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Maxwell’s demon in a double quantum dot with continuous charge detection
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Converting information into work has, during the past decade, gained renewed interest as it gives insight
into the relation between information theory and thermodynamics. Here, we theoretically investigate an
implementation of Maxwell’s demon in a double quantum dot and demonstrate how heat can be converted into
work using only information. This is accomplished by continuously monitoring the charge state of the quantum
dots and transferring electrons against a voltage bias using a feedback scheme. We investigate the electrical work
produced by the demon and find a non-Gaussian work distribution. To illustrate the effect of a realistic charge
detection scheme, we develop a model taking into account noise as well as a finite delay time and show that an
experimental realization is feasible with present day technology. Depending on the accuracy of the measurement,
the system is operated as an implementation of Maxwell’s demon or a single-electron pump.
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I. INTRODUCTION

The conventional statement of the second law of thermo-
dynamics is formulated for systems on the macroscopic scale
and asserts that a change in entropy cannot be negative. It
is, therefore, no surprise that it fails to describe systems that
operate on a microscopic level. A feedback-controlled system
that violates the conventional formulation of the second law
was introduced by James C. Maxwell [1–3], who noted that
a creature with the ability of tracking and determining the
velocity of individual gas particles could create a temperature
gradient. Scientists were confused by Maxwell’s demon for a
long time, but following the work of Bennett [4] and Landauer
[5], the process is completely legitimate. The demon acquires
and stores information about the gas particles. Deleting this
information requires an increase in entropy such that the
second law is restored. These works established the close
relationship between thermodynamics and information theory,
suggesting that, for feedback-controlled systems, the role of
information must be incorporated into the formulation of the
second law.

The field of stochastic thermodynamics deals with the
microscopic nature of thermodynamics [6–9]. It has revealed
several important results, e.g., fluctuation theorems which
generalize the second law to the nanoscale. During the
course of the past decade, the incorporation of information
in stochastic thermodynamics has resulted in a number of
novel insights [3,10–13]. In particular, fluctuation theorems
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have been generalized to hold for feedback-controlled sys-
tems [14–20] showing, in agreement with Bennett’s insight,
that information can give rise to negative entropy production
and needs to be taken into account in the thermodynamic
bookkeeping. Due to experimental advances, it is nowadays
possible to control systems down to the nanoscale, making it
possible to realize Maxwell’s demon in the laboratory. Several
experimental studies have been conducted, using Brownian
particles [21], molecular machines [22], photonic systems
[23], electronic systems [24–27], ultracold atoms [28], and
DNA molecules [29]. In addition, several experiments on
Maxwell’s demon in the quantum regime have recently been
presented [30–32].

An advancement that is particularly promising for inves-
tigating the thermodynamics of information is provided by
single electron charge detection in quantum dots [33–38].
Detection of single electrons becomes highly important when
realizing Maxwell’s demon in electronic circuits where the
electrons resemble the gas particles in the original thought
experiment. Common charge detectors involve single elec-
tron transistors [34,35] and quantum point contacts (QPCs)
[36,37]. Such detectors are coupled capacitively to the elec-
tronic circuit under investigation. If the current through the
detector depends sensitively on nearby charges, individual
tunneling events of electrons can be resolved in real time.
Experimental implementations of Maxwell’s demon based
on charge sensing in single electron boxes are given in
Refs. [24–26].

In this paper, we investigate an implementation of
Maxwell’s demon in an electronic system constituted by two
single-level quantum dots coupled to electron reservoirs at the
same temperature. We theoretically demonstrate how heat can
be converted into work by transferring electrons against an ex-
ternal voltage bias using a measurement and feedback scheme.
During the process, the electron occupation of the dots is
measured, and this information is used to guide the electrons
through the system by tuning the energy-level positions of
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the dots. We provide a quantitative statistical analysis of the
electron transport by employing full counting statistics (FCS).
From the FCS, the statistics of work and heat can directly be
extracted. We first consider an ideal detector providing perfect
knowledge on the charge state at each moment in time. Then,
we investigate a realistic detector where both delay and noise
are taken into account.

An analogous operation cycle was first presented by Averin
et al. in Ref. [39] for a system constituted by metallic islands.
In this paper, we go beyond their results by considering a
complete statistical study on the electron transport and an
implementation of a realistic detector model. Furthermore,
in contrast to Refs. [24,25,39], our implementation is based
on quantum dots, offering the possibility of tuning electron
tunneling rates. Furthermore, the well-defined energy levels
of quantum dots allow for accessing heat fluctuations. We note
that it is easy to establish a large interdot Coulomb blockade
in the double dot system which may provide a challenge in
metallic islands.

