PHYSICAL REVIEW B 101, 165416 (2020)

Stability of zero-energy Dirac touchings in the honeycomb Hofstadter problem
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We study the band structure of electrons hopping on a honeycomb lattice with p/q (p, q are coprime
integers) flux quanta through each elementary hexagon. In the nearest-neighbor hopping model the two bands
that eventually form the n = 0 Landau level have 2g zero-energy Dirac touchings. In this work we study
the conditions needed for these Dirac points and their stability to various perturbations. We prove that these
touchings and their locations are guaranteed by a combination of an antiunitary particle-hole symmetry and the
lattice symmetries of the honeycomb structure. We also study the stability of the Dirac touchings to one-body

perturbations that explicitly lower the symmetry.
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I. INTRODUCTION

The band structure of electronic energy levels is a fasci-
nating consequence of quantum mechanics applied to a solid
[1]. The study of the topology of band structures has received
tremendous attention in the last decade, highlighted by the
discovery of a variety of topological insulators and nodal
semimetals [2—8]. An important theme that has emerged is
the importance of symmetries in protecting the distinction be-
tween insulating states and also the gaplessness of semimetals
[9-12].

The study of the linear band touching in graphene [9,13]
has played a profound role in the unfolding of these discov-
eries. It is now well known that any tight-binding model of
graphene (our discussion here will ignore both spin-orbit cou-
pling and electron-electron interactions) with time-reversal
symmetry and the symmetry of the honeycomb lattice has
two independent Dirac touchings in its Brillouin zone (BZ)
at the K and K’ points. These touchings are stable to a number
of quadratic perturbations. If the translational symmetry of
the Bravais lattice is preserved, the touchings are stable to
any perturbation that preserves rotation by s around the
honeycomb center and time reversal. Such perturbations can
cause the Dirac touchings to move in the BZ, but they cannot
gap them out. Breaking inversion or time-reversal symmetry
individually leads to a trivial or Chern insulator, respectively.
A periodic perturbation that breaks the translational symmetry
of the original Bravais lattice with a wave vector that connects
the K and K’ points can also gap the Dirac points out (e.g.,
a Kekulé dimerization). The derivation of these results is
reviewed in Appendix A.

Our goal in this paper is to generalize these results to
the honeycomb lattice in a magnetic field. This leads to
integer quantum Hall states, historically the first examples of
topological states of matter [14], which in turn inspired the
construction of the first lattice model of a Chern band [15].

In this work we study the 2¢ Dirac touchings that arise in
the central two bands of the nearest-neighbor tight-binding
honeycomb lattice when a flux of p/q (p,q are coprime
integers) times the flux quantum is introduced into each
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elementary honeycomb plaquette—the so-called Hofstadter
problem [16]. There has been quite a bit of work on the
Hofstadter problem on the honeycomb lattice. For the nearest-
neighbor hopping model, previous work has, among other
things, studied the spectrum and the eigenstates [17-19],
the Diophantine equation and Chern number characterizing
gapped states [20], the crossover from Dirac-like behavior
to conventional nonrelativistic behavior [21,22], and the ap-
proach to the continuum limit ¢ — oo [18,22]. The existence
of 2g Dirac band touchings of the central two bands in
the nearest-neighbor hopping model was noticed by several
authors and explored thoroughly more recently [23]. It was
also pointed out that adding a next-nearest-neighbor hopping
gaps the Dirac points out [24].

We emphasize here that we do not consider the effect of
electron-electron interactions in the n = 0 Landau level and
the associated spontaneous symmetry breaking, a topic of
extensive research in the literature [25-28]. These effects are
clearly very important in the experiments and a fascinating
topic in their own right. Our goal is limited to understanding
thoroughly the Dirac touchings at finite g that are present
between the two central Bloch bands that eventually form
the n = 0 Landau level and the symmetries needed to protect
them.

Here we extend the discussion in two ways: We first prove
explicitly that certain specific symmetries protect the 2q Dirac
touchings in a family of hopping models with arbitrary range
hoppings and p/q flux. Second, we study the stability of these
linear touchings to various one-body perturbations that lower
the symmetry.

II. MODEL

Throughout this paper we will be interested in the problem
of spinless fermions hopping on the honeycomb lattice in
the presence of a uniform magnetic field. We will study the
problem in the tight-binding limit and assume that each unit
cell of the honeycomb lattice encloses a fraction p/q of the
flux quantum.

