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Transport-induced suppression of nuclear field fluctuations in multi-quantum-dot systems
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Magnetic noise from randomly fluctuating nuclear spin ensembles is the dominating source of decoherence
for many multi-quantum-dot multielectron spin qubits. Here, we investigate in detail the effect of a DC electric
current on the coupled electron-nuclear spin dynamics in double and triple quantum dots tuned to the regime of a
Pauli spin blockade. We consider both systems with and without significant spin-orbit coupling and find that in all
cases the flow of electrons can induce a process of dynamical nuclear spin polarization that effectively suppresses
the nuclear polarization gradients over neighboring dots. Since exactly these gradients are the components of the
nuclear fields that act harmfully in the qubit subspace, we believe that this presents a straightforward way to
extend coherence times in multielectron spin qubits by at least one order of magnitude.
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I. INTRODUCTION

Spin qubits hosted in semiconductor quantum dots form an
attractive qubit implementation that promises easily scalable
quantum processors [1–3]. One drawback of the originally
proposed single-spin single-quantum-dot qubit is that it re-
quires highly localized magnetic fields for qubit control [4,5].
To overcome the practical challenge of creating such fields,
qubits can also be encoded in a multielectron spin state hosted
in a multi-quantum-dot structure. If one defines a qubit in the
unpolarized singlet-triplet subspace of two spins in a double
quantum dot, then the field along one axis of the Bloch sphere
can be controlled fully electrically, but the second control axis
is still set by the magnetic field gradient over the two dots
[6,7]. Adding one more spin to the setup, one can create a
three-electron double-dot hybrid qubit [8,9] or a triple-dot
exchange-only qubit [10–14], offering electric control over
the full Bloch sphere through exchange interactions [15,16].

An important remaining challenge for many multispin
qubit implementations is their rapid decoherence. Its two main
sources are (i) hyperfine coupling of the electronic spins to
the randomly fluctuating nuclear spin baths in the quantum
dots [17–20] and (ii) charge fluctuations in the environment
that interfere with exchange-based qubit control [21,22]. The
latter could be mitigated by enhancing the device quality or
operating the qubit at a (higher-order) sweet spot [23–27],
which leaves the nuclear spin noise as an important intrinsic
obstacle for further progress.

Several approaches to reducing the harmful effects of
nuclear spin fluctuations in exchange-only qubits are being
explored: (i) One can host the qubits in quantum dots created
in isotopically purified 28Si, which can be made nearly nuclear
spin free [2,28–31]. However, silicon comes with the compli-
cation of the extra valley degree of freedom [2], which is hard
to control [32–34] and provides an extra channel for leakage
and dephasing [35,36]. (ii) It is possible to encode the qubit in
a four-electron singlet-only subspace [37–39], which makes
it intrinsically insensitive to the fluctuating nuclear fields.

This, however, presents significant complications for device
design and tuning. (iii) One can actively mitigate the nuclear
spin noise, e.g., by applying complex spin-echo-like pulse
sequences that effectively filter out all peaks from the noise
spectrum [40] or with an active feedback cycle exploiting
an interplay between the electron dynamics and hyperfine
interaction [41–45].

In this paper, we propose another approach that falls in the
last category but is much simpler to implement. A few years
ago, experiments on a double quantum dot hosted in an InAs
nanowire suggested that when running a DC electric current
through the system in the regime of a Pauli spin blockade,
an interplay between the hyperfine interaction and strong
spin-orbit interaction (SOI) in InAs can give rise to a process
of dynamical nuclear polarization that effectively quenches
the total Zeeman gradient over the two dots [46]. Here, we
investigate this idea in more detail, and we show how it not
only works for double quantum dots with strong SOI, but also
in the absence of SOI and—maybe more importantly—can be
implemented in a similar way in a linear triple quantum dot,
where it results in a suppression of both nuclear field gradients
between neighboring dots. For all mechanisms we investigate,
we present a simple intuitive picture as well as analytic
and numerical results that support this picture and predict a
suppression of the fluctuations of the nuclear field gradients of
one to two orders of magnitude. Since the hyperfine-induced
decoherence of both singlet-triplet and exchange-only qubits
originates mainly from these gradients, we believe that this
current-induced suppression mechanisms yields a straight-
forward way to significantly extend the coherence time of
multielectron qubits.

The rest of this paper is separated into two main parts, Secs.
II and III, which discuss the double-dot and triple-dot setup,
respectively. Both parts are organized as follows: In Secs. II A
and III A we briefly review the definition of the respective
qubit and present a description of the system in terms of a sim-
ple model Hamiltonian. In Secs. II B and III B we then present
an intuitive picture of the mechanism behind the suppression
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FIG. 1. (a) Typical charge stability diagram of a double quantum
dot, showing the ground-state charge configuration of the system as a
function of the local dot potentials VL and VR. (b) Sketch of the double
quantum dot. If the system is in a (0,2) charge state, the two electrons
must have opposite spin. (c) Energy spectrum along the detuning axis
indicated in (a) showing the relevant (1,1) and (0,2) states, where a
finite interdot tunnel coupling and Zeeman splitting were included.
The blue (red) lines correspond to spin triplet (singlet) states.

of the gradients. Sections II C and III C contain approximate
analytic expressions for the current-induced dynamics of the
nuclear polarizations, which we corroborate in Secs. II D and
III D with numerical simulations of the stochastic nuclear spin
dynamics. Sections II E and III E contain a short conclusion,
and a final general conclusion is presented in Sec. IV.

II. SINGLET-TRIPLET QUBIT

A. The qubit

The singlet-triplet qubit is usually hosted by two electrons
residing in a double quantum dot and is defined in two two-
particle spin states with total spin projection Sz = 0. Using
gate voltages, the double dot is tuned close to the (1,1)-(0,2)
charge transition [the gray line in the charge stability diagram
shown in Fig. 1(a)]. Here, the low-energy part of the spectrum
consists of five states: The large orbital level splitting on the
dots (typically ∼meV) allows us to disregard states involving
excited orbital states; the Pauli exclusion principle then dic-
tates that the two electrons in the (0,2) configuration must be
in a spin-singlet state |S02〉. In the (1,1) charge configuration
all four spin states are accessible: one singlet state |S〉, and
three triplet states |T±〉 and |T0〉.

We describe this five-level subspace with a simple model
Hamiltonian,

Ĥ0 = Ĥe + Ĥt + ĤZ. (1)

Here,

Ĥe = −ε|S02〉〈S02| (2)

describes the relative energy detuning of the (1,1) and (0,2)
charge states as a function of the detuning parameter ε (see
Fig. 1). Further,

Ĥt = ts[|S〉〈S02| + |S02〉〈S|] (3)

accounts for spin-conserving interdot tunneling, and

ĤZ = gμBB[|T+〉〈T+| − |T−〉〈T−|] (4)

describes the Zeeman effect due to a homogeneous magnetic
field. A typical spectrum of Ĥ0 as a function of ε is shown in
Fig. 1(c), where we have set ts = 0.6EZ with EZ = |gμBB| the
Zeeman splitting, and we assumed g < 0.

