
PHYSICAL REVIEW B 101, 165415 (2020)

Formation probabilities and statistics of observables as defect
problems in free fermions and quantum spin chains

M. N. Najafi
Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran

M. A. Rajabpour
Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Campus da Praia Vermelha São Domingos,

24210-346 Niterói - RJ, Brasil

(Received 30 November 2019; revised manuscript received 14 March 2020; accepted 17 March 2020;
published 16 April 2020)

We show that the computation of formation probabilities (FP’s) in the configuration basis and the full counting
statistics of observables in quadratic fermionic Hamiltonians are equivalent to the calculation of emptiness
formation probability (EFP) in the Hamiltonian with a defect. In particular, we first show that the FP of finding
a particular configuration in the ground state is equivalent to the EFP of the ground state of the quadratic
Hamiltonian with a defect. Then, we show that the probability of finding a particular value for any quadratic
observable is equivalent to a FP problem and ultimately leads to the calculation of EFP in the ground state of
a Hamiltonian with a defect. We provide exact determinant formulas for the FP in generic quadratic fermionic
Hamiltonians. For applications of our formalism we study the statistics of the number of particles and kinks.
Our conclusions can be extended also to quantum spin chains, which can be mapped to free fermions via
Jordan-Wigner transformation. In particular, we provide an exact solution to the problem of the transverse field
XY chain with a staggered line defect. We also study the distribution of magnetization and kinks in the transverse
field XY chain numerically and show how the dual nature of these quantities manifests itself in the distributions.
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I. INTRODUCTION

Consider a quantum many-body state written in a con-
figuration basis; then the formation probability (FP) of a
particular configuration in a subsystem is the probability of
finding the configuration if we do the measurement in that
particular basis. For example, if we take the ground state
of a spinless fermionic system and ask the same question
for the subsystem D then there are 2|D| possibilities for the
configurations, where |D| is the size of the subsystem. Every
configuration appears with a particular probability which we
call formation probability [1]. The simplest example of the
FP is the emptiness formation probability (EFP), which is
about the FP of the configuration without any fermion in the
subsystem and has a long history. It was studied in the context
of the XXZ spin chain in [2–8] and in the context of the XY
chain in [9–12]. FP has been also studied from the conformal
field theory (CFT) point of view in [13–16]. The problem is
related to the solution of the free energy of a quantum field
theory with a slit in the context of the CFT studied in [17] and
references therein. A relation to the Casimir energy problem is
also established in [14,15]. The FP can be also used to find the
Shannon entropy with a plethora of applications in the studies
of quantum phase transitions (see [18–28]).

One can also look to the problem of the FP from a dif-
ferent point of view. Consider a configuration basis which is
associated with the local on-site observable ôi at site i with
eigenvalues (eigenvectors) oj

i (|oj
i 〉), j = 1, 2, . . . , d , where d

is the dimension of the local on-site Hilbert space. Then one
can define an on-site projection operator as π

j
i = |oj

i 〉〈oj
i |.

Multiplication of these operators in a subsystem leads to
a projection operator �

{ j}
ô =∏i πi, where the set { j} fixes

the configuration by picking a particular π j at every site.
Finally the average over, for example, the ground state |g〉
of the Hamiltonian H gives the FP for the desired config-
uration, i.e., p({ j}) = 〈g|�{ j}

ô |g〉. Now consider one primi-
tive configuration with all the sites being in the eigenstate
corresponding to, for example, o1, i.e., |{1}〉. In the case of
fermions this primitive configuration can be the configuration
without fermions. Then one can always find a unitary simi-
larity transformation matrix T { j} which p({ j}) = 〈g′|�{1}

ô |g′〉,
where |g′〉 = T { j}|g〉. The state |g′〉 can be considered as the
ground state of the Hamiltonian H ′ = T { j}H (T { j})−1

which is
basically the same Hamiltonian as H but with a line defect.
This simple argument shows that formally one can look to
the problem of generic FP as the problem of the probability
of a primitive configuration in the deformed Hamiltonian.
Many-body systems with line defects have been studied for
decades; for some earlier studies see, for example, [29–36].
For studies related to boundary CFT and integrable quantum
field theories see [37–43] and [44].

In a different approach to the above one could also define
the generating function M({λi}) = 〈e

∑
i λi ôi〉, where the coef-

ficients of the exponentials are the FP’s. This is a nontrivial
example of a more widely known concept called full counting
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statistics (FCS) which deals with the fluctuations of an observ-
able defined in a subsystem. In most of the FCS problems one
is interested in the moments of an observable Ô defined for the
entire subsystem, i.e., 〈Ôn〉. Being a very natural concept FCS
has been studied for a long time in different communities. It
has been studied in the context of charge fluctuations [45,46],
Bose gases [47–51], particle number fluctuations [52–56],
quantum spin chains [57–64], and out of equilibrium quantum
systems [51,65,66].

It is not difficult to see that the FCS of an observable
defined in a subsystem can be formulated as a formation
probability problem by just considering the basis that diag-
onalizes the observable Ô. In this basis one can consider
every eigenstate of the observable as a configuration and then
the probability to find a particular value for the observable
is just the FP for that configuration. This connection seems
too formal to be useful; however, in this paper we show that
this point of view is extremely useful when one deals with
quadratic observables in the study of FCS in the quadratic
fermion Hamiltonians and the corresponding spin chains. The
main advantage with respect to the more standard generating
function point of view is that here one does not need to do the
inverse Laplace transformation which is normally impossible
to do analytically. Even numerical calculation of such kind of
inverse transformation is usually extremely difficult because
of the presence of a square root of a determinant in the final
result of the generating function. Apart from its conceptual
appeal our approach provides an explicit formula for the
probabilities, which is its main advantage with respect to the
generating function method.

Organization of the paper and summary of the results

The result of this paper can be summarized in three dif-
ferent parts. In the first part, i.e., Sec. II, we first introduce
the concept of FP and EFP in the quadratic Hamiltonians.
Then we provide new determinant formulas for the FP and
show explicitly how the FP is an EFP for the Hamiltonian
with a defect, a line defect in the case of one-dimensional
systems. The main equations of this section are (13) and (14),
which give explicit formulas for the formation probability of
the ground state of a quadratic free fermion Hamiltonian. The
results of this section are independent of the dimension and
can be also used for the states in which Wick’s theorem is
valid. For example, one can use the same formulas to calculate
the formation probabilities for the excited states too. It is
worth mentioning that since we have determinant formulas for
the formation probabilities the complexity of calculating them
increases polynomially with the size of the subsystem. Clearly
due to the exponential number of probabilities calculating all
of them is an exponential problem.

In the second part, i.e., Sec. III, we study the statistics of
quadratic observables and show that this problem is related
to the FP and ultimately EFP of a Hamiltonian with a defect.
Here we give an explicit formula, i.e., (32), for the probability
of finding a particular value for a generic quadratic observable
when the total system is in the ground state. Here too all
the results are independent of the dimension and can be
generalized to the states in which Wick’s theorem is valid,
such as the excited states. In this section a couple of examples

including the number of particles and kinks will be discussed
briefly. Similar to the calculation of the FP if one is interested
to calculate the probability of finding one particular value for
the observable our formulas provide a method to calculate
it in a time which grows polynomially with the size of the
subsystem. Calculating the full distribution is in general an
exponentially time consuming problem.

The last parts of this paper, i.e., Secs. IV and V, are about
the explicit application of the formalisms of the previous
sections. We first study the transverse field XY chain with
a staggered line defect. We find the exact correlation matrix
of the ground state of this Hamiltonian which gives the
probability of the Neel formation, i.e., (91) in the original
Hamiltonian without any defect. Then we argue that our
result is valid for a generic translational invariant quadratic
fermion Hamiltonian with a staggered line defect. Then in
Sec. V we use the general equations introduced in Sec. III
to calculate numerically the probability distribution of the
particle numbers and kinks in the transverse field XY chain.
Finally in Sec. VI we summarize our findings and comment
on the future directions.

II. FORMATION PROBABILITY AS AN EMPTINESS
FORMATION PROBABILITY

Consider the following free fermion Hamiltonian with real
generic couplings:

Hfree(A, B) = c†Ac + 1
2 c†Bc† + 1

2 cBT c − 1
2 TrA, (1)

where A and B are symmetric and antisymmetric matrices,
respectively, and c ≡ (c1, c2, . . . , c|D|) with similar definition
for c†. We define the correlation matrix of the ground state of
the above Hamiltonian as

iG jk = 〈γ̄ jγk〉, (2)

where we defined the Majorana operators γk = ck + c†k and
γ̄ j = i(c†j − c j ) and 〈〉 is normally the expectation value in the
ground state. Note that here we have δ jk = 〈γ jγk〉 = −〈γ̄ j γ̄k〉.
Using Wick’s theorem which is valid for the eigenstates of
the above Hamiltonian one can write all the other correlation
functions with respect to the three basic correlation functions,
i.e., 〈c†j ck〉, 〈c jck〉, and 〈c†j c†k 〉, which can be rewritten in terms
of Gjk . Other interesting quantities such as entanglement
entropy and FP’s can be also written as a function of the
correlation matrix. Intuitively FP is defined as the probability
of finding a particular configuration C in a subsystem of the
full system. It was shown in [1] that the result can be written
with respect to the correlation matrix as follows:

p(C) = det
I − G

2
Min[F], (3)

where MinF is a particular principal minor of the matrix
F = I+G

I−G derived after removing the rows and columns of the
sites without any fermion in the configuration C. When there
is no fermion in the configuration C then the corresponding
probability is called emptiness formation probability and we
have

p({0}) = det
I − G

2
, (4)
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whereas when all the sites are occupied with fermions we have

p({1}) = det
I + G

2
. (5)

The above two formulas are very useful equations to do
analytical calculations when there is a translational invariance.
However, because of the presence of the minor in Eq. (3)
analytical calculations do not seem to be feasible in more
generic cases. One way to overcome this problem is to map
the problem of FP to the problem of EFP and see the out-
come. This procedure can be done as follows: Consider the
formation probability, i.e., P(C), of the ground state of the
Hamiltonian Hfree(A, B). This probability is equal to the EFP
of the ground state of the Hamiltonian Hfree(A′, B′) with a
defect. In Sec. IV we show for an explicit example how this
procedure can be followed. Finally we have

p(C) = det
I − G′

2
, (6)

where G′ is the correlation matrix of the Hamiltonian with
defects. Following [67] one can, in principle, find this cor-
relation matrix numerically for any values of the coupling
constants. However, analytical calculations are commonly
feasible when we have translational invariance or some extra
structure. For example, the Hamiltonian of a translationally
invariant (periodic) free fermion with time-reversal symmetry
can be written as

H =
R∑

r=−R

∑
j∈�

arc†j c j+r + br

2
(c†j c

†
j+r − c jc j+r ) + const.