Previously proposed implementations of Maxwell’s demon
based on charge sensing in a single quantum dot have been
presented in Refs. [40,41] where electrons are transferred
against a voltage bias by tuning electron-tunneling rates.
Another class of implementations is autonomous Maxwell
demons, which do not rely on an external measurement and
feedback loop. Several theoretical [42–46] as well as experi-
mental [27] studies making use of autonomous charge sensing
have been presented.

The paper is organized as follows. In Sec. II, the double
quantum dot system is introduced together with a description
of the ideal operation cycle. Section III is devoted to the
results obtained when operating the system ideally, whereas
Sec. IV presents the results for a realistic detector.

II. SYSTEM AND IDEAL OPERATION

By confining electrons in a small volume, for instance, in a
nanowire, it is possible to define an atomlike structure that is
known as a quantum dot. By monitoring the charge states of
these structures and modifying their internal properties, it is
possible to implement Maxwell’s demon. Here, we consider
two quantum dots coupled in series to each other with tunnel-
ing rate γ and to an equilibrium electron reservoir each with
tunneling rates �L and �R, respectively. The reservoirs L and
R are described by the Fermi-Dirac distribution,

fL/R(ε) = [e(ε−μL/R )/kBT + 1]−1, (1)

where ε denotes energy, T denotes the temperature, and μL/R

denotes the chemical potential. We assume large intra- and
interdot Coulomb repulsion such that only one electron can
reside in the double quantum dot, and we neglect degeneracies
(e.g., spin). Finally, we assume that the coherence time is
shorter than any other relevant timescale such that superpo-
sitions of charge states can be neglected. This implies that
the system can be in one of three distinct states: (0,0), (1,0),
and (0,1), corresponding to empty dots, left dot occupied, and
right dot occupied, respectively. We assume that the energy
levels of the dots, denoted by {εL, εR}, can be tuned by external
voltage gates. We restrict ourselves to the three level settings:
{ε0, εu}, {εl , εl}, and {εu, ε0}, illustrated in Fig. 1.

FIG. 1. Visualization of the demon cycle. Curved arrows de-
pict possible electron-tunneling events, where �L, �R, and γ are
electron-tunneling rates. As soon as such an event occurs, it is
immediately detected, and the energy levels are moved as illustrated
by the dashed arrows.

Our aim is to show that electrons can be moved against an
external voltage bias μR − μL = eV without performing work
by the voltage gates. This is achieved by measuring the occu-
pation of the dots and applying feedback. The operation we
consider is illustrated in Fig. 1 and shows how the electrons
are transferred against the bias using information alone. In this
and the next section, we consider ideal operation conditions.
This corresponds to three assumptions. First, we assume that
the continuous occupation measurements of the dots are error
free such that we know the system state with certainty at
all times. Second, it is assumed that the feedback is applied
instantaneously. Finally, we choose μL/R − εl � kBT and
εu − μL/R � kBT such that the occupation probabilities for εl

and εu can be approximated as fL/R(εl ) = 1 and fL/R(εu) = 0.
In Sec. IV, we will consider a nonideal demon where the first
and third assumptions will be relaxed. Letting μL < μR, the
following cyclic scheme can be utilized:

(1) Initially, the dots are empty, and the energy levels are
set to {ε0, εu} as visualized in ©1 , see Fig. 1. With these
settings, the only event possible is an electron tunneling into
the left dot. When this occurs, the levels are immediately
moved to {εl , εl}, see ©2 , such that the electron cannot tunnel
back to the left reservoir.

(2) As the electron tunnels to the right dot, the energy
levels are moved instantly to {εu, ε0} as depicted in ©3 .

(3) The electron can now only tunnel to the right reservoir.
As this happens, the levels are moved back to their initial
position in ©1 , closing the cycle.

For each cycle, the first law of thermodynamics can be
written as Q + W + Wg = 0. The work W = μR − μL = eV
is performed by moving one electron from a region with lower
to a region with higher chemical potential. The corresponding
heat QL = μL − ε0 and QR = ε0 − μR enters the left and
right reservoirs, cooling both reservoirs when μL < ε0 < μR.
The total heat is given by Q = QL + QR = −W . The total
work extracted by the gates Wg = (ε0 − εl ) + (εl − ε0) = 0
vanishes as desired. Finally, the change in system energy is
zero as the process is cyclic. Here, we use the convention
Q > 0 if energy is entering a reservoir, and W > 0 when work
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is produced. Thus, for eV � 0, heat is converted into work
using information.