The qubit is defined in an unpolarized subspace consisting
of a triplet, |1〉 = |T0〉, and the lower of the two singlet
branches, |0〉 = |S2〉 = cos θ

2 |S02〉 + sin θ
2 |S〉 [dashed levels

in Fig. 1(c)] where tan θ = 2ts/ε. From the projected qubit
Hamiltonian

Ĥq = ωq

2
σ̂z, (5)

with ωq = ε/2 + √
(ε/2)2 + t2

s , we see that the qubit has a
splitting that is tunable electrically via VL,R, presenting an
advantage over the single-spin qubit, which requires magnetic
control.

In semiconductors with nonzero nuclear spin, such as
GaAs and InAs, an important source of decoherence for such
a qubit is the hyperfine interaction between the nuclear and
electronic spins. The dominating term is the contact interac-
tion, described by

Ĥhf =
∑
d,k

Ak

2

(
2Ŝz

d Î z
d,k + Ŝ+

d Î−
d,k + Ŝ−

d Î+
d,k

)
, (6)

where Ŝd is the electron spin operator on dot d , Îd,k the nuclear
spin operator for nucleus k on dot d , and Ak = Av0|ψ (rk )|2 is
the coupling constant between the electrons and nucleus k,
written in terms of the hyperfine coupling energy, typically
A ∼ 100 μeV, the density of spinful nuclei 1/v0, and the
electron density at the position of the nucleus. Due to the
small nuclear magnetic moment, the nuclear spin ensemble is
in a fully mixed state in equilibrium at typical dilution fridge
temperatures, and within a mean-field approximation we can
then write

Ĥhf,mf = KL · ŜL + KR · ŜR, (7)

where the nuclear fields KL,R are random with an rms value
∼A/

√
N , where N is the number of spinful nuclei on a dot,

typically N ∼ 105−106. These fields are thus usually of the
order ∼mT when translated to an effective magnetic field.
Projecting this Hamiltonian to the qubit subspace yields

Ĥhf,q = δKz sin
θ

2
σ̂x, (8)

where δKz = 1
2 (Kz

L − Kz
R) is a quasistatic random field gra-

dient. For the singlet-triplet qubit this gradient can be used
for initialization along the ±x̂ axis of the Bloch sphere [6],
but in general its random nature presents a main source of
qubit decoherence. Protocols how to control or suppress the
gradient δKz could lead to significant improvement of the
qubit coherence time.
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FIG. 2. (a) The double quantum dot is tunnel coupled to source
and drain reservoirs, and in the presence of a bias voltage electrons
can flow from source to drain. Energy spectrum as a function of �

for the (1,1) spin states: (b) with and (c) without spin-orbit coupling.
The thickness of the lines indicates the occupation probability of the
eigenstates as given by Eqs. (15)–(17). Preferred electron-nuclear
spin-flip rates close to � = 0 are indicated by the gray arrows.

B. Transport-induced nuclear spin pumping:
Qualitative picture

In Ref. [46] it was shown how such a gradient can get
suppressed naturally in the presence of a strong spin-orbit
interaction, when the double dot is embedded in a transport
setup. We will first review here the intuitive picture of the
underlying mechanism, as outlined in Ref. [46], and then show
how it also works in the absence of a spin-orbit interaction. In
the next sections we will support this with an analytic inves-
tigation and numerical simulations of the coupled electron-
nuclear spin dynamics.

We assume the double dot to be connected in a linear
arrangement to source and drain reservoirs, as sketched in
Fig. 2(a), and to be tuned close to the so-called “triple point”
(where three stable charge regions meet) indicated by the red
dot in Fig. 1(a). Then, a finite bias voltage over the source
and drain can give rise to a current through the system,
via the transport cycle (0, 1) → (1, 1) → (0, 2) → (0, 1). We
assume that the system is tuned to the open regime, where the
couplings to the reservoirs, characterized by the rates 	in,out,
are the largest relevant energy scales. This ensures that the
tunneling processes (0, 2) → (0, 1) → (1, 1) are effectively
instantaneous, and the interesting dynamics happen during the

transition (1, 1) → (0, 2) which involves the same five levels
as before, {|T±,0〉, |S〉, |S02〉}.

In the absence of spin-mixing processes, the only available
transport path is (0, 1) → |S〉 → |S02〉 → (0, 1) and popula-
tion of one of the (1,1) triplet states results in a spin blockade
of the current. The effect of SOI in this context is twofold:
(i) Small inhomogeneities in the confining potential can result
in different effective g-factors gL,R on the two dots, and (ii)
tunneling from one dot to the other can now be accompanied
by a spin flip [47]. These two effects can be described by the
Hamiltonian

Ĥso = it+|T−〉〈S02| − it−|T+〉〈S02|
+ itz|T0〉〈S02| + �so|T0〉〈S| + H.c., (9)

where t± = 1√
2
(tx ± ity), with the real vector t characterizing

the spin-orbit-induced spin-flip tunnel coupling, and �so =
1
2 (gL − gR)μBB accounting for the difference in g-factors on
the dots. The magnitude of the vector t can be estimated as
∼(d/lso)ts, where d is the distance between the two dots and
lso the spin-orbit length in the direction of the interdot axis.

We see that SOI can lift the blockade of the polarized
states |T±〉. But if the total Zeeman gradient � vanishes, � =
�so + δKz = 0, the two unpolarized (1,1) states can still be
combined into a bright state |B〉 = [ts|S〉 + itz|T0〉]/

√
t2
s + t2

z

(that is coupled to |S02〉 with strength
√

t2
s + t2

z ) and a dark
state |D〉 = [itz|S〉 + ts|T0〉]/

√
t2
s + t2

z (that is not coupled). So
in this case there is still one spin-blocked state left, |D〉, which,
as a consequence, will be populated with high probability,
whereas the other three states |T±〉 and |B〉 have a vanishing
population. Adding a finite Zeeman gradient � �= 0 mixes
the states |T0〉 and |S〉, and thus |B〉 and |D〉, lifting the
blockade of |D〉 which results in a more evenly distributed
population of the levels. These observations are illustrated in
Fig. 2(b), where we show the energy spectrum of the four
(1,1) states as a function of �: The thickness of the lines
indicates the relative occupation probabilities of the four states
when embedded in a transport setup. We have set ts = 0.6EZ

and t = {0.4, 0.4, 0.4}ts, and we assumed the escape rates of
every state to be proportional to the modulo square of its total
coupling to |S02〉 given by Ĥt + Ĥso, which is valid in the limit
of large 	out.