(7)
Using the Majorana operators one can also write

H = i

2

R∑
r=−R

∑
j∈�

tr γ̄ jγ j+r, (8)

where tr = −(ar + br ) and t−r = −(ar − br ). It is very use-
ful to put the coupling constants as the coefficients of the
following holomorphic function f (z) =∑r trzr . Then the
Hamiltonian can be diagonalized by going to the Fourier
space and then Bogoliubov transformation as follows (see, for
example, [68]):

H =
∑

q

| f (q)|η†
qηq + const, (9)

where ηq = 1
2 (1 + f (q)

| f (q)| )c
†
q + 1

2 (1 − f (q)
| f (q)| )c−q with f (q) :=

f (eiq ). Finally, in the thermodynamic limit (L → ∞, trans-
forming the summation over discrete q values to the integral
over q) one can write the following explicit formula for the
correlation matrix of the ground state:

Gjk =
∫ 2π

0

dq

2π

f (q)

| f (q)|eiq( j−k). (10)

The above correlation matrix has a Toeplitz structure which
makes it a suitable candidate for analytical calculations. It
is possible to extend the above result to also excited states
without much difficulty. When there is no translational in-
variance as it is the case for Hfree(A′, B′) following the
above procedure is not simple. An explicit calculation will

be presented later for the transverse field XY chain with the
staggered magnetization. In this paper we will follow another
path which is going to be one of our main results.

The basic idea of the second method is based on writing
Eq. (3) like Eq. (6). We show here that there are at least two
different ways to do this. Consider a generic principal minor
of a generic matrix M. The basic idea is to write the principal
minor as follows:

Min[M] = det
M(I − Ic) + I + Ic

2
, (11)

Min[M] = det
(I − Ic)M + I + Ic

2
, (12)

where I is an identity matrix and Ic is a diagonal matrix made
out of ±1 which clearly depends on which columns and rows
are getting removed. We set its diagonal element to −1 when
we have a fermion and 1 when there is no fermion at the
corresponding site. Now it is easy to show that we have

p(C) = det
I − GIc

2
, (13)

p(C) = det
I − IcG

2
. (14)

The above equations mean that the formation probability
p(C) is actually the EFP for a defect Hamiltonian with the
correlation matrix GIc or IcG. As we mentioned before
none of these correlation matrices are necessarily the actual
correlation matrix of the defect Hamiltonian Hfree(A′, B′)
introduced above. In fact we will show explicitly later that
for the staggered Ising chain the correlation matrix has quite a
different form. This should not be surprising because one can
extract the minor of a matrix using quite different methods and
although they all end up with the same number for p(C) they
have been derived from different matrices. However, clearly
finding one is enough to get the others by proper manipula-
tion of the rows and columns of the correlation matrix. For
example, if G′ is the actual correlation matrix then there is
a similarity transformation S and we have G′ = S−1GIcS.
For generic correlation matrices finding the S matrix is not
necessarily an easy problem. It is worth mentioning that using
the correlation matrices GIc or IcG leads to the same set
of FP’s as the G matrix. In principle, Eqs. (13) and (14)
probably can be useful for analytical calculations when the
G matrix is a Toeplitz matrix and the configuration C has a
pattern. In these cases the GIc has always a block Toeplitz
structure. As an explicit example consider the ground state
of the Hamiltonian (7) and let us focus on the probability of
the configuration C = (s1, s2, . . . , sl ), where s j = −1 or +1
depending on the presence or the lack of a fermion at site j.
Then we can write

(GIc) jk = sgnr ( j, k)
∫ 2π

0

dq

2π

f (q)

| f (q)|eiq( j−k), (15)

(IcG) jk = sgnl ( j, k)
∫ 2π

0

dq

2π

f (q)

| f (q)|eiq( j−k), (16)

where the matrices sgnr and sgnl are the sign matrices and, for
example, for a configuration with four sites have the following
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forms:

sgnl =

⎛
⎜⎝

s1 s1 s1 s1

s2 s2 s2 s2

s3 s3 s3 s3

s4 s4 s4 s4

⎞
⎟⎠,

sgnr =

⎛
⎜⎝

s1 s2 s3 s4

s1 s2 s3 s4

s1 s2 s3 s4

s1 s2 s3 s4

⎞
⎟⎠.

(17)

The generalization for bigger sizes is straightforward. We note
that when the configuration has a crystal structure the above
matrices have block Toeplitz forms.

III. STATISTICS OF A GENERIC QUADRATIC
OBSERVABLE AS A FORMATION PROBABILITY

In this section we argue that the problem of finding the
statistics of a generic quadratic observable is essentially a
FP problem and consequently the formulas derived in the
previous section have many more applications than at first
might appear. Consider the following quadratic observable:

OD = c†Mc + 1
2 c†Nc† + 1

2 cNT c − 1
2 TrM, (18)

where M and N are symmetric and antisymmetric matrices,
respectively. It is much more convenient to write the above
observable in the following form:

OD = 1

2
(c† c)

(
M N
−N −M

)(
c
c†

)
. (19)

Note that the above observable can have support just in a
subsystem D of the full system. With the statistics of this
observable we mean the probability of finding a particular
value if we measure the above quantity if the full system is in
the ground state or any other state. We prove here that this is a
FP problem. To show this we first diagonalize the observable
OD with the standard method of [67] (see Appendix A). The
idea is based on a canonical transformation(

c
c†

)
= U†

(
δ

δ†

)
, (20)

which leads to

OD =
∑

k

|λk|
(

δ
†
k δk − 1

2

)
. (21)

The eigenvalues and the eigenvectors of the observable can be
derived as usual by applying the modes on the ground-state
properties. The next step is to write the Hamiltonian with
respect to the δ

†
k and δk as follows:

Hfree(A, B) = 1

2
(δ† δ)U

(
A B

−B −A

)
U†
(

δ

δ†

)
. (22)

The above equation can now be used to make the main
argument. In the new basis if one calculates the FP with the
new matrices the result is exactly equal to the probability of
finding a particular value for the corresponding observable.
For example, the EFP for the above Hamiltonian is exactly
equal to the probability of finding the minimum value for the

corresponding observable OD. To find the exact formula one
first needs to calculate the correlation matrix:

iG′
jk = 〈ᾱ jαk〉, (23)

where we defined the new Majorana operators αk = δk + δ
†
k

and ᾱ j = i(δ†j − δ j ). Having found the above correlation ma-
trix the rest of the calculation is exactly as described in the
previous section.

When the observable is defined for a subsystem one can
also use the procedure that was outlined in [28] which is
based on the reduced density matrix. When the system is in
the ground state the reduced density matrix can be written as

ρD = det 1
2 (I − G)eH, (24)

H = 1

2
(c† c)

(
P Q

−Q −P

)(
c
c†

)
+ 1

2
Tr ln (Fs), (25)

where H is the entanglement Hamiltonian and(
P Q

−Q −P

)
= ln

(
Fs − FaF−1

s Fa FaF−1
s

−F−1
s Fa F−1

s

)
, (26)

where Fa = F−FT

2 and Fs = F+FT

2 and as before F = I+G
I−G .

Note that the G matrix here is calculated for the original
creation and annihilation operators appearing in the Hamil-
tonian. The idea is again based on writing the entanglement
Hamiltonian in the basis that the observable is diagonal, i.e.,
δ basis. Now, we introduce the fermionic coherent states,
i.e., |γ〉 = |γ1, γ2, . . . , γ|D|〉 = e−∑|D|

k=1 γk δ
†
k |0〉, where γk’s are

Grassmann numbers with the following properties: γnγm +
γmγn = 0 and γ 2

n = γ 2
m = 0. Here, |D| is the number of sites

in the region D. Then, one can write [28]

〈γ|ρD|γ ′〉 = det
1

2
(I − G)

[
det(Fs)

det(F̃s)

] 1
2

e
1
2 (γ̄−γ ′ )F̃(γ̄+γ ′ )

(27)
where we defined

F̃s = eỸ, F̃ = X̃ + eỸ, (28)

with

X̃ = T̃12(T̃22)−1, Z̃ = (T̃−1
22

)
T̃21, e−Ỹ = T̃T

22, (29)

where

T̃ =
(

T̃11 T̃12

T̃21 T̃22

)

= U
(

Fs − FaF−1
s Fa FaF−1

s
−F−1

s Fa F−1
s

)
U†. (30)

Equation (27) can be used to calculate all the desired proba-
bilities using the same method that was developed in [1]. First
of all, it is easy to see that to find the probability of finding the
observable in its minimum value one needs to put all the γ ’s
equal to zero, then we have

p(omin) = det
1

2
(I − G)

[
det(Fs)

det(F̃s)

] 1
2

. (31)

To find the probability of other values, say o, one needs
to know the corresponding modes λk’s which generate the
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desired eigenvalue of the observable and then perform a
Grassmann integral over the corresponding γk’s and put the
other γ ’s equal to zero. The result is

p(o) = det
1

2
(I − G)

[
det(Fs)

det(F̃s)

] 1
2 ∑

g

Min[F̃], (32)

where Min[F̃] is the corresponding principal minor of the
matrix F̃ and the sum takes care of the degeneracies. Note
that one can again use Eq. (11) to get rid of the minor in the
above equation. The above equation is very convenient to get
explicit results for the probabilities without going through the
generating function formalism.

A. Statistics of the number of particles

Statistics of the number of particles in a subsystem is the
simplest possible example one can imagine because the ob-
servable itself is already diagonal. For earlier detailed studies
regarding fluctuations of the particles from the generating
function point of view see [52–54]. It is simple to see that the
probability of finding no particle in the subsystem of size l is
exactly the EFP. Then the probability of finding one particle is
just about summing over all the FP’s with just one fermion. In
other words we need to first calculate the sum of the minors
of rank 1 of the matrix F. For generic case we need to find the
sum of the minors of a particular rank of the matrix. There is
a standard method to calculate these numbers which is called
the Faddeev-LeVerrier algorithm [69] (see also Wikipedia).
The probability of having n particles can be explicitly written
as

p(n) = det
[

1
2 (1 − G)

]
(−1)ncl−n, (33)

where the exact form of the coefficients can be written as

cl−n = (−1)l−n 1

n!
Bn(trF,−trF2, 2!trF3, . . . ,

(−1)n−1(n − 1)!trFn), (34)

where Bn is the complete exponential Bell polynomial [69,70]
(see also Wikipedia). The complete exponential Bell polyno-
mial can be written as

Bn(x1, x2, . . . , xn−k+1) =
n∑

k=1

Bn,k (x1, x2, . . . , xn−k+1), (35)

where the partial exponential Bell polynomial Bn,k is given by
the equation

Bn,k (x1, x2, . . . , xn−k+1)

=
∑ n!

j1! j2! . . . jn−k+1!

(x1

1!

) j1(x2

2!

) j2
. . .

(
xn−k+1

(n − k + 1)!

) jn−k+1

, (36)

where the sum is over all the non-negative j1, j2, . . . , jn−k+1

in a way that we have j1 + j2 + . . . + jn−k+1 = k and j1 +
2 j2 + . . . + (n − k + 1) jn−k+1 = n.

The first few terms of the coefficients can be written as

cl = 1, (37)

cl−1 = −trF, (38)

cl−2 = 1

2!
[(trF)2 − trF2], (39)

cl−3 = − 1

3!
[(trF)3 − 3trF2trF + 2trF3]. (40)

Note that we also have c0 = (−1)l det F. It is worth mention-
ing that using the properties of Bell’s polynomial one can also
write the following recursion relation for the probabilities:

p(n) = −1

n

n∑
j=1

(−1) j trF jP(n − j). (41)

The above formulas indicate that the problem of finding statis-
tics of the number of particles boils down to the calculation of
the trace of different powers of the matrix F.