©2020 American Physical Society
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Gauge

We use the following conventions to define our honeycomb
lattice. The two lattice vectors defining the primitive triangular
lattice are

a, = af, (@))
e o
a2=a<§+%>. )

With these definitions the vectors describing the sites of the
honeycomb lattice are

a A
ﬁy 3)
2p

3
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where n = (ny, np) is a pair of integers and © = 0, 1 for the
A and B sublattices, respectively.
Once we introduce a rational magnetic field

eB\/ga2 2 p
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the hoppings acquire phases, and we have to enlarge our unit
cell in order to obtain two commuting translations, enabling
us to apply Bloch’s theorem to compute the band structure.
This enlarged unit cell is the magnetic unit cell (MUC). From
now on we will use a = 1. It will be useful for us to start
with a continuum gauge, obtain the hopping phases, and then
transform to the final gauge. We begin with the standard
Landau gauge,

A = —Byx. (©6)

We introduce the external magnetic field into the hopping
model using the Peierls substitution to calculate the phase
of the matrix elements. Using this gauge and the standard
formula for the Peierls phase between two lattice points
described by n, x and n + An, v,

e n+An,v
oL, (n; An) = & / A-dl
h n,u
An,  p+v Any
= — JEE—— A P
oo 22 a4 2],

(N

where x = eBa®</3/(2h) = 27 p/q is the flux per unit cell
of our system (in units of the flux quantum g) and An =
(Any, Any). From the expression it is clear that ¢fw(n; An)
depends explicitly on n, and is 27 periodic only after 2¢ steps
in the n, direction. Since n; does not appear, it is periodic
in every step of n;. This means that we need to include 2g
unit cells of the triangular lattice in our magnetic unit cell.
We can see this explicitly by constructing the nearest-neighbor
hopping Hamiltonian in the Landau gauge,

_ E T —iL(m—}
Hyy = —t dA,m,nz [dBJllle +e 2( 6)dB,m,nz*l
n

ey, +Heel, (8)

FIG. 1. A section of the honeycomb lattice showing the unit
cell in the optimal gauge (OG) for ¢ = 4. The magnetic unit cell
(MUQC), defined such that there are two commuting translation oper-
ators which commute with the Hamiltonian, contains ¢ elementary
unit cells and thus 2g lattice sites. The lattice vectors associated
with the MUC are a; and ga,. The pattern of the phases of the
nearest-neighbor hoppings in the optimal gauge (0, x,2x,3x) is
shown (x = 2"7”). Additional neighbor hopping can be included
using Eq. (10) without increasing the size of the unit cell.

which clearly repeats itself with a magnetic unit cell consist-
ing of 2¢ triangular unit cells. This is somewhat unsatisfactory
since with a flux of 27 p/q in a triangular unit, a gauge should
exist in which there are only ¢ triangular units in the magnetic
unit cells, the minimum size of unit cell needed to enclose
an integer number of flux quanta. This can be resolved by
working in the so-called optimal gauge (OG). To achieve
this we make the following gauge transformation from the d
fermions (Landau gauge) to a set of ¢ fermions (OG):

—iLn+ik (n—n
d[L,I’ll,l‘lg =e 472 sm Z)C;L(n|7n2)~ C))

Using the transformation, we can now compute the Peierls
phase between two arbitrary sites on the honeycomb in
the OG,

2+ 20+ 1
¢y (m; An) = —x |:n2An1 + %Anl
— Any A
%Anz n %} (10)

From this formula, in the OG it is clear that the phases repeat
themselves after g steps in the n;, direction, and thus, Bloch’s
theorem can be applied with only ¢ units of the triangular
lattice in the magnetic unit cell (which contains 2¢ lattice
sites). We shall choose the magnetic unit cell shown in Fig. 1
in the rest of the paper and refer to it as the MUC. We can
see the periodicity of the MUC explicitly by working out the
nearest-neighbor Hamiltonian in the OG,

Hyy = —t ch;(nh ny)lep(ny, ny) 4 cp(ny, ny — 1)

n
+e*™cg(ny + 1,n, — D] + Hee,, (11)

which clearly repeats itself after ¢ steps in the n, direction.
The advantage of constructing the OG starting from the
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Landau gauge is that we now have a definite prescription to
compute the Peierls phase for an arbitrary hopping matrix
element in this gauge, Eq. (10). This allows us to write down
hopping models with an arbitrary range of hopping such that
all close paths enclose precisely the flux corresponding to a
uniform external magnetic field, while still maintaining the
MUC containing 2gq sites.

III. DIRAC TOUCHINGS

Working in the OG, we have computed the band structure
for various ranges of tight-binding models. This involves the
diagonalization of a 2g x 2¢ matrix for each k in the first
Brillouin zone. The unit cell we have chosen and other lattice
conventions are shown in Fig. 1.

Figure 2 shows the electronic structure of the nearest-
neighbor model with p = 1, ¢ = 4. Our focus in this paper
is on the finite-q electronic structure of the two central Bloch
bands that eventually form the zero-energy n = 0 continuum
Landau levels. In particular, as has been noticed in previous
work, for the nearest-neighbor model the two bands have
2g linear band touchings that form a honeycomb lattice in
reciprocal space [23]. As q is increased while keeping p = 1,
the bandwidth of these bands decreases exponentially [22],
and eventually, as ¢ — 0o, we recover dispersionless Landau
levels.