III. IDEAL DEMON: QUANTITATIVE DESCRIPTION

Under ideal conditions, the occupation of the quantum
dots uniquely determines the level positions {εL, εR}. Hence,
the system dynamics can be described by the rate equa-
tion ρ̇0(t ) = L0ρ0(t ) where the components ρ0, j (t ), j =
(0, 0), (1, 0), (0, 1), of ρ0(t ) are the probabilities to occupy
state j at time t . The Liouvillian L0 and the transition rates
between the system states are determined by the following
transitions representing the ideal cycle:

(0, 0)
γL−→ (1, 0)

γ−→ (0, 1)
γR−→ (0, 0), (2)

where

γL = �L fL(ε0), γR = �R[1 − fR(ε0)] (3)

see Fig. 1.

A. Full counting statistics

To describe the statistics of the electron transport in
the system, we use FCS [47], the central object of which
is given by the probability distribution of the number of
electrons transferred to the right reservoir within the time
t, p(n, t ) = ∑

j ρ j (n, t ) with ρ j (n, t ) being the components
of the number-resolved probability vector ρ(n, t ). With the
discrete Fourier transform of ρ(n, t ) given by ρ(χ, t ) where
the counting field χ is introduced, the dynamics of the system
is governed by the differential equation [48],

ρ̇(χ, t ) = L(χ )ρ(χ, t ), (4)

with the Liouvillian,

L(χ ) =
⎛
⎝−γL 0 eiχγR

γL −γ 0
0 γ −γR

⎞
⎠. (5)

By putting χ = 0, the rate equation in Eq. (2) is recovered,
i.e., L0 = L(0).

The cumulant generating function (CGF) C(χ, t ) of the
probability distribution is defined via

eC(χ,t ) =
∑

n

p(n, t )einχ =
∑

j

ρ j (χ, t ), (6)

and the cumulants are obtained using

〈〈nk (t )〉〉 = (−i)k ∂k

∂χ k
C(χ, t )

∣∣∣∣
χ=0

. (7)

In the long-time limit, the CGF is given, up to a time-
independent correction term which will be dropped in the
following, by C(χ, t ) ≈ λ(χ )t , where λ(χ ) is the eigenvalue
of the Liouvillian that satisfies λ(0) = 0 [48]. The eigenvalue
is given by one of the roots of the characteristic polynomial
of L(χ ),

λ3 + (γ + γL + γR)λ2 + (γ γL + γ γR + γLγR)λ

+γ γLγR(1 − eiχ ) = 0. (8)

FIG. 2. First-order power cumulant 〈〈P〉〉 in units of γ kBT as a
function of ε0 and the voltage bias eV for tunneling rates (a) �L/γ =
�R/γ = 1 and (b) �L/γ = 3/2, �R/γ = 2/3. The white dashed
line emphasizes where ε0 = 0, and the white cross indicates where
the power reaches its maximum. Here, the chemical potentials are
chosen as μR = eV/2 = −μL which is not necessarily symmetric
around ε0. For nonequal tunneling rates, a symmetric bias around
ε0 is no longer optimal.

The solutions of this equation do not provide additional
physical insight and are, therefore, not given here. Note that
Eq. (8) is invariant under the exchange of any two transition
rates, implying that also the cumulants possess this symmetry.
The first-, second-, and third-order cumulants are given by

〈〈n(t )〉〉 = γ γLγR

γ γL + γ γR + γLγR
t,

〈〈n2(t )〉〉 = 〈〈n(t )〉〉γ
2γ 2

L + γ 2γ 2
R + γ 2

L γ 2
R

(γ γL + γ γR + γLγR)2
,

〈〈n3(t )〉〉 = 〈〈n(t )〉〉
[

1 − 6〈〈n(t )〉〉
γ γLγRt

×
( 〈〈n(t )〉〉2

t2
− (γ + γL + γR)

〈〈n2(t )〉〉
t

)]
. (9)

Finally, the full distribution is obtained through

p(n, t ) = 1

2π

∫ 2π

0
dχ e−inχ+λ(χ )t . (10)

B. Power production

We are interested in the electrical power P = V I which is
a measure of the heat-to-work conversion resulting from the
demon operation. Note that a positive current here is defined
to flow against the bias. The power is related to the produced
work via W = ∫

P dt . The low-frequency power cumulants
for the system studied here are given by

〈〈Pk〉〉 = (eV )k lim
t→∞

〈〈nk (t )〉〉
t

. (11)

