance, in units of the quantum
of conductance G0 = 2e2/h, where e is the charge of the
electron, h is the Planck constant, and the factor of 2 accounts
for the spin degeneracy.

Typically, we record the conductance as a function of the
relative displacement between the electrodes. The resulting
curves are called rupture traces, as shown in Fig. 1(b). From
each trace, we can build a histogram of conductance, which
reveals the most frequent conductance values that the trace
contains. Upon accumulating a significant number of indi-
vidual histograms (one for every trace), we can construct a
full histogram of conductance. For iron, it exhibits a clear
peak at ≈2G0 [see Fig. 1(c)], as has been previously observed
[3,4,18].

III. THEORETICAL MODEL

A. Molecular dynamics simulations

In CMD simulations the trajectory of each atom is obtained
by solving Newton’s second law for a semiempirically fitted
interatomic potential. The hope is that the potential adequately
describes the interactions between the atoms, right down to
the atomic level [19]. In the case of metals, the problem of
developing the most accurate interatomic potential has en-
joyed considerable attention. Currently, the most extensively
used potentials are those obtained from the embedded atom
method (EAM) [2,3,16,17,20,21]. In the EAM the potential is
assumed to be isotropic. While this assumption is valid for fcc
structures, bcc structures have a lower coordination about an
individual atom and thus exhibit more directionality in their
bonding, i.e., slightly covalent character [22]. Accordingly,
the modified embedded-atom method (MEAM) potential [23]
may provide a more realistic description of the bonding in
bcc metals, since directionality is included. In this work we
thus compare the MEAM and EAM methods in order to de-
termine which will lead to better agreement with experimental

(a)

t= 0 t=690 kStep t=925 kStept= 924 kStep

(b) (c) (d) (e)

FIG. 2. (a) A typical initial input structure used in the simula-
tions. Panels (b)–(d) show the process of rupture which occurs in 20
out of the 100 simulations of rupture with the MEAM potential [29].
The bcc iron contact goes through a crystallographic reorientation
under tension, from having (001) to (110) planes perpendicular to the
length of the contact [shown in (b)]. Rupture occurs in these cases via
cleavage of (110)-oriented planes [shown in (e)]. The whole process
lasts only a few picoseconds, e.g., from the structures in (c) and
(d). (e) A cutaway (the top half of the contact has been removed)
showing the characteristic five-atom structure (red rectangle) in a
(110) surface of a bcc lattice.

results in electronic transport calculations on CMD-generated
structures.

For both potentials, we use the large-scale atomic/
molecular massively parallel simulator (LAMMPS) [24,25].
Additionally, to imitate the experimental conditions, all the
simulations are realized using a Nosé-Hoover thermostat
[26,27] to maintain a constant temperature. The thermostat is
applied at the recommended interval of 1000 simulation time
steps [25]. We use a time step of 1 fs and the same initial
input structure, consisting of ≈1500 atoms, for comparison of
the two potentials. Figure 2 shows a representative example
of the rupture process of iron using the MEAM potential,
with the atoms initially occupying positions in a perfect bcc
lattice oriented along the (001) crystallographic direction [see
Fig. 2(a)]. The initial velocities of the atoms are randomized
at the beginning of each rupture run and correspond to an
average temperature of 4.2 K. The input structure is stretched
at ≈1 m/s until rupture. During every single rupture simula-
tion, out of an ensemble of 100 independent runs performed
with each potential, we compute the number of atoms in the
minimum cross section of the model contact by means of
the Bratkovksy algorithm [28]. The minimum cross section
and simulation trajectory are both recorded every picosecond.
For the purpose of comparison, traces are truncated 100 ps
before the moment of rupture when constructing cross-section
histograms.

Figure 3 compares the two normalized histograms of
minimum cross-section data obtained with each of the two
potentials. The pink-shaded histogram in Fig. 3 has been
constructed by using the most recent MEAM interatomic
potential, fitted to the melting point of Fe as well as its near-
melting point elastic constants [29]. This particular potential
is suitable for simulations of Fe contact rupture because the
(001), (110), and (111) exposed surface energies agree very
well with experiments [29]. For comparison, see the blue-
shaded minimum cross-section histogram in Fig. 3, obtained
using an EAM potential whose surface energies also agree
reasonably well with experiment and DFT calculations [20].
Although both potentials show the formation of one- and
two-atom contacts (first two peaks in the histogram), the

165417-2



DIRECTIONAL BONDING EXPLAINS THE HIGH … PHYSICAL REVIEW B 101, 165417 (2020)

FIG. 3. Minimum cross-section histograms obtained after 100
rupture simulations using the MEAM potential [29] (pink shading
with red outline) and the EAM potential [20] (grey shading with blue
outline).