B. Statistics of the kinks

In this section we provide an example to show how the
formalism of this section should be applied for a nontrivial
observable. We would like to study the statistics of the fol-
lowing quantity:

K = l − 1

2
+ 1

2

l−1∑
j=1

(c†j − c j )(c
†
j+1 + c j+1). (42)

The reason that we call this quantity kink statistics comes
from the spin representation of this quantity after Jordan-
Wigner (J-W) transformation, i.e., c†j =∏ j−1

l=1 σ z
l σ+

j , which

leads to K = 1
2

∑l−1
j=1(1 − σ x

j σ
x
j+1). In this example we have

Mi j = 1
2δi, j+1 + 1

2δi+1, j, Ni j = 1

2
δi+1, j − 1

2δi, j+1. (43)

Using the method of Appendix A one can diagonalize K.
The C matrix is simply Ci j = δi j − δi,1δ j,1, and its eigenvec-
tors ψi( j) ≡ ψi j are chosen to be δi, j (i being the label of
the eigenvector). Showing the eigenvectors by κi, and using
Eq. (A8) for κi 	= 0, we easily show that φi( j) ≡ φi j = δi, j+1.
Using these eigenvectors the following forms for g and h can
be obtained:

gi, j = 1
2δi, j − 1

2δi, j+1 + 1
2δi,1δ j,l ,

hi, j = 1
2δi, j + 1

2δi, j+1 − 1
2δi,1δ j,l ,

(44)

and the corresponding U is

U =
(

g h
h g

)
. (45)

The diagonal form of K is then

K =
∑

k

κ (k)η†
kηk (46)

where

κ (k) =
{+1 if 1 < k � l

0 if k = 1 . (47)
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Having the U matrix now one can write the desired entan-
glement Hamiltonian in the basis of η and then use Eq. (32)
to calculate the probability of having a particular number of
kinks in the ground state of the quantum spin chain. We note
that here we can have n = 0, 1, . . . , l − 1 number of kinks
with the degeneracies

(2l−1
n

)
.

C. Generating function and moments

In this section following the same lines of thinking as
above we give formulas regarding the generating function
and moments of arbitrary quadratic observables. Compared
to the results in [62] these formulas have simpler forms. The
generating function for an arbitrary operator OD is defined as

M(z) = tr[ρDezOD ]. (48)

The trace can be calculated explicitly in the δ representation
and after some manipulations the final result is

M(z) = det 1
2 (I − G)[det(Fs)]

1
2 det[I + ez�T̃]

1
2 , (49)

where � = (|λ| 0
0 −|λ|) is the matrix of the eigenvalues of the

observable OD. After simple expansion we have

M(z) = det

[
I +

∞∑
n=1

zn

n!
τ̃n

] 1
2

, (50)

where τ̃n = �n T̃
I+T̃

. To calculate the moments we need to use
the following formula [71]:

det

[
I +

∞∑
n=1

zn

n!
τ̃n

] 1
2

= 1 +
∞∑

k=1

tk
zk

k!
, (51)

where

tk =
k∑

j=1

f jBk j (g), (52)

and f j = 1
2 j and Bk j (g) is the partial exponential Bell polyno-

mial defined as

1

j!

( ∞∑
k=1

gkε
k

k!

) j

=
∞∑

k= j

Bk j (g1, . . . , gk− j+1)
εk

k!
,

j = 0, 1, 2, . . . , (53)

where ε is just a parameter. Here, we list the first few terms:

t0 = 1, (54a)

t1 = f1g1, (54b)

t2 = f1g2 + f2g2
1, (54c)

t3 = f1g3 + f2(3g1g2) + f3g3
1, (54d)

t4 = f1g4 + f2
(
4g1g3 + 3g2

2

)+ f3
(
6g2

1g2
)+ f4g4

1, (54e)

where g = (g1, g2, . . .) with

gk =
k∑

j=1

(−1) j−1( j − 1)!trBk j (τ̃), (55)

where τ̃ = (τ̃1, τ̃2, . . .). The trBk j (τ̃) can be calculated first
by calculating Bk j (g) and then symmetrization of all the terms

G1G2..Gr → 1
r!

∑
r Gπ1 Gπ2 . . . Gπr , where the Gi’s are any

sequence of the {gk} and the sum is over all permutations.
After having a symmetrized form for Bk j (g), we can now
replace {gk} with {τ̃k} and derive the formulas for trBk j (τ̃).
Here, we list a few of the coefficients:

g1 = trτ̃1, (56a)

g2 = tr
[
τ̃2 − τ̃2

1

]
, (56b)

g3 = tr
[
τ̃3 − 3τ̃1τ̃2 + 2τ̃3

1

]
, (56c)

g4 = tr
[
τ̃4 − 4τ̃1τ̃3 − 3τ̃2

2 + 12τ̃2
1τ̃2 − 6τ̃4

1

]
. (56d)

Finally we have

Em = 〈Om
D

〉 = tm. (57)

The first two moments can be written as follows:

E1 = 1
2 trτ̃1, (58)

E2 = 1
2 tr
[
τ̃2 − τ̃2

1

]+ 1
4 tr2τ̃1. (59)

It is also possible to get simple formulas for the fluctuations
around the average:

Ẽm = 〈(OD − 〈OD〉)m〉. (60)

The first few terms are

Ẽ1 = 0,

Ẽ2 = g2

2
,

Ẽ3 = g3

2
,

Ẽ4 − 3Ẽ2
2 = g4

2
,

Ẽ5 − 10Ẽ2Ẽ3 = g5

2
. (61)

The most general case can be written as

m∑
j=1

(−1) j−1( j − 1)!Bm j (Ẽ1, Ẽ2, . . . , Ẽm− j+1) = gm

2
. (62)

Finally one can also write the cumulants defined as

κm = dm

dzm
log M(z)|z=0 (63)

with respect to the Em and Ẽm as follows [70]:

κm =
m∑

j=1

(−1) j−1

{
( j − 1)!Bm j (0, Ẽ2, . . . , Ẽm− j+1)

( j − 1)!Bm j (E1, E2, . . . , Em− j+1)
(64)

where m > 0 for the first branch and m > 1 for the second
one. The above formulas have relatively simpler form than the
ones presented in [62]. However, we note that here we assume
that the observable should be first diagonalized and then the
moments should be calculated. In the approach of [62] no
diagonalization is needed.

165415-6



FORMATION PROBABILITIES AND STATISTICS OF … PHYSICAL REVIEW B 101, 165415 (2020)

IV. TRANSVERSE FIELD XY CHAIN WITH A STAGGERED
LINE DEFECT

In this section we would like to provide an exact de-
terminant formula for the formation probability of the Neel
subconfiguration, i.e., |↓↑↓↑ . . .〉, in the XY chain by a direct
method, that is the configuration in which the spins are in the
Neel state for the sites lying in the interval [1, n]. In principle
the formulas (13) and (14) are explicit examples which lead to
block Toeplitz matrices. However, the direct method has this
advantage that one can get an exact formula for the correlation
matrix of the line defect problem which can be useful for its
own sake. In this section we first explicitly show that the FP
of the Neel configuration is the EFP for the staggered XY
Hamiltonian. Then we solve the line defect Hamiltonian by
using the J-W transformation and find the exact correlation
matrix and EFP for the ground state.

The Hamiltonian of the transverse field XY chain is

HXY =−J
L∑

l=1

(
1 + γ

4
σ x

l σ x
l+1 + 1 − γ

4
σ

y
l σ

y
l+1

)
− h

2

L∑
l=1

σ z
l ,

(65)

where σ i
l (i = x, y, z) are the Pauli matrices, J is the exchange

parameter, and h is the magnetic field. The FP of the Neel
state for the interval of length n (which we take always even)
is readily found to be

p↑↓(n) = 〈g|
(

1 − σ z
1

2

)(
1 + σ z

2

2

)(
1 − σ z

3

2

)
. . .

(
1 + (−1)nσ z

n

2

)
|g〉

= 〈g′∣∣ n∏
j=1

1 − σ z
j

2

∣∣g′〉, (66)

where |g〉 is the ground state of the XY chain, |g′〉 ≡ P(n)
x |g〉,

and P(n)
x is the projection operator defined by

∏ n
2
j=1 σ x

2 j ,

satisfying the relation (Pn
x )2 = 1. One can easily check that

|g′〉 is the ground state of H ′
XY ≡ P(n)

x HXY P(n)
x with the same

ground-state energy as HXY . Therefore, p↑↓(n) is the EFP
[represented by p(n) defined as the probability that all spins
are down] of the ground state of H ′

XY . After applying P(n)
x , we

find that the explicit form of H ′
XY is

H ′
XY = −J

L∑
l=1

(
1 + γ

4
σ x

l σ x
l+1 + 1 − γ

4
fn(l )σ y

l σ
y
l+1

)

− 1

2

L∑
l=1

hn(l )σ z
l , (67)

where fn(l ) = −1 and hn(l ) = (−1)l+1h for the case l � n,
and fn(l ) = +1 and hn(l ) = +h for the case l > n. To work
with the fermionic Hamiltonian corresponding to the spin

chain, we use J-W transformation defined by

c†l ≡
∏
j<l

σ z
j σ

+
l ,

cl ≡
∏
j<l

σ z
j σ

−
l ,

(68)

where σ+
l ≡ 1

2 (σ x + iσ y), and σ−
l ≡ 1

2 (σ x − iσ y). The trans-
formed Hamiltonian then becomes

H ′
XY = 1

2

L−1∑
l=1

[Jn(l )(c†l cl+1 − clc
†
l+1)+Jγn(l )(c†l c†l+1−clcl+1)]

− NJ

2
(c†Lc1 + γ c†Lc†1 + H.c.) −

L∑
l=1

hn(l )c†l cl + const,

(69)

where const = 1
2

∑L
l=1 hn(l ), and

Jn(l ) ≡
{

J if l > n
γ J if l � n

, γn(l ) ≡
{
γ if l > n
1 if l � n

. (70)

Note that this Hamiltonian is identical to the free fermionic
Hamiltonian corresponding to the XY model (without stag-
gered interval) outside the staggered interval as expected. In
the above equations H.c. is the Hermitian conjugate term
and N is the eigenvalue of N̂ ≡∏ j�L (2c†j c j − 1) (note that
cL+1 = −Nc1). In the σ z basis, if the number of down spins is
odd (or equivalently the odd number of fermionic vacancies),
then N ≡ −1 [corresponding to the periodic boundary condi-
tions in the fermionic representation, i.e., Ramond (R) sector],
and in the other case (even number of down spins) N ≡ +1
[corresponding to the antiperiodic boundary conditions, i.e.,
Neveu-Schwartz (NS) sector].

For the R sector (N = −1) the fermionic Hamiltonian
becomes periodic as follows (ignoring the constant term):

H ′
XY = 1

2

L∑
l=1

[Jn(l )(c†l cl+1−|clc
†
l+1)+Jγn(l )(c†l c†l+1−clcl+1)]

−
L∑

l=1

hn(l )c†l cl + 1

2

L∑
l=1

hn(l ), (71)

whereas for the N = +1 case the periodicity is destroyed.
To retrieve the periodicity, we can use the transformation
c̄l = exp [i π (N+1)

2L l]cl , which results in c̄L+1 = c̄1. The cost
of this operation is that the allowed momenta become half-
integer multiplications of 2π

L . In the followings we denote
the fermionic operators for both cases by c and c†, keeping
in mind that for the R sector the momenta should be integer
multiplications of 2π

L , whereas for the NS sector they should
be half integers.