We start by considering the mean power,

〈〈P〉〉
γ kBT

= eV

kBT

γLγR

γ γL + γ γR + γLγR
, (12)

that is plotted in Fig. 2 as a function of ε0 (cf. Fig. 1) and
the voltage bias eV . The plots show that 〈〈P〉〉 � 0 for all
parameters which is due to the ideal operation conditions
ensuring that electrons are only transferred from left to right.
This demonstrates that information can be used to convert
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heat into work in this system. From Eq. (12), it is clear that
the power increases with increasing tunneling rates. For fixed
tunneling rates, �L, �R, and γ , the power attains its largest
value at

ε0

kBT
= 1

2
ln

[
�L

�R

]
, (13a)

eV

kBT
= 2

[
W

(
�L + �R + �L�R/γ

2e
√

�L�R

)
+ 1

]
, (13b)

where W (z) is the Lambert W function [49], also known as the
product logarithm function. Note that e on the right-hand side
of Eq. (13b) is Euler’s number and not the elementary charge.
For �L = �R, the maximum is located at ε0 = 0, i.e., in the
middle of the bias window. For �L 
= �R, this is no longer
true; compare Figs. 2(a) and 2(b).

Another feature in Fig. 2(a), where �L = �R, is the mirror
symmetry around ε0 = 0. This corresponds to the transforma-
tion γL ↔ γR, which is the exchange symmetry of transition
rates in the characteristic polynomial discussed above. In
Fig. 2(b), where �L 
= �R, the transformation γL ↔ γR has a
more complicated effect.

C. Fano factor and skewness

The Fano factor is defined as the ratio between the second-
and the first-order cumulants [cf. Eq. (7)] and gives a measure
on the statistical character of the electron transport. For a
Poisson process, the Fano factor is 1. A smaller Fano factor
implies sub-, a larger super-Poissonian statistics correspond-
ing to antibunching [50] and bunching [51–53] of electrons,
respectively.

With the first- and second-order cumulants given by
Eqs. (10), the Fano factor reads

1

eV

〈〈P2〉〉
〈〈P〉〉 = 〈〈n2(t )〉〉

〈〈n(t )〉〉 = γ 2γ 2
L + γ 2γ 2

R + γ 2
L γ 2

R

(γ γL + γ γR + γLγR)2
. (14)

The Fano factor is visualized in Fig. 3(a) as a function of the
weighted transition rates γL/γ and γR/γ . The symmetry of

FIG. 3. (a) Fano factor 〈〈n2(t )〉〉/〈〈n(t )〉〉 as a function of γL/γ

and γR/γ . The Fano factor is bounded from above by 1 and from
below by 1/3. The upper bound is obtained when one transition rate
is much smaller than the others, corresponding to the dark areas in
the corners. The lower bound is obtained when all transition rates are
equal, corresponding to the bright area in the middle. The colored
crosses visualize the choice of parameters in Fig. 4. (b) Normalized
third-order cumulant 〈〈n3(t )〉〉/〈〈n(t )〉〉. This factor only assumes finite
values implying non-Gaussian statistics for work and heat.

exchanging γL and γR discussed above is evident in the figure.
In our system, we find the Fano factor to be bounded by

1

3
� 〈〈n2(t )〉〉

〈〈n(t )〉〉 � 1, (15)

where the lower bound corresponds to having all transition
rates equal. A Fano factor smaller than 1 is expected since
only a single electron can occupy the system at a time result-
ing in antibunching. The upper bound occurs when any of the
transition rates is much smaller than the other two, e.g., when
γ � γL, γR. In this regime, the system behaves effectively as
a single tunneling barrier and the statistics are Poissonian.

Figure 3(b) visualizes the normalized third-order cumulant
〈〈n3(t )〉〉/〈〈n(t )〉〉 which captures the skewness of the distribu-
tion p(n, t ). Since the third-order cumulant is nonzero, the
transport statistics and, therefore, the heat and work statistics
are non-Gaussian.

D. Probability distributions

The full distribution p(n, t ), which is directly related to the
work and heat distributions by W = neV and Q = −W , can be
evaluated in the long-time limit using Eq. (10). It is instructive
to consider two limiting cases. First, when one transition rate
is much smaller than the others, e.g., γ � γL, γR, we may
expand the dominant eigenvalue of the Liouvillian up to linear
order in γ , obtaining λ(χ ) = γ (eiχ − 1). With Eq. (10), this
results in

p(n, t ) = e−γ t (γ t )n

n!
, (16)

which is the Poisson distribution, in agreement with the
discussion on the Fano factor above.