Are these Dirac touchings special to the nearest-neighbor
model, or are they generic to the inclusion of further neighbor
hoppings? It is known [29] that a next-nearest neighbor hop-
ping gaps out the Dirac points. Formula (10) in the optimal
gauge consistently allows us to include any range of hopping
in the presence of a uniform field. We shall prove below that
the Dirac points and their location are stable as long as the
further-neighbor hoppings are bipartite; that is, they connect
only sites on A with sites on B and maintain the spatial
symmetries of the honeycomb lattice. If any A-A and B-B
hoppings are included, they gap out the Dirac touchings even
if the honeycomb spatial symmetries are maintained.

As will be crucial for our discussion, the bipartite hop-
ping structure has an extra symmetry that is broken when
hopping between the same sublattices is included. We note
that in our problem both time-reversal symmetry T and the
standard bipartite particle-hole symmetry C are broken since,
physically, they both reverse the direction of the external
magnetic field. However, the product of the two, the sublattice
symmetry S (which is an antiunitary many-body particle-hole
transformation), commutes with the Hamiltonian when only
bipartite hoppings are included. The sublattice symmetry S
is distinct from the “hidden symmetry” [13,30-32], which
exists on certain lattices and is also antiunitary but in addition
involves a translation and a sublattice exchange.

We prove explicitly that with the added constraint of the
presence of S (in addition to all the lattice symmetries of hon-
eycomb graphene lattice) all hopping models in the presence
of a uniform magnetic field on the honeycomb lattice have 2¢
Dirac touchings at zero energy at the same locations in the BZ
as the nearest-neighbor model. We have tested this assertion
by numerical diagonalization for a variety of different choices
of the range and magnitude of the hoppings.
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FIG. 2. Band structure in the first Brillouin zone of the p =
1, g = 4 problem with only the nearest-neighbor hopping. The top
panel shows all 2¢ = 8 bands. The middle panel shows the central
two bands which touch at linear Dirac crossings 2g times—these
bands are the focus of the study here; they form the n = 0 Landau
level of graphene in the continuum limit. The locations of the Dirac
points in the BZ corresponding to the MUC shown in Fig. 1 are
marked in the bottom panel.

Proof of Dirac touching at special points

We will prove, by contradiction, that for generic Hamil-
tonians preserving the lattice and S, there are necessarily
zero-energy states at the 2¢q special points in the BZ (the
same points for which the nearest-neighbor model has Dirac
touchings).

Let us briefly introduce the action of various symmetries on
the fermion operators in the OG (a more detailed discussion
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is presented in the Appendixes). Here (n, n,) are the two
integers that label the location of a Bravais lattice site of the
original unit cell (not the magnetic unit cell), and p, v =0, 1
label the A and B sublattices. The two translations in the a;
and a, directions act as follows:

Ta ¢ (n1, n) T = c(ny + 1, ny), (12a)

Taycp(ny, n)T] = %" ¢, (ny,ny+1).  (12b)

2

A rotation by -

acts as follows:

around the A site at ny = np, = 0, Rz%,

my(my—1)

Rozjzcu(ng, nz)R;,B = XMt TR e (my, my — ),
(13)
where m; = —n; — np and my = n;. A rotation by 7 around

the center of a vertical nearest-neighbor AB bond R, acts as
follows:

Rycy(ny, )R = e XMe_ (—ny, —m). (14)

Finally, the antiunitary particle-hole symmetry S acts as
follows:

Sea(ny, m)S™! = cj&(nl, n), (15a)
Sep(ni, m2)S™' = —ch(n1, m), (15b)
SiS7™! = —i. (15¢)

As has been noticed in previous work, the nearest-
neighbor-only hopping model has Dirac touchings in the
central two bands. We reproduce the locations, labeled by
n=0,...,9—1, from Appendix D here for convenience.
The g K-type points, for odd ¢, are

K ”(2;1 + 1);2 T_(2n 9, (16)
"= a3 3 q Y,
with the ¢ K'-type points being K, = —K,,.

Here are some properties of the k-space Hamiltonians
at these points that we will need. The details are in the
Appendixes.

Property 1 (PI). The translation operator T, sends the
Hamiltonian at K,, to the Hamiltonian at K,,_, (mod G;), with
similar notation for the points K. Since the real-space Hamil-
tonian commutes with T,,, the spectrum must be identical at
all K, points.