To proceed in finding the staggered spin probability, it
is first useful to represent the same for the EFP for the
ordinary transverse field XY chain which is well studied in
the literature [9–12]. It can be found using Eq. (4). To make
contact with the notation of [11] it is useful to define the
matrix S = I−GT

2 , where Si j (n) = s(1)
i j + is(2)

i j , s(1)
i j ≡ 〈cic

†
j 〉,

and s(2)
i j ≡ i〈cic j〉. Then the EFP of the XY model (i.e., with
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no staggered interval involved) is shown to be

p(n)|HXY = |Det[S(n)]|. (72)

Additionally for this case, using the exact forms of the corre-
lation functions one readily finds

Sfree
j,k (n) = 1

2
δi j + 1

2

∫ 2π

0

dq

2π
σ (q)eiq( j−k),

σ (q) = cos q − h − iγ sin q√
(cos q − h)2 + γ 2 sin2 q

,

(73)

from which we see that

Gjk = −
∫ 2π

0

dq

2π
σ (q)e−iq( j−k). (74)

The matrix S(n) for the ordinary XY model is a Toeplitz
matrix, for which the EFP as the determinant of S(n) can be
found in the thermodynamic limit using the Fisher-Hardwig
technique [11]. Also using the fact that a1 = a−1 = J

2 , b1 =
γ

2 , and a0 = −h in Eq. (7), one readily finds

f (q)

| f (q)| = −J cos q − h + iγ sin q

�(q)
= −σ (q)∗ (75)

which (noting that the G matrix is real) is compatible
with Eq. (10). For the present case (with the ground
state |g′〉) we note that p↑↓(n)|HXY = P(n)|H ′

XY
, and there-

fore one should find a way to diagonalize H ′
XY . To this

end, we use the procedure of Lieb et al. [67], accord-
ing to which, after writing the Hamiltonian in the form
H ′

XY =∑i, j [c†i Ai, jc j + 1
2 (c†i Bi, jc

†
j + H.c.)], one finds the en-

ergy spectrum by diagonalizing C = (A − B)(A + B). The
details of this calculation can be found in Appendices A and
B. The matrix C for H ′

XY has the following form:

Cii = h2 + 1

2
J2(1 + γ 2),

Ci,i+1 =
{

(−1)ihJ if i � n
−hJ if i > n

,

Ci,i+2 =
{− 1

4 J2(1 − γ 2) if i � n
1
4 J2(1 − γ 2) if i > n

,

(76)

and Ci, j = −hJ if i = 1, j = L or i = L, j = 1 and Ci, j = 0
for other cases. Following [67] one can find the eigenval-
ues and the eigenvectors of C, the eigenvalue of which is
represented by �2

k , being the square of the energy spectrum
of the system without the line defect (see Appendices A
and B for details). Since A (B) is symmetric (antisymmet-
ric), (A − B)(A + B) and (A + B)(A − B) are symmetric and
their eigenvalues are real and the eigenvectors ψ and φ [see
Eqs. (A10) and (A11)] can be chosen to be orthogonal. To find
such solutions, we use the trial function:

ψk j ≡ 1
2 [1 + (−1) j](a1 sin kmj + a2 cos kmj )

+ 1
2 [1 − (−1) j](a3 sin kmj + a4 cos kmj ), (77)

where k labels the eigenfunctions, j is the number of the sites
in the real space, mj ≡ [ j+1

2 ], and a1, a2, a3, and a4 are the
coefficients which have to be fixed using Eq. (A10). This
pairing mechanism facilitates the calculations (note that sin
and cos are exact solutions for mj 
 m0 ≡ n

2 and mj � m0).

The strategy is as follows: We find two kinds of solutions:
one for deep inside the staggered interval (DISI), and the
other for deep outside the staggered interval (DOSI) with
different coefficients. Then we should glue them by fulfilling
the requirements at j = 1 and j = n, i.e., where the staggered
interval begins and ends, respectively. This has been done in
Appendix B in detail. There we show that the solutions at
DISI and DOSI are the same, up to a phase shift ks → ks − π

where ks = 4π
L s is twice the real momentum qs which is qs ≡

2π
L s for N = −1 (R sector) and qs ≡ 2π

L (s + 1
2 ) for N = +1

(NS sector) and s runs over − L
2 ,− L

2 + 1 . . . , L
2 − 1. After

applying the boundary conditions, one reaches finally to the
following function which diagonalizes C (see Appendix B):

ψs j =
√

2

L

{−(−1)mj cos qs[ j − n] j � n

cos qs[ j − n] j > n
(78)

with the eigenvalues �2
q = (J cos qs − h)2 + γ 2 sin2 qs. The

other independent solution is obtained by replacing cos by sin.
We consider the above solution for qs � 0, and the sin solution
for qs > 0. To continue we should find the other solution (φs j)
which can easily be obtained using Eq. (A9), for �q 	= 0:

φXY ( j � n) = −
√

2

L
�−1

qs

[
(−)mj+a j h cos qs( j − n)

+ (−)mj−1

(−1 + γ

2

)
cos qs( j − n − 1)

+ (−)mj+1

(
1 + γ

2

)
cos qs( j − n + 1)

]
,

φXY ( j = n + 1) = −
√

2

L
�−1

qs

[
h cos qs( j − n)

(−)mj−1

(−1 + γ

2

)
cos qs( j − n − 1)

− 1 + γ

2
cos qs( j − n + 1)

]
,

φXY ( j > n + 1) = −
√

2

L
�−1

qs

[
h cos qs( j − n)

+ −1 + γ

2
cos qs( j − n − 1)

− 1 + γ

2
cos qs( j − n + 1)

]
, (79)

where aj (not to be confused with the coefficients a1, a2, a3,
and a4) is 1 if j belongs to the first sublattice (odd js) and
zero for the other sublattice (even j). This solution is reserved
for s � 0, and for qs > 0 one should replace cos by sin. For
�k = 0 the solution is φ( j) = ±ψ ( j). Having ψ and φ so-
lutions in hand, one can directly calculate gsi ≡ 1

2 (ψsi + φsi )
and hsi ≡ 1

2 (ψsi − φsi ) to diagonalize H [see relation (A4)].
For example, 〈cic j〉 =∑s gsihs j where s is the integer (half
integer) for N = −1 (N = +1). Working out with f i, j

AB =∑L/2−1
s=− L

2
AsiBs j , in which A, B = ψ, φ, one can easily show

that always (irrespective to the amount of i and j being inside
or outside the staggered interval) f i, j

ψψ = f i, j
φφ = δi j , and δi j is

the Kronecker delta. These functions help us to calculate the
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important correlation functions:

〈cic
†
j 〉 = 1

4 [ fψψ + fψφ + fφψ + fφφ],

〈cic j〉 = 1
4 [ fψψ − fψφ + fφψ − fφφ],

〈c†i c†j 〉 = 1
4 [ fψψ + fψφ − fφψ − fφφ],

〈c†i c j〉 = 1

4
[ fψψ − fψφ − fφψ + fφφ]. (80)

We now calculate the correlation functions explicitly. In
what follows, we consider the case in which i, j � n, and
extension to the other cases is straightforward. To calculate
the correlation functions, we need the following identity that
has been proved in Appendix C:

1
4

(
fψφ ± fφψ

) = χ±
i j σ1(i, j) + χ∓

i j σ2(i, j), (81)

where χ+
i j = [ 1+(−)ai−a j

2 ](−)mj+1−mi and χ−
i j =

[ 1−(−)ai−a j

2 ](−)mj+1−mi , and also

σ1( j, k) = 1

2L

∑
s

cos qs(k − j)

(−h + cos qs

�s

)

= 1

2L

∑
s

(−h + cos qs

�s

)
e−iqs (k− j),

σ2( j, k) = 1

2L

∑
s

sin qs(k − j)

(
γ sin qs

�s

)

= i

2L

∑
s

(
γ sin qs

�s

)
e−iqs (k− j), (82)

where we have used the symmetry considerations to add extra
zero contributions, and for the summation s is the integer for
the R sector, and half integer for the NS sector. Therefore, if i
and j belong to the same sublattice then we have

�1(i, j) ≡ 1
4 ( fψφ + fφψ ) = (−)mj+1−miσ1( j − i),

�2(i, j) ≡ 1
4 ( fψφ − fφψ ) = (−)mj+1−miσ2( j − i), (83)

and

�1(i, j) = (−)mj+1−miσ2( j − i),

�2(i, j) = (−)mj+1−miσ1( j − i), (84)

if they belong to the different sublattices. Therefore, at this
stage we can find the explicit forms of the correlation func-
tions, which are

〈cic
†
j 〉 = 1

2
δi j + χ+

i j σ1(i, j) + χ−
i j σ2(i, j),

〈cic j〉 = χ+
i j σ2(i, j) + χ−

i j σ1(i, j). (85)

Also note that 〈c†i c†j 〉 = −〈cic j〉 and 〈c†i c j〉 = δi j − 〈cic
†
j 〉,

that can be readily checked.
Finally we turn to the calculation of the formation proba-

bility of the Neel configuration which is the EFP for H ′
XY . It

can be determined by calculating |Det(Sn)|, the elements of
which are si j = 〈cic

†
j 〉 − 〈cic j〉 as outlined above. Using the

above correlation functions, one simply obtains

s jk = 1
2δ jk + 1

2 (χ+
jk − χ−

jk )σ ( j, k), (86)

where

σ ( j, k) ≡ 2[σ1( j, k) − σ2( j, k)]

= 1

L

L/2−1∑
s=−L/2

(
cos qs − h − iγ sin qs

�s

)
eiqs ( j−k). (87)

This matrix in the L → ∞ limit becomes

σ ( j, k) =
∫

dq

2π
σ (q)eiq( j−k), (88)

where σ (q) is defined in Eq. (73). s jk is compatible with the
result for the free case, i.e., Eq. (73), except that here a sign
matrix [sgn( j, k) ≡ χ+

jk − χ−
jk] is multiplied. The closed form

of this sign matrix is

sgn( j, k) = cos π (k − j)

{
− (−)

j+k
2

∣∣∣cos
π

2
(k − j)

∣∣∣
+ (−)

j−k−1
2

∣∣∣sin
π

2
(k − j)

∣∣∣}. (89)

For example, the explicit form for the above sign matrix for
n = 8 is

sgn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − − + + − − +
+ − − + + − − +
− + + − − + + −
− + + − − + + −
+ − − + + − − +
+ − − + + − − +
− + + − − + + −
− + + − − + + −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (90)

One can easily check that the above sign matrix is different
from the ones suggested in (17). As we already discussed in
Sec. II there are different sign matrices that lead to the same
FP’s but they come from different correlation matrices. It is
worth mentioning that since the Hamiltonian of the transverse
field XY chain that we considered here was with periodic
boundary conditions we ended up having R and NS sectors
for the fermionic counterparts. Finding which one is the actual
ground state of the spin system is a nontrivial problem. Since
our line defect problem has the same eigenvalues the problem
is similar to the clean case and we refer to [72] for systematic
study of the clean case. Note that the calculated sign matrix
is correct not only for the ground state of R and NS sectors
of the XY chain but also for the generic one-dimensional
translational invariant free fermions.