Second, with all transition rates equal, γ = γL = γR, the
total number of tunneling events q in the system is distributed
according to Eq. (16). Starting in state (0,0), an electron must
tunnel three times before reaching the right reservoir, see
Fig. 1. To have n electrons transferred to the right reservoir,
q = 3n + k tunneling events must have occurred, with k =
0, 1, 2. This results in the distribution,

p(n, t ) = e−γ t
∑

k=0,1,2

(γ t )3n+k

(3n + k)!
. (17)

Equations (16) and (17) are visualized in Fig. 4 to-
gether with the distributions for (γL/γ , γR/γ ) = (3, 2) and
(γL/γ , γR/γ ) = (8, 5), calculated numerically. The center of
each distribution, i.e., the mean, agrees with the first-order
cumulant in Eq. (10). As the third-order cumulant in Eq. (10)
is nonzero and positive [see Fig. 3(b)], the distribution always
has a skewness and is, therefore, non-Gaussian. The direct
relation between p(n, t ) and the distributions of work and heat
reveals the non-Gaussian statistics of these thermodynamic
quantities.

E. Entropy production of the demon

The operation described in Sec. II results in an entropy
reduction in the system. It is, therefore, required that the
entropy produced by the demon balances this reduction such
that the system and demon together obeys the second law
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FIG. 4. Probability distribution p(n, t ) in four cases as a function
of n for γ t = 100. The red and blue bars represent the analytical
solutions obtained when all transition rates are equal and when one
rate is much smaller than the others, respectively [see Eqs. (16) and
(17)]. The green and orange bars were obtained numerically.

of thermodynamics. Recently, bounds on entropy production
in heat engines have been derived within the framework of
thermodynamic uncertainty relations (TURs) [9,13,54,55]. To
derive a TUR for our system and demon is a daunting task and
is not attempted here. However, by assuming that a generic
TUR holds, derived for a number of different systems, we can
establish a lower bound for the entropy production. The TUR
considered is given by

〈〈I2〉〉
〈〈I〉〉2

� 2

σS + σD
, (18)

where 〈〈I〉〉 and 〈〈I2〉〉 are the two lowest-order current cu-
mulants obtained from 〈〈Ik〉〉 = limt→∞ ek〈〈nk (t )〉〉/t with the
elementary charge e, and σS and σD are the entropy production
(in units of kB) for the system and demon, respectively. The
entropy production for the system is obtained through σS =
−〈〈I〉〉V/kBT , which is the heat current into the reservoirs
divided by their temperature T . For the demon entropy pro-
duction, we may write σD = xD〈〈I〉〉/kBT , where xD is the
entropy production in the demon in units of −σS . The total
entropy production for the system and demon together can
then be written as

σS + σD = 〈〈I〉〉
kBT

(xD − 1). (19)

Using this together with the TUR given in Eq. (18), the
following inequality for xD can be obtained

xD � 1 + 2kBT

eV

1

F
, (20)

where F is the Fano factor in Eq. (14). This sets a lower bound
on the demon entropy production. As xD � 1, it is assured
that the total entropy production σS + σD � 0, and, thus, the
second law is respected.

It is instructive to introduce the efficiency,

η ≡ −σS

σD
= 1

xD
� eV F

eV F + 2kBT
, (21)

which relates the entropy reduction in the system to the
entropy produced by the demon. In the reversible limit where
the demon produces the minimal amount of entropy allowed
by the second law, the efficiency is maximal and equal to

unity. From Eq. (21), we find that the reversible limit may
only be reached for eV � kBT .

IV. NONIDEAL DEMON

So far, we have focused on ideal operation conditions
relying on an ideal detector that is infinitely fast and error
free. Here, we consider a more realistic model describing a
QPC or quantum dot detector asymmetrically coupled to the
double dot system [38,56]. In particular, we include delay as
well as noise in the charge sensing. These constitute the main
error sources in realistic detectors. Furthermore, we relax
the requirement that fL/R[εu(l )] = 0(1) for a more realistic
description. We note that we still consider the change of the
energy levels to happen on a timescale that is much faster than
any other relevant timescale. This is experimentally feasible
[24,25,56,57].