MEAM potential produces stable prerupture structures with
a higher number of atoms in the minimum cross section than
the EAM potential. This is shown in the shaded tail of the
histogram, where the probability of forming structures with
more than two atoms right before rupture is lower with the
EAM potential than with MEAM.

Note that in the case of fcc metals [13–15,17], and even
in the structures obtained with the EAM potential for Fe,
the simulated cross section narrows atom by atom during the
rupture process. In contrast, the cross section obtained using
the MEAM potential breaks through cleavage across (110)
oriented planes as shown in Fig. 2(e). These (110) planes are
formed after a reorientation of the contact during the applied
tension.

B. Density functional theory quantum transport calculations

To obtain the conductance of snapshots extracted from
CMD simulations, such as in Fig. 2(c), we use the elec-
tronic transport code Alicante nanotransport (ANT.Gaussian)
[30–34]. (For more details of the DFT calculations, see
the Appendix.) To improve the quality of conductance re-
sults, an all-electron basis set has been assigned to 15–20
atoms in the minimum cross section of the trimmed-down
inputs for conductance calculations. The all-electron basis set
was optimized in CRYSTAL14 [35] after adding uncontracted
Gaussian-type orbitals to an existing basis set for Fe, and
varying their coefficients and exponents in the same way as
was done for Ni in Ref. [36]. The quality of the basis set has
been verified by comparing the band structure it produces for
bulk bcc Fe with that produced by OpenMX [37]. Conductance
values near the peak of the experimental histogram in Fig. 1(c)
are obtained for structures which correspond to those shown
in Fig. 2(c) [see cases marked with an asterisk (*) in Table I
of the Appendix], that is, those predicted by the MEAM
potential. Note that the EAM potential only reproduces the
rupture process illustrated in Fig. 2 in three out of the 100
rupture simulations versus 20 out of 100 in the case of the
MEAM potential.

More revealing than the statistical study presented above
are the so-called Fano factors [21]. In experiments at low tem-

FIG. 4. (a) Fe double contact, (b) overall spin-resolved transmis-
sion vs energy (eV), (c) transmission vs spin eigenchannel. A Fano
factor of 0.3084 is obtained from the eigenchannels shown in (c).

peratures, low bias voltage, and low frequency range (maxi-
mum of 400 kHz), the Fano factor F provides a measure of
noise suppression relative to the maximum Poissonian value
of 2eI [21]. Therefore, the shot noise from ballistic transport
of an electron through an atomic-sized contact is given by
SI = 2eIF , where I is the bias current and e is the electron
charge. On the other hand, in DFT quantum transport calcu-
lations, the spin-polarized conductance can be expressed as
[21] G = G0

2 �n,σ Tn,σ , where G0 is the usual spin-degenerate
quantum of conductance and Tn,σ are the individual spin-
resolved eigenchannel transmissions [38]. Since not only the
geometry but also the number of atoms in the constriction of
a contact determines the overall conductance through their
valence orbitals, the individual spin-resolved transmission
channels can convey information about the atomic structure of
the contacts through the Fano factor (a measure of the number
of partially open transmission channels in an atomic-sized
contact):

F = �n,σ Tn,σ (1 − Tn,σ )

�n,σ Tn,σ

. (1)

Figure 4 shows an example of how an eigenchannel anal-
ysis can be carried out to obtain the Fano factor from a con-
ductance calculation on a model contact. A conductance cal-
culation on the structure shown in Fig. 4(a) not only yields the
overall spin-resolved transmissions in Fig. 4(b) (which sum
to G = 1.6574G0), but also the contributing spin-resolved
eigenchannel transmissions, shown in Fig. 4(c). Therefore, in
this case only five spin-resolved eigenchannels—three spin-
majority (purple) and two spin-minority (blue)—contribute
significantly to the overall transmission. Based on this anal-
ysis, one can conclude that at least two atoms effectively
contribute to the transmission in this contact. The noise in the
transmission functions in Fig. 4(b) result from the disorder in
CMD structures in general [39] and, in particular, from the
spd hybridization of the spin-minority channels [40].

IV. RESULTS AND DISCUSSION

Fano factors calculated from CMD snapshots of the two
CMD potentials are presented in Fig. 5. The dark grey areas
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FIG. 5. (a) Fano factors vs conductance for structures obtained
via the EAM (blue markers) and MEAM (red markers) potentials.
Also shown in (a) are the experimental data points from Ref. [3]
(reproduced here with permission). The shaded regions delineate
forbidden values of the Fano factors where light grey corresponds
to spin-degenerate transmission channels and dark grey to spin-
resolved channels. (b) In the case of the MEAM potential, the data
are grouped by color-coded frames according to stable structures
just before rupture, shown in the insets. The conductance values are
recorded in Tables I and III. The black diagonal lines determine the
number of spin-resolved transmission channels, with one electron
per channel, while light grey refers to spin-degenerate transmission
channels. The agreement with the experimental values from Ref. [3]
is quite remarkable.

delineate forbidden values of F for magnetic atomic-sized
contacts, while the areas underneath the light grey line are the
forbidden values of F for nonmagnetic materials. Recall that
F is a measure of the number of partially open transmission
channels in a contact, and the more channels contribute to the
overall conductance, the more atoms are likely involved.