Here we summarize the results of this section containing
the final expressions. The aim of this section was to obtain the
staggered (Neel) configuration probability for the ground state
of the XY model:

p↑↓(n) = |Det(Sn)| (91)

where the elements of Sn are s jk . Using the method outlined
in [67] to find the energy eigenvalues, we found the analytic
expression for the elements of the matrix Sn, i.e.,

s jk = 1
2δ jk + 1

2 sgn( j, k)σ ( j, k) (92)
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where

sgn( j, k) = cos π (k − j)
{
−(−)

j+k
2

∣∣∣cos
π

2
(k − j)

∣∣∣
+ (−)

j−k−1
2

∣∣∣sin
π

2
(k − j)

∣∣∣}, (93)

and

σ ( j, k) = 1

L

L/2−1∑
s=−L/2

(
cos qs − h − iγ sin qs

�s

)
eiqs ( j−k). (94)

As we mentioned before, Eqs. (91)–(93) are valid for all the
one-dimensional translationally invariant free fermions as far
as we use the corresponding σ ( j, k).

V. PROBABILITY DISTRIBUTION OF PARTICLE
NUMBERS AND KINKS IN THE TRANSVERSE FIELD XY

CHAIN

In this section we provide a couple of examples to show
how the explicit formulas that we provided in the previous
sections can be applied to calculate the probability distribution
of quadratic observables. In both cases the model that we take
is the ground state of the transverse field XY chain which
has a rich phase diagram with three critical lines at h = 1,
γ 	= 0; h = −1, γ 	= 0; and γ = 0, −1 < h < 1. Here we
concentrate mostly on the non-negative transverse field part
of the phase diagram and study probability distribution of
particle numbers and kinks in the transverse field XY chain.

A. Probability distribution of magnetization

The first example is the distribution of the magnetization
in the σ z direction in an interval of size l . This is equivalent
to the distribution of the number of particles that we have
studied in Sec. III A by the relation Mz ≡∑i σ

z
i = 2N − 1,

where N is the total number operator of fermions in the
subsystem, with eigenvalue n. The generating function of this
quantity in the thermodynamic limit has been already studied
in [60], however it does not seem to be straightforward to
do the inverse Laplace transform analytically or numerically
in the most generic cases. Using the formulas of Sec. III B
with appropriate G and F matrices we can easily calculate
this distribution numerically for arbitrary parameters of the
Hamiltonian. The results are depicted in Fig. 1, which shows
clear change of behavior when we cross the critical line
h = 1. The emergent oscillations in the region h � 1 are
similar to the ones that have already been seen in the study
of the EFP in [11] and attributed to the competition between
the energy cost of flipping a spin (controlled by h) and the
superconducting terms which create and destroy fermions in
pairs (controlled by γ ). Although not shown here, similar
oscillations also appear in the region −1 � h with peaks
shifted to the left part of the graph. To better understand these
results we first consider h = 0 (other h < 1 values are shifts
of the graphs to the right, keeping the shape of the graph
nearly unchanged). For γ = 1 we have the Ising model with
Z2 symmetry, for which the ground state is

|g〉 = 1√
2

[|+,+, . . . ,+〉x + |−,−, . . . ,−〉x] (95)

0.0
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p
(n

) γ = 0.5

h = 0.5 h = 1 h = 1.5

0.0

0.2

p
(n

) γ = 1

10 15 20 25 30
n

0.0

0.2

p
(n

) γ = 1.5

FIG. 1. Probability distribution of the number of particles, equiv-
alent to the magnetization in the σ z direction in terms of γ and h for
the XY chain with L = 200 and l = 30.

where |±〉x is the eigenstate of σ x with ±1 eigenvalue. Using
this, one can easily find the reduced density matrix:

ρl = 1

2l+1

∑
{σz}{σ ′

z }
(1 + (−)nσ

−+nσ ′
− 1)

× ∣∣σ (1)
z , σ (2)

z . . . σ (l )
z

〉〈
σ ′

z
(1)

, σ ′
z

(2)
. . . σ ′

z
(l )∣∣ (96)

where nσ
− is the number of down spins, and the summations

are over all spin configurations σz and σ ′
z . The formation

probabilities, which are the diagonal elements of the above
equation, are therefore constant, i.e., 1

2l . Therefore we see
that all configurations appear in the reduced density matrix
with the same probability, i.e., for the zero-magnetic field
Ising model the probability distribution of particle numbers
is expected to be bimonial, which is

pγ=1,h=0(n) = pbinomial = 1

2l

l!

(l − n)!n!
. (97)

In Fig. 2 we show the results for the XY model with magnetic
field fixed to zero. All distributions have a mean value at
l
2 . We see that the graph for γ = 1 fits completely to the
binomial distribution as expected. The amount of γ controls
the width of the distribution, so that for γ = 0 we have a
U (1) symmetry, and the number of particles is fixed and
consequently the distribution is just a Dirac delta function.
For small h the effect of increasing γ [which controls the
strength of U (1) symmetry breaking] is just broadening the
distribution by increasing the variance. It is easy to show that
(see, for example, [62]) the average of the number of fermions
is given by

〈N 〉 = l

2

(
1 + l−1Tr[G]

)
(98)

and its fluctuation is (N ′ ≡ l− 1
2 N )

〈N ′2〉 − 〈N ′〉2 = 1
4 (1 − l−1Tr[G2]) (99)

where the matrix G was defined in Eq. (10) (note that for
γ = 1 and h = 0 we have G = 0, so that 〈N ′2〉 − 〈N ′〉2 = 1

4 ).
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FIG. 2. Probability distribution of the number of particles, equiv-
alent to the magnetization in the σ z direction for the XY chain with
L = 200 and l = 30, in terms of γ for h = 0. The inset shows the
width of the distribution (〈N 2〉 − 〈N 〉2), obtained from Eq. (99).

The variance of N is shown in the inset of Fig. 2 for h = 0,
in which we see that the width of the distribution function
increases with γ . Generally, in the thermodynamic limit, this
function tends to a value that depends on the γ and h.

B. Probability distribution of kinks

As a second example of our formalism we discuss the
distribution of kinks in the ground state of the XY chain.
Using the method that was provided in Sec. III B, we cal-
culated with exact numerical calculations the probability of
having different number of kinks in the ground state and
presented the results in Fig. 3. Similar to the particle number
distribution here too we have clear change of behavior around
the critical line. However, the oscillations are now appearing
in the regions −1 � h � 1. This is not surprising because the
σ z

j and σ x
j σ

x
j+1 have dual behavior. In the case of the transverse

0.00
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0.50

p
(k

) γ = 0.5
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p
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FIG. 3. Probability distribution of the kinks in the σ x direction
for the XY chain (L = 200 and l = 18) using the exact diagonal-
ization outlined in Sec. III. The graph shows the dependence on γ

and h.
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FIG. 4. Illustration of the Kramers-Wannier duality. The figure
shows the probability distribution of the magnetization (pparticles) and
the kinks (pkink) for γ = 1 and h = 2 and h̃ = 1

h = 0.5 for L = 200
and l = 18.

field Ising chain this duality is exact and it is called Kramers-
Wannier (KW) duality, which connects the Hamiltonian with
the magnetic field h to the one with the magnetic field h̃ ≡ 1

h .
To see the effect of this duality on the distribution we plotted
in Fig. 4 the particle number and kink distribution for two dif-
ferent dual magnetic fields. To make the comparison easy we
mirrored and shifted (by one unit) one of the distributions. The
two distributions are perfectly matching, which is a nice way
to see the effect of the KW duality on the FCS. One can get
some intuition about the fluctuations of the kink probability
distribution using a similar argument as the previous section.
Using the same equations [62] for the kink operator [Eq. (42)]
one easily finds that

〈K〉 = l − 1

2

⎛
⎝1 + 1

l − 1

∑
j

G j, j+1

⎞
⎠ (100)

and also [K′ ≡ (l − 1)−
1
2 K]

〈K′2〉 − 〈K′〉2 = 1

4

⎛
⎝1 − 1

l − 1

∑
jk

G j,k+1Gk, j+1

⎞
⎠. (101)

The second term in the large l limit gives a number which
depends on the parameters of the Hamiltonian. This number
can be in principle written as a double integral. When γ =
0 and h > 1,

(p(k)= 1
2l−1 l−1
k

)
is completely symmetric, having

its peak at kmax = l−1
2 . As γ increases, this peak shifts to the

left, i.e., lower amounts. But this does not continue to zero
kink, i.e., for large γ both the average and the width of kinks
saturate. To see the properties of kinks at large γ let us inspect
the XY Hamiltonian (65), which becomes HXY (γ → ∞) ≈
− γ J

4

∑
l (σ x

l σ x
l+1 − σ

y
l σ

y
l+1), including two competing terms.

The first term (which commutes with K) is minimal in large
γ when there is no kink, whereas the second term generates
fluctuations preventing the ground state from having a number
of kinks less than a minimal value. To see this, let us consider

165415-11



M. N. NAJAFI AND M. A. RAJABPOUR PHYSICAL REVIEW B 101, 165415 (2020)

only the second term the ground state of which is

|g〉y = 1√
2

[|+,−,+,− . . .〉y + |−,+,−,+ . . .〉y] (102)

where |±〉y is the eigenvector of σ y with the eigenvalue ±1.
By constructing the reduced density matrix in the basis of σ x,
one can show that the probability of having k kinks is

pk = 1

2l−1

(
l − 1

k

)
+ 1

2l−1

l
2∑

j=0

(−1)k− j

( l
2 − 1

j

)( l
2

k − j

)
.

(103)
Using this relation, we find that 〈K2〉 = l (l−1)

4 and 〈K〉 = l−1
2 ,

which gives the width of the distribution l−1
4 . Therefore we

see that the second term generates kinks, so that we expect
that in the limit γ → ∞ the width of the distribution of kinks
becomes a finite value. Another way to understand this is to
look at the kink operator, which commutes with

∑
j σ

x
j σ

x
j+1,

so that they have simultaneous eigenvectors, e.g., a state with
zero kinks which is the ground state of the first term of
HXY (γ → ∞). The second term of HXY (γ → ∞) (containing∑

j σ
y
j σ

y
j+1) does not commute with K, which according to the

Heisenberg uncertainty relation generates uncertainty in the
expectation value of K. This translates to generating a finite
width in the distribution of kinks in the γ → ∞ limit.

VI. CONCLUSIONS

In this paper we studied formation probabilities and full
counting statistics of the quadratic observables in the free
fermions and the corresponding spin chains. We first showed
that the problem of FP of the ground state of a generic
free fermion can be translated into an emptiness formation
probability of a free fermionic Hamiltonian with defects. In
one dimension the defect is a line but in higher dimensions
it can have different forms. Using the same line of thinking
we then provided determinant formulas for the FP’s with
respect to the correlation matrix of the ground state of the
Hamiltonian. In the second part of the paper we studied
FCS of a generic quadratic observable in the ground state
of a generic free fermion Hamiltonian. We showed that the
probability of finding a particular value for the observable
is exactly a FP problem for a Hamiltonian written in the
basis that diagonalizes the observable. We showed how this
can be done for a full system and also for the subsystem in
the most generic case. Two simple cases, i.e., fluctuations of
particles and kinks, were discussed to show how one should
implement the presented ideas. Finally, in the last section we
solved the problem of the transverse field XY chain with a
staggered magnetic line defect. We found exact correlation
functions in and outside of the staggered region and provided a
determinant formula for the FP of the staggered configuration
in the ground state of the XY chain. Throughout the paper
we tried to keep the discussion general except when we were
presenting explicit examples to show how the procedure can
be followed. Clearly one can take a particular model such as
the XY chain and apply the presented methods. The numerical
method to calculate these quantities are quite simple; however,
to further push the analytical calculations in specific cases
one normally needs to hire such methods as the generalized

Fisher-Hartwig theorem which is beyond the scope of this
paper and we hope to come back to them in future works.