A. Model

We start by providing a general formulation of the model
for the detector, its output, and the feedback. The system state
after time t is denoted by S(t ), and assumes the values 0,1,2
representing the charge configurations (0,0), (1,0), and (0,1),
respectively. For the detector, we introduce a detector output
d (t ) which is dependent on the system state S(t ), a delay
time τd , and assume that the detector adds Gaussian white
noise with standard deviation σ on its output. The energy-level
setting after time t is described by D(t ), also taking the values
0,1,2 but here representing the settings {ε0, εu}, {εl , εl}, and
{εu, ε0}, respectively.

The system state S(t ) is a stochastic variable whose tra-
jectory is determined by the probability vector ρ(t ) that is
governed by the rate equation,

ρ̇(t ) = L[D(t )]ρ(t ), (22)

where the Liouvillaian L[D(t )] is dependent on the current
energy-level setting. The Liouvillian is given in the Appendix.
D(t ) is governed by a measurement-feedback scheme which
depends on the detector output d (t ). We model the detector
output as a random Gaussian variable distributed as

p[d (t )] = 1√
2πσ 2

e−[d (t )−m(t )]2/2σ 2
, (23)

with the standard deviation σ quantifying the strength of the
noise. The mean of the distribution is given by

m(t ) =
∫ t

−∞
τ−1

d e−(t−t ′ )/τd S(t ′)dt ′, (24)

where the delay τd is introduced. The insets of Fig. 5 visualize
d (t ) for some different choices of τd and σ . With the dots
unoccupied, d (t ) is distributed around 0, and with one of
the dots occupied, the signal is distributed around 1 or 2
depending on the location of the electron. The rise time of
the signal is determined by τd . The ideal limit corresponds to
τd , σ → 0 where we find d (t ) = S(t ) at all times. Having a
model for the detector output, we need to provide a feedback
protocol, determining the level setting D(t ) from the previous

165404-5



BJÖRN ANNBY-ANDERSSON et al. PHYSICAL REVIEW B 101, 165404 (2020)

FIG. 5. Energy fluxes as functions of the voltage bias. (a)–(d) visualize the effect of different choices for τd and σ . In the gray shaded
regions, the heat is negative, seemingly violating the second law, and the system is operated as a Maxwell demon. The insets show examples
of time traces of the true system state S(t ), the detector output d (t ), and the energy-level setting D(t ). The thin gray line is the average power
obtained for ideal operation conditions, cf. Eq. (12). (a) Close-to-ideal case. At high voltages, the rates γL, γR become small such that the
long-time limit is no longer reached. (b) Noisy detector. Errors induced by noise result in heating by the voltage gates. (c) Slow detector.
The power output is reduced as the detector cannot follow all the tunneling events. (d) Slow and noisy detector. The delay reduces the errors
introduced by noise through the averaging over the checking interval [t − 4τd , t]. For these simulations, we used � = γ = �L = �R, εu =
10kBT = −εl , ε0 = 0, and �t f = 200.

output d (t ′ � t ). This is provided by

D(t ) = arg max
j∈{0,1,2}

∫ t

t−4τd

dt ′θ j[d (t ′)], (25)

with θ0[x] = �[ 1
2 − x], θ1[x] = �[x − 1

2 ]�[ 3
2 − x], and

θ2[x] = �[x − 3
2 ], where �[x] is the Heaviside step function.

Equation (25) works as follows; if d (t ′) < 1
2 in the majority

of the interval [t − 4τd , t], below referred to as the checking
interval, the charge configuration is assumed to be (0,0),
i.e., S(t ) = 0, and the level setting is put to D(t ) = 0. When
1
2 � d (t ′) < 3

2 in the majority of the checking interval, the
system is assumed to occupy S(t ) = 1, and the level setting
D(t ) = 1 is chosen. Finally, as d (t ′) � 3

2 in the majority of
the checking interval, the level setting is put to D(t ) = 2.
In contrast to standard threshold detection [56,58], the use
of a checking interval reduces the risk of misinterpreting
transitions. For instance, this ensures that the level position
setting does not pass through {εl , εl} [D(t ) = 1] when
d (t ′) changes from 2 to 0 in a short time. For τd → 0,
the checking interval becomes infinitely small, and D(t ) is

determined by the instantaneous value of d (t ), leading to
D(t ) = d (t ) = S(t ) in the ideal limit, where σ → 0. The
feedback is, thus, infinitely fast in the ideal limit, and we
recover the results of the previous section.