For the MEAM potential, the calculated conductance val-
ues [plotted separately in Fig. 5(b)] fall at or near the four,
five, and six transmission channel lines. Experimentally, Fe
has been shown to form last-contact structures with six trans-
mission channels [the experimental data from Fig. 6(b) of
Ref. [3] are reproduced with permission in Fig. 5(a)], which
appears to indicate the formation of contacts with three or
more atoms in them, according to the values of the Bratkovksy
minimum cross sections in Table I of the Appendix. The
MEAM potential, with more covalent character, is thus seen to
outperform the EAM potential in this regard, whose F values
for the 17 conductance values collected in Table III are also
plotted in Fig. 5(a).

Moreover, based on the low density of states of Fe at
the Fermi level [40], in comparison to Ni or Co, one would
expect Fe to have a first maximum conductance peak at a
lower conductance value than either of the latter metals. The

experimental Fano data from Ref. [3] shown in Fig. 5(a)
exhibit a significant number of conductance values at this
expected low value of ≈1.2–1.4G0, but in a histogram, they
are subsumed by the broad peak at ≈2G0 (see fits to the
histogram of conductance in the Appendix). Our interpreta-
tion, based on the simulation results presented above, is that
slight differences in the structures responsible for this peak
(see Fig. 2) could result also in deviations from the 2G0 value.
For similar reasons, related to the detailed structure of the
contacts, magnetism is expected to play almost no role in iron
in the absence of an external field, since it does not even in the
case of Ni [41].

Therefore, we postulate that the discrepancy between the
experiments and the simulations in the work of Vardimon et al.
[3] for the case of Fe is the lack of CMD structures with mini-
mum cross sections above ≈3 atoms at rupture when using an
EAM potential, in a combination with a tight-binding model
to calculate conductance. Using a more detailed model of
the bonding between Fe atoms, such as the MEAM potential
used in this work, should markedly improve the comparison
between the experimental histogram of conductance and the
one calculated in [3] based on the good agreement between the
theoretical Fano diagram in Fig. 5(b) and their experimental
Fano diagram in Fig. 6(b) of [3].

It is also important to note that other bcc materials such
as Ta, Mo, and W, in similarity with iron, show experimental
histograms of conductance with pronounced peaks at around
≈2G0 [5,6], and that the formation of similar structures could
be explored in future work.

V. CONCLUSION

In summary, the pronounced peaks at ≈2G0 that appear
in experimental histograms of conductance of body-centered-
cubic metal atomic contacts could not previously be explained
by considering single-atom contact structures [29]. Here, we
show that DFT electronic transport calculations of structures
with several atoms in the minimum cross section give conduc-
tance values in agreement with experiments. Such structures
arise when an energetically favorable reorientation occurs,
from (001) to stable (011) layers perpendicular to the direction
of stretching. We obtain this stable reorientation when using
an interatomic potential (the MEAM potential) that includes
directional bonding. Our findings contradict the presently held
assumption that the most likely stable prerupture contacts in
bcc metals are made up of a single atom. The MEAM potential
thus provides a realistic mechanism of atomic rupture for Fe in
which covalent bonding plays a key role. Body-centered-cubic
metals such as Fe may therefore represent good candidates
for producing molecular junctions in which the electrode-
molecule interface is an atomically flat surface.
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APPENDIX

This Appendix provides further details about the Gaussian
fitting of the experimental histogram, as well as the DFT
calculations described in the main paper. It also gives the
results of conductance calculations on snapshots from CMD
simulations performed with the MEAM and EAM potentials.

1. Gaussian fitting functions

In Fig. 6 we show how a sum of three Gaussian functions
can be fitted to the experimental histogram in Fig. 1(c) of the
main paper.

The blue markers represent the experimental data, and the
red line through them is the sum of the three Gaussian curves,
which are centered on 1.60, 1.99, and 2.39G0, respectively.
The fact that we need more than two Gaussian curves in order
to fit the main peak of the experimental data implies that
there is not a single, repeatable, stable structure giving rise
to the experimentally observed peak. It implies that the peak
is produced by a variety of different structures. On the other
hand, the three centers of the Gaussians cover the range of
calculated conductance values, shown in Table I, rather well.
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FIG. 6. A sum of three Gaussian functions fitted to the experi-
mental conductance histogram obtained from the rupture of iron at
4.2 K. Blue markers are the raw experimental data, while the yellow,
purple, and green curves are Gaussian functions that sum to give the
red line.