Finally we stress that all of our results are valid inde-
pendent of dimension as far as we have Wick’s theorem
and δ jk = 〈γ jγk〉 = −〈γ̄ j γ̄k〉 and iG jk = 〈γ̄ jγk〉, which is the
case for all the eigenstates of quadratic Hamiltonians with
real couplings. The same can be also applied for the finite-
temperature systems and for the generalized Gibbs ensemble.
When Wick’s theorem is valid but 〈γ jγk〉 and 〈γ̄ j γ̄k〉 are not
identity matrices, like when the couplings are not real or
for the time-dependent cases, one needs to make a small
adjustment to the above equations that we leave for future
studies.
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APPENDIX A: DIAGONALIZATION OF THE FREE
FERMIONS

In this subsection, we summarize the result of [67]. Con-
sider a generic quadratic observable with real couplings:

O =
∑

i j

[
c†i Mi jc j + 1

2
c†i Ni jc

†
j + 1

2
ciNjic j

]
− 1

2
TrM,

(A1)
where c†i and ci are fermionic creation and annihilation op-
erators, and i and j run over the interval {1, 2, . . . , L}. The
Hermitian observable requires M and N to be symmetric
and antisymmetric matrices, respectively. To diagonalize the
operator we use the following canonical transformation:(

c
c†

)
= U†

(
η

η†

)
, (A2)

with

U =
(

g h
h∗ g∗

)
, (A3)

which results in g and h being L × L matrices, and the
diagonal form of O is

O =
∑

k

|λk|
(

η
†
kηk − 1

2

)
. (A4)

By requiring that [ηk, O] = |λk|ηk , it is found that

ηkgki =
∑

j

(gk jMji − hk jNji ),

ηkhki =
∑

j

(gk jNji − hk jMji ). (A5)

By defining new matrices ψ and φ as follows,

g = 1
2 (ψ + φ), (A6)

h = 1
2 (ψ − φ), (A7)
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Eq. (A5) results in

�k (M − N) = |λk|�k, (A8)

�k (M + N) = |λk|�k (A9)

or equivalently

�k (M − N)(M + N) = |λk|2�k, (A10)

�k (M + N)(M − N) = |λk|2�k . (A11)

where (�k )i = φki and (�k )i = ψki. Therefore �k and λk can
be calculated by solving the eigenvalue equation (A10), and,

for λk 	= 0, �k can be determined using (A8). For λk = 0, one
should solve Eq. (A9) directly to obtain �k .

Having obtained h and g, one can calculate the correlation
matrix G for the full system defined as

Gi j = 〈(c†i − ci )(c
†
j + c j )〉. (A12)

In terms of h and g, G can be also calculated as follows:

G = (h† − g†)(g + h). (A13)

In the following sections we use the above construction to
diagonalize the XY Hamiltonian.

APPENDIX B: DIAGONALIZATION OF THE STAGGERED XY MODEL

In this section we present the details of diagonalization of the (modified) XY Hamiltonian. The observable of interest here is
the formation probability of the staggered pattern. The general scheme is to apply a projection transformation in such a way that
this probability becomes an EFP in a modified XY Hamiltonian.

The formation probability for the staggered configuration |↓↑↓↑ . . .〉 at zero temperature is

pstag(n) = 〈0|
(

1 − σ z
1

2

)(
1 + σ z

2

2

)(
1 − σ z

3

2

)
. . .

(
1 + (−1)nσ z

n

2

)
|0〉

= 〈0|
(

1 − σ z
1

2

)
σ x

2

(
1 − σ z

2

2

)
σ x

2

(
1 − σ z

3

2

)
. . . (σ x

n )n+1

(
1 − σ z

n

2

)(
σ x

n

)n+1|0〉

=
⎛
⎝〈0|

int( n
2 )∏

j=1

σ x
2 j

⎞
⎠ n∏

j=1

(1 − σ z
j

2

)⎛⎝int( n
2 )∏

j=1

σ x
2 j |0〉

⎞
⎠.

(B1)

To go to the fermionic section, we use the J-W transformation [Eq. (68)]. After applying Px =∏int( n
2 )

j=1 σ x
2 j and also J-W

transformation we obtain Eq. (67), from which we obtain

H ′
XY = 1

2

L−1∑
l=1

[Jn(l )(c†l cl+1 − clc
†
l+1) + Jγn(l )(c†l c†l+1 − clcl+1)] − NJ

2
(c†Lc1 + γ c†Lc†1 + H.c.) −

L∑
l=1

hn(l )c†l cl + const, (B2)

where the constants were defined in Eq. (70). Also note that cL+1 = −Nc1, from which we see that for N = −1 one obtains

H ′
XY = 1

2

L∑
l=1

[Jn(l )(c†l cl+1 − clc
†
l+1) + Jγn(l )(c†l c†l+1 − cl cl+1)] −

L∑
l=1

hn(l )c†l cl + const. (B3)

If we write the modified XY Hamiltonian in the following form,

H ′
XY =

∑
i, j

[
c†i Ai, jc j + 1

2
(c†i Bi, jc

†
j + H.c.)

]
, (B4)

then we have

Ai j (i � n and j � n) =
{

(−1)ih if i = j
1
2γ J if i = j ± 1

,

Ai j (i > n or j > n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−h if i = j
1
2 J if i = j ± 1
1
2 J if i = 1, j = L or i = L, j = 1

0 otherwise

.

(B5)
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Also,

Bi j (i � n and j � n) =
{

1
2 J if i = j + 1

− 1
2 J if i = j − 1

,

Bi j (i > n or j > n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2γ J if i = j + 1

− 1
2γ J if i = j − 1

− 1
2γ J if i = 1, j = L

1
2γ J if i = L, j = 1

0 otherwise

.

(B6)

Therefore one obtains the following form for C ≡ (A − B)(A + B):

Cii = h2 + 1

2
J2(1 + γ 2),

Ci,i+1 =
{

(−1)ihJ if i � n

−hJ if i > n
,

Ci,i+2 =
{

− 1
4 J2(1 − γ 2) if i � n

1
4 J2(1 − γ 2) if i > n

.

(B7)

Note that C is symmetric, and also CL−1,1 = CL,2 = C1,L−1 = C2,L = 1
4 J2(1 − γ 2), and also C1,L = CL,1 = −hJ . All other

components of C are zero. We use Eq. (77) to diagonalize this matrix and obtain �k’s and also �. We analyze two cases
separately: m � n

2 (deep inside the staggered interval, or the DISI region) and m 
 n
2 (deep outside the staggered interval, or

the DOSI region).

1. DISI case

For the solution, we consider the trial function Eq. (77) with constants a1, a2, a3, and a4 coefficients to be determined. This
function can be rewritten in the following form:

ψ (m) =
{

a1 sin km + a2 cos km for the odd sublattice
a3 sin km + a4 cos km for the even sublattice. (B8)

In this case, applying Eq. (A10), we end up with two sets of equations (due to the bipartite nature of the lattice) to be solved (for
DISI):

(1) sin km

[
−1

2
a1J2(1 − γ 2) cos k + a3hJ (cos k − 1) + a4hJ sin k + a1

(
h2 + 1

2
J2(1 + γ 2) − �2

k

)]

+ cos km

[
−1

2
a2J2(1 − γ 2) cos k − a3hJ sin k + a4hJ (cos k − 1) + a2

(
h2 + 1

2
J2(1 + γ 2) − �2

k

)]
= 0,

(2) sin km

[
−1

2
a3J2(1 − γ 2) cos k + a1hJ (cos k − 1) − a2hJ sin k + a3

(
h2 + 1

2
J2(1 + γ 2) − �2

k

)]

+ cos km

[
−1

2
a4J2(1 − γ 2) cos k + a1hJ sin k + a2hJ (cos k − 1) + a4

(
h2 + 1

2
J2(1 + γ 2) − �2

k

)]
= 0.

(B9)

Each component (the coefficients of sin km and cos km) should be separately set to zero. Therefore, we obtain⎧⎪⎨
⎪⎩

a1ζk + a3hJ (cos k − 1) + a4hJ sin k = 0
a2ζk − a3hJ sin k + a4hJ (cos k − 1) = 0
a3ζk + a1hJ (cos k − 1) − a2hJ sin k = 0
a4ζk + a1hJ sin k + a2hJ (cos k − 1) = 0

(B10)

where ζk ≡ − 1
2 J2(1 − γ 2) cos k + h2 + 1

2 J2(1 + γ 2) − �2
k . In the matrix form, we have⎡

⎢⎣
ζk 0 hJ (cos k − 1) hJ sin k
0 ζk −hJ sin k hJ (cos k − 1)

hJ (cos k − 1) −hJ sin k ζk 0
hJ sin k hJ (cos k − 1) 0 ζk

⎤
⎥⎦
⎡
⎢⎣

a1

a2

a3

a4

⎤
⎥⎦ = 0. (B11)
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By setting the determinant to zero, we find that the eigenvalues should be of the following form:

�2
k = 1

2

[
2h2 + J2(1 + γ 2) − J2(1 − γ 2) cos k ± 4hJ sin

k

2

]
(B12)

and the corresponding eigenvectors are

η−
1 =

⎛
⎜⎜⎝

− cos k
2

sin k
2

0
1

⎞
⎟⎟⎠, η−

2 =

⎛
⎜⎜⎝

sin k
2

cos k
2

1
0

⎞
⎟⎟⎠,

η+
1 =

⎛
⎜⎜⎝

cos k
2

− sin k
2

0
1

⎞
⎟⎟⎠, η+

2 =

⎛
⎜⎜⎝

− sin k
2

− cos k
2

1
0

⎞
⎟⎟⎠,

(B13)

where the minus (plus) sign refers to the minus (plus) sign in the eigenvalues.