Based on this, we can now develop a qualitative under-
standing of the resulting coupled electron-nuclear spin dy-
namics. The hyperfine Hamiltonian (6) contains terms Ŝ±

d Î∓
d,k

which can give rise to so-called spin flip-flop processes in
which the electron on dot d exchanges one unit of angular
momentum with one of the nuclei in the dot, which changes
the value of the effective nuclear field Kz

d by a small amount. A
nonequilibrium electron spin polarization on the dots can thus
be slowly transferred to the nuclear spin ensemble which, in
turn, can influence the electron dynamics, potentially yielding
an intricate feedback cycle.

To see if there is a preferred direction of nuclear spin polar-
ization, we investigate the spin structure of the most strongly
occupied electronic state: At � = 0 the state |D〉 contains
equally large components of |↑↓〉 and |↓↑〉, i.e., | 〈D|↑↓〉 |2 =
| 〈D|↓↑〉 |2 = 1

2 , where |αβ〉 denotes the (1,1) state with a
spin-α electron on the left dot and a spin-β electron on the
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right dot. Due to these equal weights, all possible hyperfine-
induced flip-flop processes are to first approximation equally
likely, and the net nuclear spin-flip rates on both dots thus
vanish. However, when � > 0 the most strongly occupied
state acquires a slightly ↓↑-polarized character [see Fig. 2(b)]
and then the flip-flop processes caused by Ŝ+

L Î−
L,k and Ŝ−

R Î+
R,k

(illustrated by the gray arrows in the figure) are more likely
than the opposite ones. This results in a net negative (positive)
nuclear spin pumping rate in the left (right) dot, which reduces
δKz and thus �. Similarly, we see that when � < 0, the small
polarization of the most strongly occupied state will drive δKz

and thus � to larger values. All together, this indeed suggests
that the specific manifestation of spin blockade in the presence
of strong SOI can result in a self-quenching of the Zeeman
gradient over the dots. The experimental results presented in
Ref. [46] were consistent with this picture.

Let us now turn to the limit of very weak SOI, where
we set t = �so = 0. In that case we see that at � = 0 there
are three spin-blocked states, the (1,1) triplet states |T±,0〉.
At this special point one thus finds an occupation probability
of 1

3 for each of the triplet states and zero for the coupled
state |S〉. But again, due to the symmetric polarization of
all four states, there will be no net nuclear spin pumping at
this point. Away from the special point � = 0, the Zeeman
gradient mixes the states |S〉 and |T0〉 and both unpolarized
eigenstates end up having a finite coupling to |S02〉, whereas
the polarized triplets remain uncoupled. This results in an
occupation probability of approximately 1

2 for |T+〉 and |T−〉
and zero for the two unpolarized states. We first focus on the
case � > 0, where |D〉 evolves into a state with a slightly
stronger ↓↑ component, whereas |B〉 acquires a slight ↑↓
character [see Fig. 2(c)]. Flip flops from the blocked states
can cause transitions to both unpolarized states, but due to
its stronger coupling to |S02〉 transitions to the state |B〉 at
� = 0 are favored. This means that the flip-flop processes
caused by Ŝ+

L Î−
L,k and Ŝ−

R Î+
R,k are most likely, which again

result in a pumping of δKz toward smaller values of �. At
� < 0 a similar reasoning results in positive pumping of δKz

toward higher values of �. So, we see that also in the case
of vanishing SOI a naive qualitative investigation of the spin
dynamics predicts a transport-induced self-quenching of the
Zeeman gradient.

In the next two sections we will present analytic and
numerical investigations that support the simple picture pre-
sented above.

C. Analytic results

We start by deriving evolution equations for the nuclear
polarizations in the two dots, similar to those derived in
Ref. [46] but now including the effect of the strong couplings
	in,out in a more general way and not solely focusing on the
case of strong SOI. From the flip-flop rates we thus find,
we derive an expression for the fluctuations around the stable
point at � = 0 using a Fokker-Planck equation to describe the
stochastic dynamics of the nuclear fields Kz

L,R.
We start from a time-evolution equation for the electronic

density matrix (we use h̄ = 1),

d ρ̂

dt
= −i[Ĥ , ρ̂] + �ρ̂, (10)

where Ĥ = Ĥ0 + Ĥso + δKz[|T0〉〈S| + |S〉〈T0|]. We neglect
all other components of KL,R since they lead to small correc-
tions that are of the order K/EZ, where K is the typical mag-
nitude of the nuclear fields. The term �ρ̂ = − 1

2	{P̂02, ρ̂} +
1
4	(1 − P̂02)ρ02,02 describes the transitions |S02〉 → (0, 1) →
(1, 1), using the projector onto the (0,2) singlet state P̂02 =
|S02〉〈S02|, where 	 = 	out and we assume that tunneling into
the system is instantaneous.

Assuming that the rate 	 is the largest energy scale in
Eq. (10), we can separate the timescales of the part of ρ̂

involving |S02〉 and the part describing the dynamics in the
(1,1) subspace. This yields an effective Hamiltonian for that
subspace,

Ĥ (1,1) =

⎛
⎜⎝

EZ 0 0 0
0 EB � 0
0 � 0 0
0 0 0 −EZ

⎞
⎟⎠, (11)

written in the basis {|T−〉, |B〉, |D〉, |T+〉}, where we assumed
g < 0 and B > 0. The projection onto the (1,1) subspace re-
sulted in exchange terms of the form (Ĥex)i j = 4εTi j/(4ε2 +
	2), with

Ti j = 〈i|(Ĥt + Ĥso)|S02〉〈S02|(Ĥt + Ĥso)| j〉, (12)

and thus EB = 4ε(t2
s + t2

z )/(4ε2 + 	2), where i, j can repre-
sent any of the four basis states. Assuming that EZ is much
larger than all exchange corrections, we neglected the terms
coupling |T±〉 to |B, D〉. The four (1,1) states also acquire a
finite lifetime that can be characterized by the four decay rates
	i = 4	Tii/(4ε2 + 	2), where we note that 	+ = 	− ≡ 	t

and 	B = 4	(t2
s + t2

z )/(4ε2 + 	2).
Using Eq. (11) and the decay rates 	i, we can write

a time-evolution equation for ρ̂ (1,1) similar to Eq. (10).
Solving d ρ̂ (1,1)/dt = 0 we find the equilibrium density ma-
trix, which can be written ρ̂ (1,1)

eq = ∑
i pi|i〉〈i| in the basis

{|T+〉, |1〉, |2〉, |T−〉}, where

|1〉 = cos
θ

2
|D〉 + eiϕ sin

θ

2
|B〉, (13)

|2〉 = cos
θ

2
|B〉 − e−iϕ sin

θ

2
|D〉, (14)

in terms of the angles ϕ = arg(−i	B� − 2EB�) and θ =
arctan(4|�|/

√
	2

B + 4E2
B ). The occupation probabilities pi of

the four states read

p± = 4	B�2

	t E2
2 + 8	B�2

, (15)

p1 = 1

2
−

4	B�2 − 1
2	t

√(
4E2

B + 	2
B

)
E2

2

	t E2
2 + 8	B�2

, (16)

p2 = 1

2
−

4	B�2 + 1
2	t

√(
4E2

B + 	2
B

)
E2

2

	t E2
2 + 8	B�2

, (17)

with E2 =
√

4E2
B + 	2

B + 16�2 . In contrast to Ref. [46], we
included the effect 	out here, resulting in a different basis of
unpolarized states |1, 2〉.