TABLE I. Contact type, Bratkvosky minimum cross section,
and conductance of snapshots from CMD simulations with MEAM
potential for Fe.

Rupture Type Min. cross section Conductance (G0 )

2 5-3-4 1.6 1.2
5 9-7-8* 4.7 2.4
8 8-6-9* 3.4 2.3
11 2-1-2 0.6 1.0
12 6-6-7* 4.7 2.1
15 5-3-5 1.5 1.4
17 9-6-8* 3.8 2.1
18 5-2-2-5 1.7 1.4
19 7-4-8* 3.2 1.9
34 3-2-2-2 0.8 1.1
40 8-6-9* 4.3 2.1
46 4-2-4 1.5 1.5
49 3-2-5 1.6 1.2
51 4-2-4 1.6 1.3
54 6-3-6* 3.0 2.3
55 4-2-2-5 1.2 1.3
56 5-2-4 1.5 1.3
58 3-2-4 1.4 1.1
60 3-2-4 1.6 1.6
63 4-2-2-5 1.4 1.3
64 5-2-2-5 1.7 1.9
67 5-3-3-5 1.3 1.3
70 3-1-3 0.8 1.2
72 5-2-3 0.8 1.5
73 5-2-3 1.4 1.1
74 3-1-3 0.9 1.0
75 5-2-2-5 1.6 2.0
77 8-7-8* 4.0 2.3
85 8-4-5* 2.8 1.9
88 5-3-3-5 1.5 1.6
91 7-6-10* 4.2 2.5
97 2-1-2 1.0 1.2
99 4-2-3 1.2 1.7

The red line is expressed as

y(x) = � +
3∑

i=1

aie
(x−bi )2/2c2

i , (A1)

where the coefficients ai are the amplitudes of the three
underlying curve peaks, bi are the positions of their centers,
and ci are the standard deviations. The constant � is an offset
with a value of 104 counts for this fit. Table II collects all the
fitting parameters.

TABLE II. Fitting parameters.

Gaussian a b c

1 216 1.60 0.30
2 872 1.99 0.25
3 385 2.39 0.21
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TABLE III. Contact type, Bratkvosky minimum cross section,
and conductance of snapshots from CMD simulations with EAM
potential for Fe.

Rupture Type Min. cross section Conductance (G0)

1 4-3-4 2.5 1.2
8 5-2-5 1.6 1.6
10 3-2-2-3 1.5 1.0
13 5-3-3-5 1.7 1.4
16 4-2-3 1.7 1.4
21 3-2-3 1.5 1.4
23 3-2-3 1.7 1.5
24 4-3-6 1.6 2.0
42 4-1-3 0.8 0.9
53 2-1-3 0.7 1.0
69 3-1-2 0.7 0.8
74 2-1-2 0.7 0.7
77 3-1-2 0.7 0.8
80 2-1-2 0.8 1.1
87 2-1-2 0.6 0.7
94 4-2-3 1.3 1.4
98 2-1-2 0.5 0.7

2. DFT calculations

We extracted 33 representative snapshots of stable pre-
rupture structures from the 100 CMD simulations with the
MEAM potential, ten of which correspond to the rupture pro-
cess illustrated in Fig. 2(c) of the main paper. The snapshots
were trimmed down to ∼200 atoms centered on the minimum
cross section to allow conductance calculations to finish in a
reasonable time. The results of the conductance calculations

FIG. 7. (a) The same initial input structure as in Fig. 2(a) of the
main paper, used in the simulations. Panels (b)–(d) show the process
of rupture corresponding to rupture number 24 in Table III, obtained
with the EAM potential [20]. The bcc iron contact goes through a
crystallographic reorientation under tension, from having (001) to
(110) planes perpendicular to the length of the contact [shown in (b)].
Rupture occurs in these cases via thinning to elongated wires, with at
most three atoms in the minimum cross section several picoseconds
before rupture.

are shown in Table I. On the other hand, 17 snapshots have
been extracted from the 100 CMD rupture runs performed
with the EAM potential, which were also trimmed down for
conductance calculations. The results of these calculations are
collected in Table III. In addition, in Fig. 7 we show the pre-
rupture structure obtained with the EAM potential which leads
to the highest conductance, for rupture 24, in Table III. The
rupture mechanism is completely different than that shown in
Fig. 2 of the main paper, obtained with the MEAM potential.
The nanocontact undergoes thinning to elongated structures
which are seen for other metals described by EAM potentials
too [15].
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