2. DOSI case

Now let us work with DOSI following the same steps as the DISI case. Let us consider the coefficients to be b1, b2, b3, and
b4. The equation governing � results in the following linear equations:

(1) sin km

[
1

2
b1J2(1 − γ 2) cos k − b3hJ (cos k + 1) − b4hJ sin k + b1

(
h2 + 1

2
J2(1 + γ 2) − �2

k

)]

+ cos km

[
1

2
b2J2(1 − γ 2) cos k + b3hJ sin k − b4hJ (cos k + 1) + b2

(
h2 + 1

2
J2(1 + γ 2) − �2

k

)]
= 0,

(2) sin km

[
1

2
b3J2(1 − γ 2) cos k − b1hJ (cos k + 1) + b2hJ sin k + b3

(
h2 + 1

2
J2(1 + γ 2) − �2

k

)]

+ cos km

[
1

2
b4J2(1 − γ 2) cos k − b1hJ sin k − b2hJ (cos k + 1) + b4

(
h2 + 1

2
J2(1 + γ 2) − �2

k

)]
= 0,

(B14)

resulting in ⎧⎪⎨
⎪⎩

b1ζ
′
k − b3hJ (cos k + 1) − b4hJ sin k = 0

b2ζ
′
k + b3hJ sin k − b4hJ (cos k + 1) = 0

b3ζ
′
k + b1hJ (cos k + 1) + b2hJ sin k = 0

b4ζ
′
k − b1hJ sin k − b2hJ (cos k + 1) = 0

, (B15)

or, in the matrix form,⎡
⎢⎣

ζ ′
k 0 −hJ (cos k + 1) −hJ sin k

0 ζ ′
k hJ sin k −hJ (cos k + 1)

−hJ (cos k + 1) hJ sin k ζ ′
k 0

−hJ sin k −hJ (cos k + 1) 0 ζ ′
k

⎤
⎥⎦
⎡
⎢⎣

b1

b2

b3

b4

⎤
⎥⎦ = 0 (B16)

where ζ ′
k ≡ 1

2 J2(1 − γ 2) cos k + h2 + 1
2 J2(1 + γ 2) − �2

k . The corresponding eigenvalues are

�2
k = 1

2

[
2h2 + J2(1 + γ 2) + J2(1 − γ 2) cos k ± 4hJ cos

k

2

]
. (B17)

This form is just like the eigenvalues found for the DISI, with different sign for J2(1 − γ 2) cos k. The corresponding eigenvectors
are

η−
1 =

⎛
⎜⎜⎝

sin k
2

cos k
2

0
1

⎞
⎟⎟⎠, η−

2 =

⎛
⎜⎜⎝

cos k
2

− sin k
2

1
0

⎞
⎟⎟⎠,

η+
1 =

⎛
⎜⎜⎝

− sin k
2

− cos k
2

0
1

⎞
⎟⎟⎠, η+

2 =

⎛
⎜⎜⎝

− cos k
2

sin k
2

1
0

⎞
⎟⎟⎠,

(B18)
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where again the the minus (plus) sign refers to the minus (plus) sign in the eigenvalues. Since we pair the sites in the direct
space, the size of the first Brillouin zone is doubled. If we use the natural change k = 2q, then we obtain

�2
q = 1

2

[
2h2 + J2(1 + γ 2) + J2(1 − γ 2) cos 2q ± 4hJ cos q

]
= (J cos q ± h)2 + J2γ 2 sin2 q,

(B19)

that is exactly the spectrum of the single-particle energies of the Fermions.
Summarizing, for DOSI (using the above η’s) the full eigenvector is readily calculated to be

ψ−
1 =

{
cos k(m − 1

2 )
cos km

, ψ−
2 =

{
sin k(m − 1

2 )
sin km

,

ψ+
1 =

{− cos k(m − 1
2 )

cos km
, ψ+

2 =
{− sin k(m − 1

2 )
sin km

(B20)

whereas for DISI

ψ−
1 =

{− sin k(m − 1
2 )

cos km
, ψ−

2 =
{

cos k(m − 1
2 )

sin km
,

ψ+
1 =

{
sin k(m − 1

2 )
cos km

, ψ+
2 =

{− cos k(m − 1
2 )

sin km
.

(B21)

Interestingly we see that the phase shift k → π − k relates the eigenvalues in DISI to the eigenvalues in DOSI. Since we require
that these eigenvalues be equal for the case of line defect, we should apply this phase shift for one of the regions, e.g., DISI.
Under this action, cos k(m − 1

2 ) → −(−1)m sin k(m − 1
2 ), sin k(m − 1

2 ) → −(−1)m cos k(m − 1
2 ), cos km → (−1)m cos km,

and sin km → −(−1)m sin km. Therefore, for the DISI,

ψ−
1 →

{−(−1)m+1 cos k(m − 1
2 )

(−1)m cos km
= (−1)m ×

{
cos k(m − 1

2 )
cos km

,

ψ−
2 →

{
(−1)m+1 sin k(m − 1

2 )
(−1)m+1 sin km

→ (−1)m ×
{

sin k(m − 1
2 )

sin km
,

ψ+
1 →

{
(−1)m+1 cos k(m − 1

2 )
(−1)m cos km

= (−1)m ×
{− cos k(m − 1

2 )
cos km

,

ψ+
2 →

{−(−1)m+1 sin k(m − 1
2 )

(−1)m+1 sin km
= (−1)m ×

{
sin k(m − 1

2 )
− sin km

,

(B22)

showing that ψDISR = (−1)mψDOSR.
Now let us consider the chain as a whole, for which the boundary conditions at j = n should be worked out. To this end, we

mix the two solutions obtained above. Based on the above findings, the following trial function is considered (m0 ≡ [ n
2 ]):

ψ (m � m0) = (−1)m ×
[

a cos k(m − 1
2 ) + b sin k(m − 1

2 )
a cos km + b sin km

,

ψ (m > m0) = ×
[

c cos k(m − 1
2 ) + d sin k(m − 1

2 )
c cos km + d sin km

(B23)

with undetermined constants a, b, c, and d , to be found by applying the boundary conditions. To facilitate this calculation let us
consider γ = 1 (pure Ising model). We have seen that the solution for the Ising model is also valid for generic γ . For γ = 1 we
have four independent equations at the boundaries:

(a cos km0 + b sin km0) − [c cos k(m0 + 1) + d sin k(m0 + 1)] + 2 cos
k

2

[
c cos k

(
m0 + 1

2

)
+ d sin k

(
m0 + 1

2

)]
= 0,

−
(

c cos
kL

2
+ d sin

kL

2

)
+ (a cos k + b sin k) + 2 cos

k

2

(
− a cos

k

2
− b sin

k

2

)
= 0,

a cos
k

2
+ b sin

k

2
−
(

c cos
k(L − 1)

2
+ d sin

k(L − 1)

2

)
+ 2 cos

k

2

(
c cos

kL

2
+ d sin

kL

2

)
= 0,

−
[

a cos k

(
m0 − 1

2

)
+ b sin k

(
m0 − 1

2

)]
+
[

c cos k

(
m0 + 1

2

)
+ d sin k

(
m0 + 1

2

)]
+ 2 cos

k

2
(a cos km0 + b sin km0) = 0.

(B24)
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These equations can be written in the matrix form⎡
⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎦
⎡
⎢⎣

a
b
c
d

⎤
⎥⎦ = 0 (B25)

with the elements

a11 = cos km0, a12 = sin km0, a13 = cos km0, a14 = sin km0,

a21 = −1, a22 = 0, a23 = − cos
kL

2
, a24 = − sin

kL

2
,

a31 = cos
k

2
, a32 = sin

k

2
, a33 = cos

k(L + 1)

2
,

a34 = sin
k(L + 1)

2
, a41 = cos k

(
m0 + 1

2

)
, a42 = sin k

(
m0 + 1

2

)
,

a43 = cos k

(
m0 + 1

2

)
, a44 = sin k

(
m0 + 1

2

)
.

(B26)

The determinant of this matrix is −4 sin2 k
2 sin2 kL

2 , the zeros of which take place at ks = 4πs
L in accordance with the free case (the

case with no staggered interval involved). This is expected since the single-particle energy spectrum of the original XY model
should not change under the action of the unitary transformation Px. For sin ksm0 	= 0 the solution for a, b, c, and d is

a = − cot ksm0, b = −1, c = cot (ksm0), d = 1. (B27)

This results in

ψ (m � m0) = −(−)mψ0 ×
⎧⎨
⎩

cos ks
[
m − m0 − 1

2

]
cos ks[m − m0]

,

ψ (m > m0) = ψ0

⎧⎨
⎩

cos ks
[
m − m0 − 1

2

]
cos ks[m − m0]

(B28)

where ψ0 is the normalization factor, which is shown to be
√

2
L . In terms of j = 2mj and qs = ks

2 we find that

ψ ( j) =
√

2

L

{−(−1)mj cos qs[ j − n] j � n

cos qs[ j − n] j > n
. (B29)

Also the other choice for a, b, c, and d is

a = tan ksm0, b = −1, c = − tan ksm0, d = 1, (B30)

which is equivalent to cos ↔ sin. Although Eq. (B29) was obtained for γ = 1, it is a general result for the staggered line defect,
and is valid for generic γ .

APPENDIX C: CORRELATION FUNCTIONS

Here we present the details of calculation of the correlation functions. In the previous Appendix we showed that the
eigenvector of the matrix C for the XY model in the general form is

ψXY =
√

2

L

{−(−)mj cos qs( j − n) j � n
cos qs( j − n) j > n

. (C1)

Therefore using relation (A9) we obtain the general form of φsi for �k 	= 0 (generic γ ):

φXY ( j � n) = −�−1
qs

√
2

L

[
(−)mj+a j h cos qs( j − n)+−1 + γ

2
(−)mj−1 cos qs( j − n − 1)+1 + γ

2
(−)mj+1 cos qs( j − n + 1)

]
,

φXY ( j = n + 1) = −�−1
qs

√
2

L

[
h cos qs( j − n)

−1 + γ

2
(−)mj−1 cos qs( j − n − 1) − 1 + γ

2
cos qs( j − n + 1)

]
,

φXY ( j > n + 1) = −�−1
qs

√
2

L

[
h cos qs( j − n) + −1 + γ

2
cos qs( j − n − 1) − 1 + γ

2
cos qs( j − n + 1)

]
. (C2)
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We should have sin ↔ cos as we go from positive qs’s to negative ones. Let us work with f i, j
AB =∑L/2−1

s=− L
2

AsiBs j , in which

A, B = ψ, φ. The importance of these functions can be understood noting that

〈cic
†
j 〉 = 1

4 [ fψψ + fψφ + fφψ + fφφ], 〈cic j〉 = 1
4 [ fψψ − fψφ + fφψ − fφφ],

〈c†i c†j 〉 = 1
4 [ fψψ + fψφ − fφψ − fφφ], 〈c†i c j〉 = 1

4 [ fψψ − fψφ − fφψ + fφφ]. (C3)

One can easily show that always (irrespective to the amount of i and j being inside or outside the staggered interval) f i, j
ψψ =

f i, j
φφ = δi j , and δi j is the Kronecker delta.