Property 2 (P2). The rotation R, takes the set of K,
points to the set of K/ points. Since this is a symmetry of
the Hamiltonian, the spectrum at the K/, points is identical to
that at the K, points. Together with P1, this means that it is
sufficient to understand the spectrum at a single K, point.

Property 3 (P3). A rotation by 27” of the destruction oper-
ator at an arbitrary point k in the BZ leads to a superposition
of destruction operators at the points

qg+1 G,

k, = kg + pG +py—:, (7

2q q
where kg is simply k geometrically rotated by 2?” and y =
0,...,9— 1. G| and G; are the reciprocal lattice vectors of

the original lattice. The points in the set K, are permuted
among themsleves by this transformation, as are the points in

the set K. The operator transformations for the fermion op-
erators can be found in Appendix C. Note that R%n preserves
the sublattice index.

Property 4 (P4). The chiral symmetry S means that at any
point k in the BZ the Hamiltonian can be written in block
form,

HK) = (A} "g) )

where the g A-type sublattice sites have been listed first and
the q B-type sublattices have been listed second.

Now we are ready for the proof by contradiction. Let us
assume that there are no zero-energy states at a particular K,
point. Let us further assume that there are no degeneracies in
the spectrum, so there are 2qg nondegenerate states.

Equation (18) implies two facts. First, any eigenstate of
energy E # 0 is necessarily a superposition of A and B sub-
lattices [4, ¥g]”, with nonzero amplitudes on both. Second,
for every eigenstate with energy E # 0, there is another
eigenstate [4, — ] with energy —E. The orthogonality of
these two eigenstates implies that each E # 0 eigenstate has
equal probabilities on the A-type and B-type sublattices.

Let us consider an eigenstate of H(K,) at a particular n.
For notational convenience we will drop K in what follows
and refer to objects at K,, simply by the subscript n, e.g.,
caq(K,) = ca..n- By assumption the eigenstate we consider
has E # 0. We can write the destruction operator for this
eigenstate as

g—1
fn(E) = Z ( fa),,,CA,a,n + wéquz,ncB,ot,n)- (19)
a=0

Now we apply ]R{z% to this equation. Since []R{z%, H] =0,
the result will be a superposition of operators corresponding
to eigenstates at the same energy E at all the K-type points:

g—1
Ra fiE)RYL, =3 Il f (E). (20)

n'=0

Now focus on the n = n’ term on the right-hand side. From
P3 we know that Ra: does not mix the A and B sublattices.

3
Thus, the restriction of R xton= n’ is a block-diagonal 2¢g x

2¢ matrix. We can do this for one n value (%1 for odd ¢ and
2 otherwise).

{1, o, nR o [, B, n) = <RA(n)

quq
, 21
quq RB(n)>p.a.uB ( )

where both R4 (n) and Rg(n) are g x g matrices.

Applying this to Eq. (19), we see that ¥4 o, must be an
eigenstate of R4(n), and ¥ o , must be an eigenstate of Rz(n),
with the same eigenvalue. Note that if an eigenstate of H(n)
had zero energy, it need not have nonzero amplitudes in both
A and B sublattices and so could evade this conclusion.

By assumption, all the eigenstates have nonzero energy.
Thus, all the eigenvalues of R4 (n) and Rp(n) must be identical.
This leads to the conclusion that

det[Ra(n)R}(n)] = real. (22)

From the explicit forms of R4 (n) and Rg(n) in Appendix F
one easily obtains

arg{det[R4 (n)R}(n)]} # 0. (23)
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This contradicts our conclusion in Eq. (22). Thus, at least
some of the states at K, must have zero energy. From the fact
that the chiral symmetry implies that energies must occur in
pairs of +E, an even number of states must have zero energy
atany K,,.

This shows that there must be band touching at the K,, and
K’ points. Carrying out the k - p perturbation theory around a
K, point, there is no symmetry reason for the first derivative
to vanish, and thus, the touchings will generically be linear.
This completes our proof.

IV. STABILITY TO SMALL PERTURBATIONS

In the previous section we showed that with the graphene
lattice symmetry and S, we have 2¢g Dirac nodes at the specific
locations: {Ko, ..., K,-1,Kj, ..., K;_l} at zero energy. We
now study the stability of these Dirac touchings to quadratic
perturbations. Before turning to specific perturbations, we ad-
dress this question in more general topological terms [33,34].
We know that time-reversal symmetry T and particle-hole
symmetry C are both individually absent, but the composite
of the two, the antiunitary particle hole S, is present. A band
insulator with the symmetry S would be in class AIIl. Our
model, with all the symmetries intact, has Dirac touchings and
is thus not a band insulator. A band insulator in which S is
broken (say, by the introduction of same-sublattice hopping
or a sublattice energy difference) would be in class A. It
is now understood that the stability of Dirac touchings can
be explained by the classification of band insulators in one
lower dimension [35]. The argument relies on considering
the topological classification of the band insulator Bloch
wave function on a ring surrounding the Dirac point [12].
In one dimension band insulators in class AIIl have a Z
classification, while in class A they have only trivial band
structures. This integer winding number can be computed for
each Dirac node by using a simple prescription. Referring to
Eq. (18), one computes the winding number of the phase of
the determinant of M on a contour in the BZ around the band
touching. The expression for the one-dimensional winding
number is [33,36,37]