We now add the flip-flop terms in Eq. (6) in a perturbative
way where we use Fermi’s golden rule to calculate the rates
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for the resulting nuclear spin flips. Assuming for simplicity
nuclear spin 1

2 [48], we write for the flip rates up and down on
dot d ,

γ ±
d = A2

4N2
N∓

d

∑
i, j

pi
	 j

E2
Z

|〈 j|Ŝ∓
d |i〉|2 + γ N∓

d , (18)

where N±
d is the number of nuclei with spin ± 1

2 on the dot, and
we assumed for simplicity that all nuclei in a dot are coupled
equally strong to the electron spin, Ak = A/N . The factor
	 j/E2

Z accounts for the finite lifetime of the final electronic
state | j〉, assuming a Lorentzian level broadening in the limit
EZ � 	 j . We also added a term that describes random nuclear
spin flips with a rate γ to account phenomenologically for
the slow relaxation of the nuclear spins to their fully mixed
equilibrium state. Typically, this process is dominated by
diffusion of nuclear spin polarization out of the quantum dots,
resulting in relaxation of the nuclear spin polarization on a
timescale of 1–10 s [49].

We can translate these flip rates to evolution equations for
the dot polarizations Pd = (N+

d − N−
d )/N . For the polarization

gradient P� = 1
2 (PL − PR) and the average polarization P� =

1
2 (PL + PR) we find

dP�

dt
= −

[
F (�) + 1

τ

]
P� − 2F (�)EB�

E2
B + 1

4	2
B + 4�2

, (19)

dP�

dt
= −

[
F (�) + 1

τ

]
P�, (20)

with

F (�) = A2

4N2E2
Z

	2
t

(
4E2

B + 	2
B + 16�2

) + 4	2
B�2

	t
(
4E2

B + 	2
B + 16�2

) + 8	B�2
,

and 1/τ = 2γ /N the phenomenological relaxation rate of the
polarizations, usually τ ∼ 1−10 s. We note that these equa-
tions are nonlinear, since � = �so + δKz = �so + (A/2)P�.

From Eqs. (19) and (20) we see that both polarizations
acquire effectively an enhanced relaxation rate, τ−1 → τ−1 +
F (�), which does depend on P� but always drives the polar-
izations toward zero. Furthermore, Eq. (19) has an extra term
that pumps the polarization gradient to the point where the
total Zeeman gradient � is zero. For typical parameters,
where EB ∼ 	B  A, this term dominates and the result is a
stable polarization close to � = 0. In the limit of vanishing
SOI, we can set 	t → 0 and then find F (�) = A2	B/8N2E2

Z.
These results are illustrated in Fig. 3, where in Fig. 3(a) we
plot dP�/dt as a function of P� and in Fig. 3(b) we plot
dP�/dt as a function of P� for three different strengths of
SOI (green, red, and blue lines) as well as without any spin
pumping (orange dashed line). We used A = 250 μeV, EZ =
5 μeV, N = 4 × 105, and τ = 5 s. For the curve without SOI
(green) we used EB = 0.5 μeV, 	B = 0.25 μeV, and 	t =
�so = 0. The other two curves have 	t = 0.01 μeV, �so =
0.5 μeV (red) and 	t = 0.0625 μeV, �so = 1 μeV (blue). In
these two cases, we adjusted 	B and EB such that the total
coupling

√
t2
s + |t|2 remains constant; this amounts to assum-

ing that the SOI “converts” part of the tunnel coupling to a
non-spin-conserving coupling but it does not affect the total
coupling energy. In the next section, we will show that these

FIG. 3. Pumping curves for the polarization gradient and average
polarization, as given by Eqs. (19) and (20). (a) dP�/dt as a function
of P�. (b) dP�/dt as a function of P� . In both plots we show three
curves: without SOI (green), with intermediate SOI (red), and with
strong SOI (blue); see the main text for the parameters used. As a
reference, we also added the result without any spin pumping, i.e.,
with F (�) = 0 (orange dashed line).

analytic results also agree well with numerical simulations of
the dynamics of the polarizations [see Fig. 5(a)].

Finally, we investigate the stochastic fluctuations of the
polarization gradient around the stable point using a Fokker-
Planck equation to describe the (time-dependent) probabil-
ity distribution function P (n, t ), where the integer n = NP�

labels the allowed polarization gradients [50,51]. Going to
the continuum limit, we can find the equilibrium distribution

FIG. 4. Suppression of the fluctuations of the nuclear field gra-
dient, as given in Eq. (22), as a function of ε and η, where η

characterizes the strength of the SOI. See the main text for the
parameters used and the exact definition of η.
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FIG. 5. Simulation of the polarization gradient P�(t ) without
SOI (red solid lines), strong SOI (yellow solid lines), and without
hyperfine-induced spin pumping (A = 0, green solid lines). The
dashed lines show the solution of Eq. (19) using the same param-
eters. (a) Short-time evolution. Note that we used different initial
conditions for clarity: P�(0) = 0.0025 for the red and green lines
and P�(0) = −0.0025 for the yellow line; we always set P� (0) = 0.
(b) Long-time evolution for A = 0. The horizontal black lines indi-
cate ±σ0. (c) Long-time evolution in the presence of spin pumping.
The horizontal black lines now show ±σ as found from Eq. (22) (see
inset). See the main text for all other parameters used.

function to be

P (P�) = exp

{∫ P�

dP′
� 2N

γ +
� − γ −

�

γ +
� + γ −

�

}
, (21)

where γ ±
� = 1

2 (γ ±
L − γ ±

R ) in terms of the flip rates as written
in Eq. (18). The slope of the integrand close to the points
where γ +

� − γ −
� = 0 can thus be used to estimate the equi-

librium rms deviation of P� from those stable points. In the
absence of pumping, i.e., for F (�) → 0, we find a peak
in the distribution around the point P� = 0 with a variance
σ 2