Having � and � in hand, one can directly calculate fψψ , fφφ , fψφ , and fφψ . We immediately obtain that fψψ = δi j as
expected. In the following we prove also that fφφ = δi j . Let us consider i � n and j � n. Then we have

fφφ =
∑

s

φsiφs j = 1

L

∑
s

{
(−)mi+ai−mj−a j h2 +

(−1 + γ

2

)2

(−)mj−1−mi−1 +
(

1 + γ

2

)2

(−)mj+1−mi+1

}
cos qs( j − i)

+ 1

L

∑
s

{
(−)mi+ai−mj−1 h

(−1 + γ

2

)
cos qs( j − i − 1) + (−)mi+ai−mj+1 h

(
1 + γ

2

)
cos qs( j − i + 1)

}

+ 1

L

∑
s

{
(−)mi−1−mj−a j h

(−1 + γ

2

)
cos qs( j − i + 1) + (−)mi−1−mj+1

(−1 + γ

2

)(
1 + γ

2

)
cos qs( j − i + 2)

}

+ 1

L

∑
s

{
(−)mi+1−mj−a j h

(
1 + γ

2

)
cos qs( j − i − 1) + (−)mi+1−mj−1

(−1 + γ

2

)(
1 + γ

2

)
cos qs( j − i − 2)

}
. (C4)

Noting that (−)mi−1 = (−)mi+ai = −(−)mi+1 , we obtain

fφφ = (−)mj+1−mi+1
1

L

∑
s

�−2
s

(
h2 + 1

2
(1 + γ 2)

)
cos qs( j − i) + (−)mj+1−mi+1 h

(−1 + γ

2
− 1 + γ

2

)

× 1

L

∑
s

�−2
s cos qs( j − i − 1) + (−)mj+1−mi+1 h

(−1 + γ

2
− 1 + γ

2

)
1

L

∑
s

�−2
s cos qs( j − i + 1)

− (−)mj+1−mi+1

(
γ 2 − 1

4

)
1

L

∑
s

�−2
s

[
cos qs( j − i − 2) + cos qs( j − i + 2)

]

= (−)mj+1−mi+1
1

L

∑
s

�−2
s

[
h2 + 1

2
γ 2(1 − cos 2qs) + 1

2
(1 + cos 2qs) − 2h cos qs

]
cos qs( j − i)

= (−)mj+1−mi+1
1

L

∑
s

�−2
s

[
h2 + γ 2 sin2 qs + cos2 qs − 2h cos qs

]
cos qs( j − i)

= (−)mj+1−mi+1
1

L

∑
s

cos qs( j − i) = δi j = fψψ, (C5)

leading to {c†i , c j} = 1
2 ( fψψ + fφφ ) = δi j as expected. Let us next calculate fψφ and fφψ :

fψφ = (−)mj+a j−mi h
1

L

∑
s

�−1
s cos qs( j − i) + (−)mj−1−mi

(−1 + γ

2

)
1

L

∑
s

�−1
s cos qs( j − i − 1)

+ (−)mj+1−mi

(
1 + γ

2

)
1

L

∑
s

�−1
s cos qs( j − i + 1)

= (−)mj+1−mi
1

L

∑
s

�−1
s

[
−h cos qs( j − i) +

(
1 − γ

2

)
cos qs( j − i − 1) +

(
1 + γ

2

)
cos qs( j − i + 1)

]

= (−)mj+1−mi
1

L

∑
s

�−1
s [−h cos qs( j − i) + cos qs cos qs( j − i) − γ sin qs sin qs( j − i)], (C6)

fφψ = (−)mi+ai−mj h
1

L

∑
s

�−1
s cos qs( j − i) + (−)mi−1−mj

(−1 + γ

2

)
1

L

∑
s

�−1
s cos qs( j − i + 1)

+ (−)mi+1−mj

(
1 + γ

2

)
1

L

∑
s

�−1
s cos qs( j − i − 1)
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= (−)mi+1−mj
1

L

∑
s

�−1
s

[
−h cos qs( j − i) +

(
1 − γ

2

)
cos qs( j − i + 1) +

(
1 + γ

2

)
cos qs( j − i − 1)

]

= (−)mi−mj+ai
1

L

∑
s

�−1
s [h cos qs( j − i) − cos qs cos qs( j − i) − γ sin qs sin qs( j − i)]

= (−)mj−mi+a j
1

L

∑
s

�−1
s (−)ai−a j [h cos qs( j − i) − cos qs cos qs( j − i) − γ sin qs sin qs( j − i)]

= (−)mj+1−mi
1

L

∑
s

�−1
s (−)ai−a j [−h cos qs( j − i) + cos qs cos qs( j − i) + γ sin qs sin qs( j − i)]. (C7)

Therefore,

1

4

(
fψφ ± fφψ

) = 1

2
(−)mj+1−mi

∑
s

�−1
s

{[
1 ± (−)ai−a j

2

]
[−h cos qs( j − i) + cos qs cos qs( j − i)]

− γ

[
1 ∓ (−)ai−a j

2

]
sin qs sin qs( j − i)

}

= χ±
i j σ1(i, j) + χ∓

i j σ2(i, j) (C8)

where χ+
i j = [ 1+(−)ai−a j

2 ](−)mj+1−mi and χ−
i j = [ 1−(−)ai−a j

2 ](−)mj+1−mi , and also

σ1( j, k) = 1

2L

L/2−1∑
s=−L/2

cos qs(k − j)

(−h + cos qs

�s

)
= 1

2L

L/2−1∑
s=−L/2

(−h + cos qs

�s

)
e−iqs (k− j),

σ2( j, k) = 1

2L

L/2−1∑
s=−L/2

sin qs(k − j)

(
γ sin qs

�s

)
= i

2L

L/2−1∑
s=−L/2

(
γ sin qs

�s

)
e−iqs (k− j) (C9)

where we have used the symmetry considerations to add extra zero contributions. Therefore if i and j belong to the same
sublattice, then χ+

i j = (−)mj+1−mi and χ−
i j = 0, so that

�1(i, j) ≡ 1
4 ( fψφ + fφψ ) = (−)mj+1−miσ1( j − i), �2(i, j) ≡ 1

4 ( fψφ − fφψ ) = (−)mj+1−miσ2( j − i). (C10)

Also if they belong to the different sublattices, then χ−
i j = (−)mj+1−mi and χ+

i j = 0, and therefore we find that

�1(i, j) = (−)mj+1−miσ2( j − i), �2(i, j) = (−)mj+1−miσ1( j − i). (C11)

The correlation functions now can be determined explicitly. Using Eq. (C3) we find

〈cic
†
j 〉 = 1

2δi j + �1(i, j) = 1
2δi j + χ+

i j σ1(i, j) + χ−
i j σ2(i, j),

〈cic j〉 = �2(i, j) = χ+
i j σ2(i, j) + χ−

i j σ1(i, j),

〈c†i c†j 〉 = −χ+
i j σ2(i, j) − χ−

i j σ1(i, j) = −〈cic j
〉
,

〈c†i c j〉 = 1
2δi j − χ+

i j σ1(i, j) − χ−
i j σ2(i, j) = δi j − 〈cic

†
j 〉. (C12)

Therefore, noting that si j = 〈cic
†
j 〉 − 〈cic j〉, we see

si j = 1
2δi j + 1

2 (χ+
i j − χ−

i j )σ (i, j) (C13)

where we have defined

σ ( j, k) ≡ 2[σ1( j, k) − σ2( j, k)] = 1

L

L/2−1∑
s=−L/2

(
cos qs − h − iγ sin qs

�s

)
eiqs ( j−k) (C14)

which in the L → ∞ limit becomes

σ ( j, k) =
∫

dq

2π
σ (q)eiq( j−k),

σ (q) ≡ cos q − h − iγ sin q

�q
. (C15)
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Noting also that

(−)mj+1−mi =
{

(−)
i− j−1

2 if i, j ∈ (different sublattices)
−(−)

j+i
2 if i, j ∈ (same sublattice)

= −
∣∣∣∣ cos

π

2
( j − i)

∣∣∣∣(−)
i+ j

2 +
∣∣∣∣ sin

π

2
( j − i)

∣∣∣∣(−)
i− j−1

2 ,

(C16)

one can easily verify that

si j = 1

2
δi j + 1

2
cos π ( j − i)

{
−(−)

i+ j
2

∣∣∣∣ cos
π

2
( j − i)

∣∣∣∣+ (−)
i− j−1

2

∣∣∣∣ sin
π

2
( j − i)

∣∣∣∣
}
σ ( j − i). (C17)

[1] K. Najafi and M. A. Rajabpour, Phys. Rev. B 93, 125139 (2016).
[2] V. E. Korepin, A. G. Izergin, F. H. L. Essler, and D. B. Uglov,

Phys. Lett. A 190, 182 (1994).
[3] F. H. L. Eßler, H. Frahm, A. G. Izergin, and V. E. Korepin,

Commun. Math. Phys. 174, 191 (1995).
[4] N. Kitanine, J. M. Maillet, N. A. Slavnov, and V. Terras, J. Phys.

A: Math. Gen. 35, L385 (2002).
[5] N. Kitanine, J. M. Maillet, N. A. Slavnov, and V. Terras, J. Phys.

A: Math. Gen. 35, L753 (2002).
[6] A. G. Abanov and V. E. Korepin, Nucl. Phys. B 647, 565 (2002).
[7] V. E. Korepin, S. Lukyanov, Y. Nishiyama, and M. Shiroishi,

Phys. Lett. A 312, 21 (2003).
[8] L. Cantini, J. Phys. A: Math. Gen. 45, 135207 (2012).
[9] M. Shiroishi, M. Takahashi, and Y. Nishiyama, J. Phys. Soc.

Jpn. 70, 3535 (2001).
[10] A. G. Abanov and F. Franchini, Phys. Lett. A 316, 342 (2003).
[11] F. Franchini and A. G. Abanov, J. Phys. A: Math. Gen. 38, 5069

(2005).
[12] F. Ares and J. Viti, J. Stat. Mech. (2020) 013105.
[13] J.-M. Stéphan, J. Stat. Mech.: Theory Exp. (2014) P05010.
[14] M. A. Rajabpour, EPL (Europhysics Letters) 112, 66001

(2015).
[15] M. A. Rajabpour, J. Stat. Mech.: Theory Exp. (2016) 123101.
[16] N. Allegra, J. Dubail, J.-M. Stéphan, and J. Viti, J. Stat. Mech.:

Theory Exp. (2016) 053108.
[17] J.-M. Stéphan and J. Dubail, J. Stat. Mech.: Theory Exp. (2013)

P09002.
[18] J.-M. Stéphan, S. Furukawa, G. Misguich, and V. Pasquier,

Phys. Rev. B 80, 184421 (2009).
[19] F. C. Alcaraz and M. A. Rajabpour, Phys. Rev. Lett. 111,

017201 (2013).
[20] J.-M. Stéphan, Phys. Rev. B 90, 045424 (2014).
[21] F. C. Alcaraz and M. A. Rajabpour, Phys. Rev. B 90, 075132

(2014).
[22] D. J. Luitz, F. Alet, and N. Laflorencie, Phys. Rev. Lett. 112,

057203 (2014).
[23] D. J. Luitz, F. Alet, and N. Laflorencie, Phys. Rev. B 89, 165106

(2014).
[24] F. C. Alcaraz and M. A. Rajabpour, Phys. Rev. B 91, 155122

(2015).
[25] F. C. Alcaraz, Phys. Rev. B 94, 115116 (2016).
[26] M. G. Nezhadhaghighi and M. A. Rajabpour, Phys. Rev. B 88,

045426 (2013).
[27] V. Alba, S. Inglis, and L. Pollet, Phys. Rev. B 93, 094404

(2016).

[28] K. Najafi and M. A. Rajabpour, Phys. Rev. B 99, 075152
(2019).

[29] P. Pfeuty, Phys. Lett. A 72, 245 (1979).
[30] R. Z. Bariev, Theor. Math. Phys. 40, 623 (1979).
[31] B. M. McCoy and J. H. H. Perk, Phys. Rev. Lett. 44, 840 (1980).
[32] L. P. Kadanoff, Phys. Rev. B 24, 5382 (1981).
[33] A. C. Brown, Phys. Rev. B 25, 331 (1982).
[34] G. G. Cabrera and R. Jullien, Phys. Rev. B 35, 7062 (1987).
[35] D. B. Abraham, L. F. Ko, and N. M. Švrakić, J. Stat. Phys. 56,
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