B. Monte Carlo simulations

To simulate the nonideal scenario, we use a Monte Carlo
method to capture the stochastic dynamics of the system. By
generating a large number of time traces for S(t ), d (t ), and
D(t ), the average work and heat production can be extracted.
Details concerning the Monte Carlo method are given in the
Appendix. In Fig. 5, we present the main results where the
average energy fluxes 〈〈P〉〉, 〈〈Q〉〉/t f , and 〈〈Wg〉〉/t f are plotted.
Here, t f is the total operation time, and 〈〈·〉〉 denotes the sample
mean of 10 000 Monte Carlo simulations.

Close-to-ideal detector. Figure 5(a) visualizes the results
for an almost ideal detector. The gray shaded region indicates
where the heat 〈〈Q〉〉 is negative. In this region, the second
law of thermodynamics is seemingly violated as in Maxwell’s
original thought experiment. The produced power 〈〈P〉〉
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recovers the ideal power production for small voltage bias.
For large bias, the power becomes negative, 〈〈P〉〉 < 0. In this
regime, the transition rates become very small such that the
long-time limit may not be reached. With large bias, it be-
comes more probable to occupy (0,1) in level setting {ε0, εu}.
If the level setting then is changed to {εu, ε0}, the system gets
stuck in the latter level position with the right dot occupied.
With this process, the gates are cooling the right reservoir, and
we find 〈〈Q〉〉 < 0 and 〈〈Wg〉〉 > 0. The small deviations from
〈〈Wg〉〉 = 0 for small bias are due to boundary effects such as
interrupting the operation cycle at the end of a simulation run.

Noisy detector. In Fig. 5(b), we present the results for a
noisy detector. When increasing σ , the heat 〈〈Q〉〉 becomes
positive for small and large bias. In these regions, the sec-
ond law holds even when disregarding the demon. For large
σ, D(t ) starts to fluctuate, see the inset of Fig. 5(b). These
fluctuations lead to mistakes in the operation of the system.
As 〈〈Wg〉〉 < 0, the gates are performing work on the system,
resulting in the reservoirs being heated. A possible trajectory
capturing this is the following:

where the dashed red arrow indicates where the mistake
happens; the energy-level setting is changed to {εu, ε0}, even
though the electron has not tunneled to the right dot.

Slow detector. The results obtained for a slow detector
are given in Fig. 5(c). When increasing τd , the produced
power 〈〈P〉〉 decreases compared to the ideal curve. The main
mechanism behind this is backtunneling of electrons: Before
the detector has registered that a tunneling event occurred, the
electron may tunnel back. Such an event is depicted in the
inset of Fig. 5(c). For usual experimental operation conditions,
here considered to be �τd = 0.1, it is not expected to recover
the power that is produced under ideal conditions.

Slow and noisy detector. Figure 5(d) shows the results for
a detector which is both slow and noisy. Noteworthy is that
the heat for large bias is negative. This is a result of reducing
the number of mistakes in the operation compared to the noisy
detector, cf. Fig. 5(b). Mistakes due to noise are reduced for
finite τd as the noise is averaged over the checking interval
[t − 4τd , t], see Eq. (25).

Figure 6 visualizes the same energy fluxes as Fig. 5 but
as functions of �τd keeping τd fixed. We present two cases
with different noise levels. We see how the tunneling rate
affects the ability to operate the system in accordance with
the ideal cycle. The ideal case is recovered for �τd � 0.05.
In this regime, the detector can resolve the electron trajec-
tories. Thereby we can afford to slightly increase � and
observe an increase in 〈〈P〉〉 because of a larger number of
transferred electrons per unit time. Increasing � further, the
detector can no longer resolve the trajectories. This trade-off
results in a nonmonotonic behavior of the power. When � →
∞, 〈〈P〉〉 → 0 as can be seen in the inset of Fig. 6(b). From
Fig. 6(a), we infer that detector delay times τd � 1 μs would
generate measurable currents of I � 1 fA through the double
dot system. Delay times of such a magnitude are within reach
with radio frequency detection techniques.

FIG. 6. Energy fluxes as functions of �τd where � is varied and
τd is fixed. The noise is chosen as σ = 0.1 and σ = 0.4 in (a) and (b),
respectively. The system is operated as a Maxwell demon in the gray
shaded regions as the heat is negative there. This is indicated to the
left of the thin black vertical line. To the right of this line, the system
is behaving like an electron pump where the gate voltages (Wg) are
used to transfer electrons against the voltage bias. The ideal case [i.e.,
Eq. (12)] is represented by the thin gray line. The inset in (b) shows
a zoom out of the plot. For each point in the plots, �t f = 100, and
eV/kBT = 2.8 which roughly corresponds to the maximum in the
ideal case, Eq. (13b).