0 = 1/2N . Including pumping, and assuming that the second
term in Eq. (19) dominates around the stable point, we find a
peak in P (P�) at P� ≈ −2�so/A, where

σ 2 ≈ σ 2
0

E2
B + 1

4	2
B

AEB

(
1 + 8

E2
ZN2

A2τ

	B + 2	t

	2
B + 4	2

t

)
. (22)

In Fig. 4 we show the resulting suppression of the fluctuations
σ 2/σ 2

0 as a function of detuning ε and strength of the SOI,
parametrized by η, where we fixed the total tunnel coupling to
t = 7.5 μeV and then used t2

x + t2
y = t2 sin2 η and t2

z + t2
s =

t2 cos2 η. In this way, η = 0 corresponds to having no SOI
and η ∼ π/4 to strong SOI. We further used A = 250 μeV,
EZ = 12.5 μeV, 	 = 75 μeV, N = 4 × 105, and τ = 5 s. For
these parameters we observe a significant suppression of the
fluctuations in the whole range we plotted. We see that the
suppression is most effective for strong SOI (where η →
π/4), but still of the same order of magnitude in the absence
of SOI (where η = 0).

D. Numerical simulations

We complement our analytic results with a numerical simu-
lation of the electron-nuclear spin dynamics, discretizing time
in small steps of �t . We start with two initial polarizations
PL(0) and PR(0) on the two dots and then solve for the
eigenvalues εi and eigenmodes ρ̂i of the superoperator � that
describes the coherent evolution and decay of the density
matrix,

�ρ̂ = −i[Ĥ , ρ̂] − 1
2 {	̂, ρ̂}, (23)

where 	̂ is a diagonal matrix containing the decay rates of the
five basis states [52]. Each of the 25 eigenmodes of � can then
be written as ρ̂i = |n〉〈m|, where |n〉 and |m〉 are picked from
a (new) five-dimensional basis. The corresponding eigenvalue
εi has the form εi = −i(En − Em) − 1

2 (γn + γm), where En,m

and γn,m give the effective energies and decay rates of the two
states |n〉 and |m〉. From knowing all εi and ρ̂i we can thus
derive the appropriate basis states, their effective energies,
and their decay rates. To find the steady-state occupation
probabilities for these five states, we evaluate their weight
in the (1,1) subspace, wn = 〈n|(1 − P̂02)|n〉, from which the
occupation probabilities follow as pn = wnγ

−1
n /

∑
i wiγ

−1
i .

Now we have all ingredients we need to evaluate the spin-
flip rates on both dots. We rewrite Eq. (18) including the
detailed dependence on all energy differences and decay rates,

γ ±
d = A2

N2

∑
i, j

pi(γi + γ j )|〈 j|Ŝ∓
d |i〉|2

4(Ei − Ej )2 + (γi + γ j )2
N∓

d + γ N∓
d , (24)

where i, j now run over the actual eigenstates found nu-
merically as outlined above. Then we pick random numbers
of spin-flip events k±

d on both dots and in both directions,

using a Poisson distribution (γ ±
d �t )k±

d eγ ±
d �t/(k±

d )!, and we
update the polarizations Pd (�t ) = Pd (0) + (2/N )(k+

d − k−
d ).

This process can then be repeated as many times as desired to
simulate the evolution of PL,R(t ) over longer times. We note
that we make sure that �t is small enough so that most of the
k±

d turn out 0 or 1.
We show the results of our simulations as solid lines in

Fig. 5, where we plot P�(t ) for three different cases: (i)
strong SOI, where tx,y,z = 3.12 μeV and t = 5.21 μeV (yel-
low), (ii) no SOI, with tx,y,z = 0 and t = 7.5 μeV (red), and
(iii) no hyperfine interaction (green). The other parameters
used were A = 125 μeV, EZ = 12.5 μeV, δ = 100 μeV, 	 =
75 μeV, N = 4 × 105, τ = 5 s, and �t = 10 μs. We used as
initial conditions P�(0) = 0.0025 (red and green), P�(0) =
−0.0025 (yellow), and P� (0) = 0 (always). We note that, in
order to make the comparison more straightforward, we set
�so = 0 in all cases, including the case of strong SOI.

In Fig. 5(a) we show the first 0.1 s of the evolution. We
see that the hyperfine interaction accelerates the dynamics of
the polarizations and tends to suppress the gradient to zero.
We added dashed lines that show time-dependent solutions
of Eq. (19), which indeed seems to predict the average dy-
namics of the polarization gradient to reasonable accuracy. In
Figs. 5(b) and 5(c) we show longer time traces to illustrate
the magnitude of the fluctuations around the stable point
P� = 0. In Fig. 5(b) the fluctuations are clearly much larger
than in Fig. 5(c), which is what we expected. The horizontal
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lines show the magnitude of the fluctuations as predicted by
Eq. (22): For the parameters used we find σ0 = 1.1 × 10−3 (to
be compared with the green trace), and σ = 7.8 × 10−5 (red
trace) and σ = 7.5 × 10−5 (yellow trace).

In both simulations that include spin pumping (red and
yellow lines) the average polarization P� tends to drift to neg-
ative values, stabilizing at ∼ − 0.02. This can be understood
in qualitative terms from Figs. 2(b) and 2(c): With strong SOI
[Fig. 2(b)] the state |T+〉 decays more efficiently than |T−〉
since it is closer in energy to |S02〉 and 	 is finite. This makes
in general spin flips from |D〉 slightly more likely to happen
to |T+〉, resulting in a net average transfer of negative angular
momentum to the nuclear spins. Without SOI [Fig. 2(c)], the
bright state |B〉 is closer in energy to |T−〉 than to |T+〉 (assum-
ing δ > 0), resulting in the flip rate |T−〉 → |B〉 to be larger
than |T+〉 → |B〉. This should indeed also result in a small net
negative pumping of the average polarization. These effects
are not reflected in Eq. (20) since in that section we neglected
all energy differences in the (1,1) subspace compared to EZ,
which, in turn, was assumed negligible compared to 	.

E. Conclusion

We found that embedding a double quantum dot in the
spin-blockade regime in a transport setup, the flow of elec-
trons induces dynamic nuclear spin polarization that tends
to suppress the polarization gradient over the two dots. This
mechanism not only works in the case of strong SOI, but also
with weak SOI or in the absence of SOI. We derived simple
analytic equations to describe the dynamics of the polarization
gradient (which we corroborated with numerical simulations),
and we found that, over a large range of parameters, the rms
value of the random polarization gradient can be suppressed
by one to two orders of magnitude. This could present a
straightforward way to extend the coherence time of double-
dot-based spin qubits.