2
QH) = L/ dOVylndetM(0). (24)
2mi Jy

Computing the winding number for the Dirac touchings, we
find that all the K points have winding number —1, while
the K’ points have winding number +1. The fact that all of
the K points have equal winding numbers follows from T,
symmetry, and the fact that K’ have the opposite winding
follows from the action of the R, symmetry operation.

From these general topological considerations, we reach
the following conclusions for the stability to perturbations:

Generically, if S is broken, the Dirac touchings get gapped
(at least, the argument above does not guarantee stability;
below we study a few examples numerically to verify this).
The resulting insulator will be in class A, with an integer
Chern number.

What perturbation can open a gap if we preserve S? If the
perturbation fits in the MUC (so that the BZ is unchanged),
the Dirac touchings are stable. We note that locations in the
BZ may move if the perturbations reduce the symmetry oper-

ations from those present in an undistorted honeycomb lattice.
Generally, if we preserve S, small perturbations can open
up the gap only if they are at a wave vector that connects
Dirac points with opposite winding numbers. Then in the new
smaller BZ (corresponding to the enlarged unit cell), opposite-
winding-number Dirac points lie on top of each other. En-
circling such double touchings will give no winding number,
invalidating the topological argument for their protection.

We now consider specific lattice examples in which we can
study how the Dirac equation gets gapped.

A. S breaking

We first restrict our discussion to perturbations that pre-
serve the MUC. Gapping the Dirac touchings requires us to
break the S symmetry. The simplest way to do this is to per-
turb with a staggered diagonal energy term in the Hamiltonian
that has the same magnitude but opposite signs on the two sub-
lattices. H =V, Y, , (dl, \ dinm —db, ,dsnm) Al
though this fits in the MUC, it breaks some of the lattice
symmetry, e.g., R;. A second way to break S symmetry is
to include any same-sublattice hopping with a fixed range
for all sites, e.g., a second-neighbor hopping #,. We include
it here with the correct phase from Eq. (10), corresponding
to having a background uniform B field. This perturbation
has the feature of preserving every symmetry in the nearest-
neighbor hopping model except for S. From the arguments
made earlier, both perturbations are expected to open up a
gap in the Dirac equation, leaving behind a two-dimensional
insulating band structure in class A, characterized by an
integer Chern number.

Since the two middle bands become the n = 0 Landau
level of graphene, we expect them to have a combined Chern
number of —2. How this —2 is distributed between the two
bands obtained after the gap opening perturbation is added
depends on the details. The sign of the mass that gaps out a
particular Dirac point also determines the transfer of Chern
density between the two bands. Perturbations that preserve
translations can realize only the total Chern numbers C =
0, —g, g because the T,, symmetry forces the form of the
Bloch Hamiltonian at all the K, points to be the same and
also forces the form at all the K/, points to be same as well.
The perturbation V; results in a trivial insulator, while the other
two values of C are realized by the #, perturbation. We have
checked all the above assertions by computing the integer
invariant numerically, i.e., by integrating the Berry curvature
over the Brillouin zone. This is shown and discussed in Fig. 3.

Above we studied two examples of perturbations that cre-
ate different Chern numbers, 0 and +¢. The Chern numbers
of the bands produced can be any of the intermediate val-
ues 1,2,...,g — 1 as well. This requires a perturbation that
breaks T,,, although it may preserve the MUC.

B. S preserving

To gap out the Dirac nodes with S preserved, the pertur-
bation must break translational invariance with a momentum
that connects Dirac touchings of opposite winding numbers.
The simplest way to achieve this is to include as a pertur-
bation a periodic modulation of the magnitude of the first-
neighbor hopping, with period corresponding to the Q vector
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FIG. 3. Phase diagram for p = 1, ¢ = 5 showing the Chern num-
bers of the two bands obtained once the Dirac touchings get gapped
out. The origin corresponds to the nearest-neighbor model which
has 2¢g Dirac touchings. The Chern numbers of two bands get a
uniform contribution of (—1, —1) from a Berry curvature distributed
throughout the BZ. They get an additional contribution from the
gapping of the Dirac cones, which is sharply localized at these points.
V, creates a contribution that cancels between the K and K’ Dirac
nodes, resulting in a net Chern number from only the uniform part,
i.e., (—1, —1), and the total Chern number (including all occupied
bands) at half filling becomes 0. ,, on the other hand, creates a net
contribution from the gapped Dirac points of (£5, F5) [generally
(%q, Fq)] that results in the (4, —6) and (—6,4) Chern numbers,
and the total Chern number at half filling becomes +g¢, in this
case £5.