The gray shaded regions indicate again where the second
law of thermodynamics is seemingly violated. In these re-
gions, the system acts as Maxwell’s demon. Because noise
induces heating, the point where 〈〈Q〉〉 = 0 is pushed towards
smaller �τd when σ is increased. For larger σ , there is, thus,
a smaller region where the system is operated as a Maxwell
demon. For larger �, power is still produced. However, the
energy source is no longer provided by heat but by the voltage
gates Wg. In this regime, the system, therefore, acts as an
electron pump [57,59–61].

V. CONCLUSIONS AND OUTLOOK

We presented an implementation of Maxwell’s demon in a
double quantum dot system. Under ideal operation conditions,
i.e., infinitely fast measurement and feedback, electrons are
transported against a voltage bias without performing any net
work on the electrons. Thus, information is used to convert
heat into electrical work. The distributions of produced work
and heat are found to be non-Gaussian.
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By means of a Monte Carlo method, we have simulated
the system under nonideal operation conditions, i.e., having
delay and noise in the occupation measurements of the dots.
Delay slows the operation down, decreasing the produced
electrical power, whereas noise mainly results in heating. The
electron trajectories can be fully resolved when having small
electron tunneling rates, and the system can be operated in the
ideal regime. Slightly increasing the rates, the system is still
operated as a Maxwell demon, but it is no longer expected
to recover the ideal power production. Further increasing the
tunneling rates, the electron trajectories can no longer be
resolved, and the operation starts to resemble an electron
pump.

Promising avenues to pursue include the quantum regime
where backaction of the measurement has to be taken into
account as well as the quantum-to-classical transition.
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APPENDIX: MONTE CARLO SIMULATION

1. Rate equation

The system state S(t ) is governed by the rate equation
ρ̇(t ) = L[D(t )]ρ(t ), where the Liouvillian L[D(t )] is depen-
dent on the level setting D(t ) = 0, 1, 2,

L[0] =

⎛
⎜⎝

−γ
(i)

L (ε0) − γ
(i)

R (εu) γ
(o)

L (ε0) γ
(o)

R (εu)

γ
(i)

L (ε0) −γ
(o)

L (ε0) 0

γ
(i)

R (εu) 0 −γ
(o)

R (εu)

⎞
⎟⎠,

(A1)

L[1] =

⎛
⎜⎜⎝

−γ
(i)

L (εl ) − γ
(i)

R (εl ) γ
(o)

L (εl ) γ
(o)

R (εl )

γ
(i)

L (εl ) −γ
(o)

L (εl ) − γ γ

γ
(i)

R (εl ) γ −γ
(o)

R (εl ) − γ

⎞
⎟⎟⎠,

(A2)

and

L[2] =

⎛
⎜⎜⎝

−γ
(i)

L (εu) − γ
(i)

R (ε0) γ
(o)

L (εu) γ
(o)

R (ε0)

γ
(i)

L (εu) −γ
(o)

L (εu) 0

γ
(i)

R (ε0) 0 −γ
(o)

R (ε0)

⎞
⎟⎟⎠,

(A3)

where the transition rates are given by

γ (i)
α (ε j ) = �α fα (ε j ), γ (o)

α (ε j ) = �α[1 − fα (ε j )]. (A4)

The superscripts (i) and (o) denote whether a transition is into
or out from the double dot, the subscript α specifies whether
reservoir L or R is involved, and j = l, 0, u defines at which
energy the transition occurs.

2. Simulation

To simulate the system state at each point in time, we
exploit that under a small change in time δt , where D(t ) is
constant, it is possible to write

ρ(t + δt ) = {1 + L[D(t )]δt}ρ(t ). (A5)

The change in time δt should be small enough such that

γ (i/o)
α (ε j )δt � 1. (A6)

Given S(t ) = j and D(t ) = k, with j, k = 0, 1, 2 at time t , we
assign S(t + δt ) = i, i = 0, 1, 2, with probability,

P[S(t + δt ) = i|S(t ) = j, D(t ) = k] = δi j + δt (L[k])i j,

(A7)

which follows from the probability vector ρ(t + δt ) in
Eq. (A5). Here, δi j is the Kronecker δ, and (L[k])i j is the
matrix elements of the Liouvillian given in Eqs. (A1)–(A3).
Before the next time step of the simulation, d (t + δt ) and
D(t + δt ) must be calculated: First, m(t + δt ) is computed
by Eq. (24). Then, a random number is drawn according
to Eq. (23) and assigned to d (t + δt ). Finally, D(t + δt ) is
determined by Eq. (25).
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