III. EXCHANGE-ONLY QUBIT

A. The qubit

Exchange-only qubits are usually hosted in a linear triple
quantum dot, with one electron in each dot. The eight-
dimensional (1,1,1) subspace consists of one spin quadruplet
|Q〉 and two doublets |D1〉 and |D2〉. An external magnetic
field lifts the degeneracy of states with different total Sz, and
when the system is then tuned close to the border of the (1,1,1)
region, exchange effects due to finite interdot tunneling can
lift the remaining degeneracies. The qubit is then commonly
defined in the two doublet states with spin projection Sz =
+ 1

2 , and turns out to be fully controllable via electric fields
only.

In Fig. 6(a) we sketch the charge stability diagram close
to the (1,1,1)-(1,0,2)-(2,0,1) triple point, as a function of
the two tuning parameters ε = 1

2 (VR − VL ) and εM = VC −
1
2 (VL + VR), where VL,C,R denote the gate-induced potentials
on the left, central, and right dot, respectively. We include
energy offsets such that the triple point is defined to be at
(εM, ε) = (0, 0). In this regime, the low-energy part of the
spectrum consists of 12 states: In addition to the eight (1,1,1)
states mentioned above, we also need to include a doublet

FIG. 6. (a) Sketch of the charge stability diagram of a linear triple
quantum dot tuned close to the (1,1,1)-(1,0,2)-(2,0,1) triple point.
(b) Cartoon of the setup. (c), (d) Lowest part of the spectrum along
the horizontal and vertical dashed line, respectively.

|DL〉 in a (2,0,1) configuration and a doublet |DR〉 in a (1,0,2)
configuration.

We can then write a similar Hamiltonian as before,

Ĥ0 = Ĥe + Ĥt + ĤZ. (25)

Now we have

Ĥe =
∑
α=±

{ − (εM + ε)
∣∣Dα

L

〉〈
Dα

L

∣∣ − (εM − ε)
∣∣Dα

R

〉〈
Dα

R

∣∣},
(26)

where α = ± labels the spin projection Sz = ± 1
2 of the dou-

blet state. The tunneling Hamiltonian is

Ĥt = t

2

∑
α=±

α
{√

3
∣∣Dα

1

〉[〈
Dα

R

∣∣ − 〈
Dα

L

∣∣]

+ ∣∣Dα
2

〉[〈
Dα

R

∣∣ + 〈
Dα

L

∣∣]} + H.c., (27)

where we assumed the left and right tunneling couplings to be
equal, for simplicity. The Zeeman term is

ĤZ = gμBBŜtot
z , (28)

in terms of the total spin-z projection operator for the three
electrons.

In the region marked “RX” in Fig. 6(a) the central electron
can become delocalized over the three dots [see Fig. 6(b)],
yielding relatively strong exchange effects. To illustrate, we
sketch in Fig. 6(c) the spectrum of Ĥ0 along the dotted line in
(a), where we set t = 3EZ. The two dashed lines (the lowest
doublet states with Stot

z = + 1
2 ) form the qubit subspace, where

|1〉 = |D+
2 〉 and |0〉 = |D+

1 〉 at ε = 0. Close to that point, the
projected qubit Hamiltonian is

Ĥq = J

2
σ̂z −

√
3 j

2
σ̂x, (29)
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with J = 1
2 (JL + JR) and j = 1

2 (JL − JR), in terms of the
exchange energies JL,R associated with virtual tunneling to
the left or right dot, respectively. To lowest order in t [valid
not too close to the borders of the (1,1,1) region] we have
JL,R = −t2/(εM ± ε). From this it is clear that the exchange-
only qubit allows for electric control of rotations around two
different axes of the Bloch sphere, by tuning J and j through
ε and εM , whereas the singlet-triplet qubit offered electric
control over only one axis.

As in the double-dot system, the main effect of the hyper-
fine interaction with the nuclear spin bath can be described on
a mean-field level using three random effective nuclear fields,

Ĥhf,mf = KL · ŜL + KC · ŜC + KR · ŜR. (30)

Projected onto the qubit subspace, this yields

Ĥhf,q = −2

3
δKz

M σ̂z − 1√
3
δKz

LRσ̂x, (31)

where δKz
M = − 1

2 (δKz
LC − δKz

CR) and δKz
LR = 1

2 (Kz
L − Kz

R), in
terms of the field gradients δKz

i j = 1
2 (Kz

i − Kz
j ) over neigh-

boring dots. We thus see that, also in this case, the random
nuclear fields can be an important source of qubit decoher-
ence. Besides, the quadruplet state |Q+1/2〉 that cannot be split
off by increasing the external field B is coupled to the states
|0〉 and |1〉 through the same gradients δKz

M and δKz
LR, which

can thus cause leakage out of the qubit subspace. To be able
to control or suppress the field gradients could therefore again
dramatically increase the qubit quality.

B. Transport-induced nuclear spin pumping:
Qualitative picture

Inspired by our findings for the double dot, we now in-
vestigate possibilities to suppress the nuclear field gradients
by running a current through the system while tuning it to
some sort of spin-blockade regime. In contrast to the double-
dot setup, there are several different types of spin blockade
in a linear triple dot [53], which differ in the geometry of
drains and sources and relative detuning of the three dots. In
a simplest setup where the source and drain are attached to
the outer dots, all regimes of spin blockade effectively behave
as a double dot connected to one isolated dot containing one
“inert” spin. Transport through such a setup would thus only
suppress the field gradient between the two interacting dots.

To address both field gradients we use a setup where the
source is connected to the central dot and both of the outer
dots are connected to a drain [see Fig. 7(a)]. Applying a
source-drain bias voltage in vicinity of the triple point shown
in Fig. 6(a) can then give rise to a current through the system
via the two transport cycles (1, 1, 1) → (2, 0, 1)/(1, 0, 2) →
(1, 0, 1) → (1, 1, 1). Again we will assume that the system is
in the open regime where the rates 	in,out are the largest en-
ergy scales, such that the interesting dynamics happen during
the (1, 1, 1) → (2, 0, 1)/(1, 0, 2) transitions, which involves
the 12 spin states discussed above. For simplicity, we will
assume a symmetric situation, where ε = 0 and εM > 0 [see
Fig. 6(d)], tl = tr , and 	out,l = 	out,r .