connecting the Dirac nodes. Since there are g nodes with
positive winding and ¢ with negative winding, there appear
to be ¢* different possibilities. However, only ¢ different Q
vectors fit within the magnetic Brillouin zone, leading to
q different reduced lattice periodicities. Once the nodes are
gapped out and in the presence of S, we end up with a band
insulator in class AIIl. Since these are all trivial insulators,
they are expected to be smoothly connected to each other
without a gap closing.

V. CONCLUSIONS

In conclusion we have studied the stability of the Dirac
touchings in the n = 0 Landau level in the Hofstadter limit
when the external magnetic field is very strong, with p/q
quanta of flux going through each hexagon.

We started by deriving a formula in the optimal gauge for
an arbitrary range hopping, so that the magnetic unit cell is
always ¢ unit cells of the honeycomb. Next, we have shown
that the Dirac touchings require the sublattice symmetry S
for their protection. Indeed, we have proven that every tight-
binding model with S, the correct flux, and the entire lattice
symmetry of graphene intact will have 2¢ Dirac touchings at
the same location as the nearest-neighbor model.

Next, we considered perturbations to the 2g Dirac touch-
ings. We showed from general topological stability argu-
ments as well as specific hopping models that perturbatively
breaking S or including a periodic potential that connects
Dirac nodes with opposite winding number can gap the Dirac
nodes out. All other perturbations preserve the Dirac nodes
(though their location in the BZ may move). Of course, if
these perturbations are made large enough, some finite value
of the perturbation may cause the gapping out of the linear
touchings.

Introducing electron-electron interactions is known to pro-
duce a rich set of symmetry-broken phases in graphene for
weak fields [25-28]. There have been a few investigations into
interaction effects in the Hofstadter regime [38—42], but a full
picture remains to be developed.
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APPENDIX A: GRAPHENE WITHOUT B FIELD

In discussing the Dirac touchings in graphene with T [9],
it is useful to think about the problem in two steps as we have
done in our paper for the case when T is broken by an external
magnetic field.

First, it is possible using symmetries to prove that for any
hopping model that preserves the symmetry of the honeycomb
lattice and time reversal, there are two independent Dirac
nodes at K and K’. The symmetry argument does not rule out
the existence of other additional Dirac nodes in the BZ that
may coexist with the two Dirac nodes mandated by symmetry.

Proof. Write the graphene Hamiltonian as h = d, (K)o, +
dy(kK)o, + d;(k)o,. A combination of R, and T establishes
that d, = 0. Finally, requiring R»,,3 in addition forces (d, —
idy)K+q) = Vr(gx —iqy) and (dy — idy)®'+q) ~ VF(—¢x —
igy) at leading order. Using 7 as the valley Pauli matrix, we
obtain the low-energy Hamiltonian as h ~ 1,0,q, + 0,q,.

Now we turn to the perturbative stability of the Dirac
touchings at K and K’, when the symmetry is lowered by
breaking either T or some of the honeycomb lattice sym-
metries. To gap out the Dirac fermion we need perturbations
that generate mass terms that anticommute with both 7,0, and
oy. If the translational invariance of the triangular Bravais
lattice, R, and T are present, the touchings are stable to
all perturbations; the only change to the unperturbed % is a
movement of the Dirac touchings. Four mass terms can be
added: 1,0, and o, break T and R, leading to the Chern
insulator and the trivial band insulator, respectively [15].
7.0, and 1,0, are the last two; they break the translational
symmetry of the graphene lattice, which could arise, e.g., from
Kekulé dimerization.

Our goal in this paper is to carry out this same two-step
program for the problem of the honeycomb lattice with a
p/q flux. A significant increase in complexity arises from
the fact that the matrices that describe this problem are now
2g-dimensional.

APPENDIX B: SYMMETRY OPERATIONS IN OG

In this Appendix we study the various symmetries that are
present in Eq. (11). We will study these operations by asking
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how the symmetry operations act on the lattice creation and
destruction operators in the OG. While the explicit forms of
the transformations are gauge dependent, these explicit forms
exist in every gauge.