In the absence of spin-mixing processes, the only (1,1,1)
states that couple to |DL〉 and |DR〉 are the doublets |D1,2〉,
and the current is spin blocked in either of the four quadruplet

FIG. 7. (a) The central dot is connected to a source and the two
outer dots are connected to drains; an applied bias voltage then
enables electrons to flow through the system to either of the drains.
(b), (c) Spectrum of the (1,1,1) states in the absence of SOI, as a
function of the gradients (b) �LR and (c) �M , where the thickness
of the lines indicates the occupation probabilities. Preferred spin-flip
rates are indicated by gray arrows.

states. This blockade may be lifted by SOI, which affects the
system in the same way as before: (i) Variations in the ef-
fective g-factor over the dots yield spin-orbit-induced Zeeman
gradients �so,i j = 1

2 (gi − g j )μBB and (ii) tunneling between
dots can be accompanied by a spin flip. It is easy to show
that, in contrast to the double-dot case, in the presence of SOI
there are no dark states, even when all total Zeeman gradients
�i j = �so,i j + δKz

i j are zero. SOI thus always fully lifts the
spin blockade and competes with the flip-flop terms in the
hyperfine interaction, thereby reducing the efficiency of spin
pumping. Below we will only focus on the case without SOI,
which is experimentally also most relevant since with strong
SOI there is no spin blockade that can be used for initialization
or read-out.
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Let us now develop an intuitive picture of the electron-
nuclear spin dynamics in this spin-blockade situation, similar
to the discussion in Sec. II B. When the gradients �LR and �M

are zero, the electrons are trapped in one of the four quadruplet
states with equal probability 1

4 . As before, due to the symmet-
ric spin structure of all states at this point there will be no net
spin pumping. A nonzero gradient mixes states with the same
total Stot

z , giving all six states with Stot
z = ± 1

2 a finite coupling
to |D±

L,R〉, whereas the two fully polarized quadruplets remain
spin blocked, each with occupation probability 1

2 . For small
gradients, the doublets have a much larger coupling to |D±

L,R〉
than |Q±1/2〉 and spin-flip processes are thus dominated by
transitions from |Q±3/2〉 to a doublet state.

We first show that transitions to |D±
2 〉 do not contribute

strongly to spin pumping. When �LR �= 0, the states |D±
2 〉

develop a dominating ↑↓↑ and ↓↑↓ character, respectively
[see Fig. 7(b)]. This results in an increased spin-flip rate γ +

C
from transitions |Q+3/2〉 → |D+

2 〉 as well as an increased rate
γ −

C from |Q−3/2〉 → |D−
2 〉. One thus does not expect a strong

net effect. For �M �= 0 the situation is similar: |D+
2 〉 (|D−

2 〉)
gains a larger weight of ↑↑↓ and ↓↑↑ (↓↓↑ and ↑↓↓). The
spin-flip rates from |Q+3/2〉 → |D+

2 〉 and |Q−3/2〉 → |D−
2 〉 are

thus affected in a symmetric way and there is no net spin
pumping.

The doublet states |D±
1 〉, however, have the largest coupling

to the outgoing states |D±
L,R〉, and effectively pump the field

gradients toward zero. For a positive gradient �LR > 0, the
state |D+

1 〉 (|D−
1 〉) evolves into a state with a slight ↑↑↓

(↑↓↓) character [see Fig. 7(b)]. This increases γ +
R (γ −

L ) and
thus drives �LR toward lower values. For a negative gradient
�LR < 0, the situation is exactly opposite, again driving �LR

to zero. A similar argument holds for the other gradient �M :
When �M > 0, the state |D−

1 〉 gets a slight ↓↑↓ character
and |D+

1 〉 obtains stronger ↓↓↑ and ↑↓↓ components [see
Fig. 7(c)]. This increases the rates γ +

L , γ −
C , and γ +

R , thereby
effectively reducing �M . For �M < 0 the situation is again
opposite, yielding a positive pumping of �M .

C. Analytic results

We now use the same approach as in Sec. II C to derive
time-evolution equations for the three nuclear polarizations,
valid for small Pd . The time-evolution equation for the elec-
tronic density matrix in the triple dot reads

d ρ̂

dt
= −i[Ĥ , ρ̂] + �ρ̂, (32)

with Ĥ = Ĥ0 + Ĥhf,mf . We describe the transitions
(2, 0, 1)/(1, 0, 2) → (1, 0, 1) → (1, 1, 1) with the term
�ρ̂ = − 1

2	{P̂dec, ρ̂} + 1
8	(1 − P̂dec)ρdec, where the operator

Pdec = ∑
i=Dα

L,R
|i〉〈i| projects to the subspace that is coupled

to the drain leads and ρdec = ∑
i=Dα

L,R
ρi,i.

Assuming that 	 is the largest energy scale involved,
we again separate timescales and write the effective (1,1,1)
Hamiltonian

Ĥ (1,1,1) =
∑
α=±

−α
3

2
EZ|Qα3/2〉〈Qα3/2| + Ĥα

1
2
, (33)

using the two 3 × 3 blocks

Ĥα
1
2

= −α
1

2
EZ + 3ED

∣∣Dα
1

〉〈
Dα

1

∣∣ + ED

∣∣Dα
2

〉〈
Dα

2

∣∣

+α

⎛
⎜⎜⎜⎝

0 −
√

2
3 �M

√
2
3�LR

−
√

2
3 �M − 1

3�M − 1√
3
�LR√

2
3�LR − 1√

3
�LR

1
3�M

⎞
⎟⎟⎟⎠, (34)

acting on the subspaces {|Qα1/2〉, |Dα
1 〉, |Dα

2 〉}. Here, EZ con-
tains the contribution 1

3 (Kz
L + Kz

C + Kz
R) from the average

nuclear spin polarization. We assumed EZ to be large enough
that we can neglect the transverse components Kx,y

d that
couple states with different Stot

z . The projection to the (1,1,1)
subspace introduced the exchange energy

ED = 2t2εM

4ε2
M + 	2

, (35)

and makes the states |D±
1 〉 and |D±

2 〉 decay with rates 	1 =
3	D and 	2 = 	D, respectively, where

	D = 2t2	

4ε2
M + 	2

. (36)

Assuming that the exchange energy ED is much larger than
the gradients �LR and �M , we diagonalize Ĥ±

1
2

using pertur-

bation theory and thusly find expressions for the eigenstates
and their decay rates valid to lowest order in the gradients
[54]. For nonzero gradients, the occupation probabilities are
approximately 1

2 for |Q±3/2〉 and zero for the remaining six
states. As for the double dot, we then calculate the hyperfine-
induced flip-flop rates perturbatively using Fermi’s golden
rule (18), and translate the resulting flip rates to evolution
equations for the average polarization P� = 1

3 (PL + PC + PR),
and the two polarization gradients PLR = 1

2 (PL − PR) and
PM = PC − 1

2 (PL + PR). This gives, to lowest order in the field
gradients �LR and �M ,

dPLR

dt
= −

[
G + 1

τ

]
PLR − G

ED
�LR, (37)

dPM

dt
= −

[
5

3
G + 1

τ

]
PM − GP� − 2G

3ED
�M, (38)

dP�

dt
= −

[
4

3
G + 1

τ

]
P� − 2

9
GPM , (39)

with G = A2	D/4N2E2
Z, where we again assumed equal N on

all dots, for simplicity.
As in the double dot, all polarization gradients thus acquire

an effectively enhanced relaxation rate. We further find that
the polarization dynamics of PM and P� are coupled, which is
a result of the geometry of the source and drains. However,
for typical parameters the last terms in Eqs. (37) and (38)
dominate, predicting an efficient suppression of both gradi-
ents, similar to the double-dot case.

Using these results, we can again investigate the stochas-
tic fluctuations around stable points, using a linear Fokker-
Planck equation that describes the time-dependent probability
distribution P (n, m, l, t ), where n = 3

2 NP� , m = NPLR, and
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l = 2
3 NPM . In the continuous limit, and to lowest order in the

gradients, we find a covariance matrix that reads

σ 2
LR = 1

2N

2ED

2ED + A
, (40)

σ 2
M = 3

2N

ED(81ED + 10A)

81E2
D + 27AED + 2A2

, (41)

σ 2
� = 1

3N

[
1 − AED

81E2
D + 27AED + 2A2

]
, (42)

σ 2
LR,M = 2

N

AED

81E2
D + 27AED + 2A2

. (43)

Realistically A � ED, so the rms of the fluctuations of the
two gradients are suppressed by a factor ∼√

ED/A, whereas
the fluctuations of P� are barely affected, similar to what we
found for the double dot.

D. Numerical simulations

Using the same method as in Sec. II D we performed
numerical simulations to corroborate our analytic results. In
Figs. 8(a) and 8(b) we first illustrate the coupled dynamics of
PLR and PM . We set P� = 0, A = 125 μeV, EZ = 12.5 μeV,
N = 4 × 105, τ = 5 s, εM = 100 μeV, ε = 0, 	 = 75 μeV,
and t = 7.5 μeV, and then we plot in color the rates of
change dPLR/dt [Fig. 8(a)] and dPM/dt [Fig. 8(b)] as a
function of PLR and PM as found using Eq. (24). In both plots
we also included the (same) vector field (dPM/dt, dPLR/dt ),
represented by the black arrows, illustrating how both field
gradients are indeed pumped toward zero. The insets show
line cuts along the red dotted lines, i.e., they show the rate
of change of each polarization gradient as a function of the
same gradient, where the other one is set to zero. The dashed
orange lines indicate the slope of the pumping curve at the
stable point, as predicted by Eqs. (37)–(39), showing indeed
good agreement with the numerical results.

In Figs. 8(c) and 8(d) we then show simulations of the
stochastic dynamics of the two polarization gradients, per-
formed in the same way as we did in Sec. II D for the dou-
ble dot. We started with initial polarizations PLR(0) = 0.001,
PM (0) = 0.002, and P� = 0 and performed a simulation with
the parameters given above (red lines) and one without spin
pumping (A = 0, green lines). Panels (i) show the short-time
dynamics, where the dashed lines correspond to the result
predicted by Eqs. (37)–(39), and panels (ii) and (iii) show the
long-time dynamics, where the horizontal solid lines indicate
the rms value of the fluctuations as predicted from Eqs. (40)–
(43). We see that in all cases our analytic expressions agree
reasonably well with the simulated dynamics of the gradients.
We further note that, for similar reasons as in the double
dot, the average polarization P� drifts toward negative values,
stabilizing around ∼ − 0.004. Due to the way the dynamics of
PM depend on P� [see Eq. (38)] one expects that the long-time
stable polarization of PM is not at zero but at a small positive
value; a careful look at Fig. 8(d)(iii) shows that this is indeed
the case in our simulations.

FIG. 8. (a) dPLR/dt and (b) dPM/dt as a function of PLR and
PM (color plots), calculated numerically using Eq. (24). The insets
show line cuts along the red dashed lines, where the orange dashed
lines indicate the slope of dP/dt at the stable point as predicted
by Eqs. (37) and (38). In both plots we also included the (same)
vector field (dPM/dt, dPLR/dt ), represented by the black arrows. See
the main text for all parameters used. (c), (d) Simulated stochastic
dynamics of (c) PLR and (d) PM with initial conditions PLR(0) =
0.001, PM (0) = 0.002, and P� = 0. For the red lines we used the
same parameters as in (a) and (b); the green lines show the dynamics
in the absence of spin pumping (for A = 0). Panels (i) show the
short-time suppression toward zero gradients, where the dashed lines
show the dynamics predicted by Eqs. (37)–(39). Panels (ii) and (iii)
illustrate the fluctuations around the stable gradients at longer times.

E. Conclusion

We found that electron transport through a linear triple
quantum dot—with a source connected to the central dot and
drains connected to the outer dots—tuned to the regime of
a Pauli spin blockade can yield a hyperfine-induced feedback
cycle that dynamically suppresses the two nuclear polarization
gradients in the triple dot. To find the approximate magnitude
of the rms value of the remaining nuclear-field fluctuations,

165308-10



TRANSPORT-INDUCED SUPPRESSION OF NUCLEAR … PHYSICAL REVIEW B 101, 165308 (2020)

we derived simple perturbative analytical expressions to de-
scribe the coupled dynamics of the polarization gradients.
This predicts a similar suppression of the fluctuations of the
gradients as in the double-dot case, i.e., a suppression of one
to two orders of magnitude. We corroborated these analytic
results with numerical simulations of the coupled electron-
nuclear spin dynamics, finding good agreement between the
two.

IV. CONCLUSION

In multielectron qubits, such as the double-dot-based
two-electron singlet-triplet qubit and triple-dot-based three-
electron exchange-only qubits, the main source of decoher-
ence is usually the fluctuating nuclear-spin polarization gradi-
ents over neighboring dots. These random gradients couple to
the spins of the electrons in the dots and can thereby add to
the qubit splitting or couple the two qubit states to each other
as well as to other nearby states outside of the computational
basis.

In this paper, we investigated the effect of running a DC
current through such systems on the nuclear polarization
gradients, while tuning to a regime of a Pauli spin blockade.
We found that transport through the dots can give rise to a

dynamical feedback cycle between the electronic and nuclear
spins that results in an active suppression of the nuclear
polarization gradients.

We considered a double-dot setup with and without a
significant spin-orbit interaction as well as a triple-dot setup
without a spin-orbit interaction. For all cases we derived
approximate analytical evolution equations for the nuclear
polarization gradients, which all predict the possibility of a
significant suppression of the fluctuations of the gradients. We
corroborated these results with numerical simulations of the
stochastic coupled electron-nuclear spin dynamics which con-
firmed a reduction in the random fluctuations of the nuclear
polarization gradients by one to two orders of magnitude.
These suppression mechanisms could thus present a straight-
forward way to significantly reduce the hyperfine-induced
decoherence in multielectron qubits.
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