Lattice symmetries include translations in the a; and a,
directions, rotations by 27 /3 about a site, and rotation by 7
about the center of a vertical bond. This set of four operations
generates all the spatial symmetry operations present in the
Hofstadter problem. We note here that mirror symmetries
(and, generally, all improper rotations), which are present for
the honeycomb lattice structure, are broken by the presence
of the Peierls phases since they reverse the direction of the
magnetic fluxes. As noted above, because of the presence of
the Peierls phases the lattice operations must be augmented by
a gauge transformation from the naive operations one writes
down in the absence of a magnetic field. In the OG they are

(Bla)
(B1b)

Taycu (i, m)T] = cu(ny + 1, ma),
Ta,cpu(ny, nz)TJZ = eiX”‘c#(nl, ny+1),

ix (mym +7m2(m271)
xmm =5, (my, my — ),

(B2)

R2H/3C[L(nl , HZ)RLTB =e

where m; = —n; — np and my = ny, and

Rec,(n, m)RE = e™™™Mei_, (—ny, —ny). (B3a)

It is easy to verify that each of the above four operations
commutes with the Hamiltonian in the OG, Eq. (11).

Finally, a very important symmetry for our purposes
present in Eq. (11) is an antiunitary version of the particle-hole
symmetry,

magnetic field and hence are absent as symmetries in the
present problem. We can then understand that since S = TC
reverses the magnetic field direction twice, it appears as a
symmetry of our problem.

APPENDIX C: SYMMETRIES IN k SPACE

We choose the following periodicity conditions on our
fermion operators in the Brillouin zone:

cap(k+ G1) = cap(k + G) = cap(k), (Cla)
cap(k+G1) = cpp(k + Gp) = €T cpp(K), (Clb)
~ G2 _jmb
CAﬂ(k +Gy) = CAB k + 7 =e CAﬂ(k), (CIC)
= G _j2mB _j4n
CBﬂ(k + Gy) = CBB k + 7 =e % "N CBf;(k). (C1d)
Real-space translations
Ta, cua KT = e*¥ ¢, (), (C2a)

. it G
Taypa(R)T, = ™5 ¢y <k - %)’ (C2b)

where [@ + 1] = (e + 1)mod g and @ € [0, g — 1].
Rotation by 7 about a bond center

4 G
Ryca(K)RT = e_l(k+p‘jl)'d03a/<—k - ﬂ) (C3a)
q
. G
Rycpa(K)RT = e *dc, (—k _ ﬂ), (C3b)
q

where o’ = (1 — 84.0)(g — ) and d = \/lg

-1 _ .t
Sca(n, m)S™" = ¢4 (n1, na), (B4a) The 27” rotation about an A lattice point mixes multiple k
Sep(ni, m)S™ = —ch(ni, m), (B4b)  pomnts,
e +1 G
SIST =i, (Bdc) K, = ke + p D6, 4 py (&
which is easily seen to commute with H,,. We note that the 1
conventional time-reversal operation T and the conventional where K, is k rotated by 27”
unitary particle-hole C each reverse the direction of the For ¢ being an odd number, we have
|
1 & " py
Rzchﬂ(k)RL . e~ X +B(B+B )+17ﬂ(ﬂ—1)cAﬁ, (kR + _G1>, (C5a)
’ 3 q q
v.p'=0
e _ , / L pR oy Py
Raxcpp(K)RE, = — e XU HPHDEFETDHEFET 0750 cpg [ kg + =Gy ). (C5b)
N Toq q
v.p'=0
For ¢ being an even number, we have
R U = PGy | py
RzTnCA,s(k)R%, — e~ XA B+BO+iZ B cap kg + 2_ + 226G, ), (C6a)
9,520 q q
2 , a8 (1 By iy 2=l Gy py
R CBﬁ(k)Rt — _ e~ X HBHDB+B+D+ix B (+5) p—ix 55 cp | kr + =— + —Gy ). (C6b)
R Toq 2q
v.p'=0
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The expressions for the Dirac points and the restriction of
the rotation operators to particular Dirac points naturally fall
into two classes, those for odd ¢ and those for even g.

APPENDIX D: DIRAC POINTS AND R x FOR ODD ¢

The Dirac points are

1 T
K, = 2n—gq+ ))?——(211—61—1))7, (D1)
q( 3 qv3

where n € [0, ¢ — 1] and K|, = —K,,.

R cap (KR! = 1 Z o X HB)BHB)+HILP (B 1)
’ N 1 v.B

o 2mp

x e BT cpp (Ky), (D2)

1
5 T o IXHBHDB+F D)L (B'+1)
R%cBﬁ(Kn)RZT,, = E

v.B

x e ST (K, (D3)
where
1
b(n) = n — %, (Dda)
/ q— 1
Wouy)=|=5—+pr|cl0.g-1]  (Dib)
q—1
5ty

li(n,y) = [27} e [0, pl. (D4c)

APPENDIX E: DIRAC POINTS AND R x FOR EVEN ¢

The locations of the Dirac points are
K, =2~ <2n—q+1> T _@n—g+1)3 (ED
q 3 a3
where n € [0, g — 1] and K/, = —K,,. The effect of all other

operations remains the same as in the odd-g case except for
the 27 /3 rotations:

—1
13 i
Kt _ - 2
R%’CA;; R, _5 Z e X +BB+B+IB X/
y.B'=0
L y2mp!
xe (E2a)
1 ! . , / / 4
RyclORE == 3 ot DB - 45|
9,52
. — . 2npl 4wl 2mil
x X 5T i B i 3101(9],(3’,”), (E2b)
where
I (n) =n—g+ 1 (E3a)
q
Wy =[2+pr]elog-11.  (Eb)
q
4+
hiny) = [2 py] € [0, pl. (E3c)

APPENDIX F: R, (1) AND Ry (n)

The matrix that rotates the wave function into itself (multi-

plying by f makes it unitary) for g odd and n = %

o B (BHE »HiLB (- 1)+l

Ra(B, B') = (Ela)
Rp(B,B) = o X B DB+ + DS (B i ity (F1b)
Similarly, for even g and n = %,
Ri(B, B) = —e XPF =587~ & 2
Ro(B, ) = 16—’* [pemsapeEailmas o

APPENDIX G: RHIM-PARK WAVE FUNCTION

We can solve the wave function for the nearest-neighbor
Hamiltonian using the methods used by Rhim and Park [23].
Using Bloch’s theorem, we can say that the wave function
must have the form

Ya(ny, gh + a) = XDy, (k),
Yp(ni, gl + o) = ey (k).

For the zero-energy eigenstate from the Hamiltonian we
can write

(Gla)
(G1b)

Y(ny, no) + Yp(ng, np — 1)

+e X yp(ng +1,m—1)=0 (G2a)
Ya(ni, na) + Ya(ny, ny + 1)
+e XDy (ny —1,n+1)=0.  (G2b)
Thus, using recursion relation, we can write
B ek
Yap(k) = {H) g } Yao(k), (G3a)

B
Vs (K) = {1‘[ —e (1 4 eltrten) }wmk), (G3b)
a=0

where k; = k - a; and k; = k - a,. Now, the periodicity of
the Bloch functions gives a condition on the values of k at
which zero-energy states exists. The conditions are

g-1 _efl'kz
]1 T (=1 (G4a)
q—1

{]‘[ —e (14 ei(k‘+“X))} =1. (G4b)
a=0

The solutions form a honeycomb lattice in momentum
space. They consist of two sets,

-
=gt T T (G5a)
q 3q
27 T
K o=n3+ =2 —j1)— —= (G5b)
Y g3 a3
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and
-
K= g TN T (G6a)
q 3q
2 b4
K'=nv3+ "=Qjr— j)+—=,  (G6b)
' g3 g3

where ji, j» can be any integer.

APPENDIX H: SYMMETRY ACTION IN THE
LOW-ENERGY SPACE FOR p =1

Using the Rhim-Park wave function, we can derive the
action of the symmetry operations in the low-energy space.
Let us start with translations:

Ta da(K) T = ™ dy(K,), (Hla)

T, dp(K,)T] = &%dp(K,), (H1b)

. 18y, 027
z(K,,-az+%+”f

Ta
Tayd, (K)T], = e ¢ " ®dy(K,), (H2)

where

9=l for odd q,

Ty =1, % H3
9K {2"2—”17[ for even g. (H3)
q
Now, consider the 7 rotation about the center of a vertical

bond R,:

_i(K,,+%)_d+i 27[5,,3'(171

Rrda(K,)R] = e
Redp(K,)RI = e ®dg,(K! ).

n

dg(K} ), (H4a)
(H4b)

The 27” rotation R x is the most complicated of all because
it maps a particular Dirac point to a linear combination of all
Dirac points with the same winding number. The results we
quote below are empirical in the sense that we have not been
able to prove them; rather, we fitted the action of ]Rz% on the
Rhim-Park wave functions to an analytic form and checked
them for many values of ¢:

1 o F o
T i, 3 (n,n')
R dy(K)RY, = —ﬁ;e 2 dy(K,),  (H5a)
1 R on
T iy > (nn')
Ry ds(KRY, = — gje "dy(Ky),  (HSb)

where
Ry ! T 2 / 2 72
¢, (n,n) = @[(4—5q+q )+ 24nn’ 4+ 6(n” 4+ 1)
—6(q —2)(n+n")], (H6a)

B / T 2 / 2 ”
¢ (n,n') = E[(4—13q+q )+ 24nn’ + 6(n° + 1)
+ (4 — 6g)n + (20 — 6g)n']. (H6b)

Finally, the action of the chiral symmetry on the low-energy
subspace

Sda(K,)S™! = df (K,),
Sdp(K,)S™" = —d}(K,).

(H7a)
(H7b)
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