
PHYSICAL REVIEW B 101, 165305 (2020)

Electron transitions for Dirac Hamiltonians with flat bands under electromagnetic radiation:
Application to the α − T3 graphene model
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In a system with a Dirac-like linear dispersion there are always states that fulfill the resonance condition
for electromagnetic radiation of arbitrary frequency �. When a flat band is present, two coexistent kinds of
resonant transitions are found. Considering the α − T3 graphene model as a minimal model with a flat band and
Dirac cones and describing the dynamics using the interaction picture, we study the band transitions induced by
an external electromagnetic field. We find that transitions depend upon the relative angle between the electron
momentum and the electromagnetic field wave vector. For parllel incidence, the transitions are found using
Floquet theory, while for other angles perturbation theory is used. In all cases, the transition probabilities and the
frequencies are found. For the parallel momentum, no symmetry is broken by the field, and light does not change
the spectrum, while for some limit special cases of the parameter α or by charge doping, the system behaves as
a three-level or two-level Rabi system. All these previous results were compared with numerical simulations.
Good agreement was found between both. The obtained results show a rich system in which different kinds of
transitions coexist.
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I. INTRODUCTION

Following the recent discovery of correlated insulation and
avowedly unconventional superconductivity in twisted bilayer
graphene [1], the interest in the physics related to this system,
in particular in the flat bands that appear at the so-called magic
angles [2], has rapidly grown [3]. Remarkable effects are seen
in the optical properties by twisting bilayer graphene; for
example, Van Hove singularities lead to an energy band gap
lying in the visible spectrum of electromagnetic radiation [3].
Such a gap is absent in any other known form of graphene
[3]. Although many studies are devoted to understanding
how flat bands arise in Dirac systems [4,5] and how they
produce diverse quantum phases [6,7], still, the effects of
electromagnetic radiation are not well understood. Happily, a
minimal model that also presents flat bands coexisting with
Dirac cone states is the α − T3 model, which consists of
a honeycomb lattice with an additional atom located at the
center of each hexagon and coupled to the atoms of just one
of the two nonequivalent sublattices [8–12]. While in twisted
bilayer graphene the flat band arises at magic angles due to
the multiple band crossings from the folding of the Brillouin
zone caused by the moiré pattern [2,5], in the α − T3 model
the flat band comes from the local topology in the lattice [9].

There are several achievable experimental systems that
can be mapped to a low-energy α − T3 model. These in-
clude the Hg1−xCdx quantum well [13], the trilayer of cubic
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lattices [14], and optical lattices [15]. The α − T3 model
takes its name from the parameter α, which stands for the
coupling between sublattices; this parameter continuously
changes the system from one with just two sublattices in-
teracting (graphene plus a disconnected site) to one with the
three sublattices equally coupled (dice lattice). Surprisingly
enough, the dispersion relation for this system is α indepen-
dent [16]. Nevertheless, breaking the symmetries in the sys-
tem makes the physical quantities α dependent: introducing a
potential barrier (breaking the spatial symmetry) results in an
α-dependent transmission [17]; introducing a perpendicular
magnetic field (breaking the time-reversal symmetry) makes
the magneto-optical conductivity and the Hofstadter butter-
fly α dependent [18–22]. In general, for the α − T3 model,
the flat band and the value of α become relevant in the
presence of electromagnetic fields. For example, the orbital
susceptibility [23,24] can be tuned with the parameter α,
and in contrast with graphene the plasmon branch is pinched
to a single point [25]. Also, a recent study analyzed the
topological characteristics in this structure under circularly
polarized light. The model describes a Haldane-like Chern
insulator characterized by a nonzero Chern number [26].
Therefore, the α − T3 model undergoes a topological phase
transition for Chern numbers from 1 to 2 in the valence band
and from −1 to −2 in the conduction band at α = 1/

√
2.

More recently, it was found that this kind of Hamiltonian
leads to an unexpected family of in-gap chiral edge states
for noninverted spin-1 Dirac quantum dots [27]. There are
some other previous works concerning the structure of the
electromagnetic-dressed electron spectrum [26,28,29]. These
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results indicate the opening of Floquet-band gaps, as has been
determined before for other two-dimensional materials such
as graphene [30–33] and borophene [34,35]. This is essential
to calculate photocurrents [30], which is the usual way to
experimentally test the dynamic Floquet bands [36,37] and
other optical properties [38,39]. Also, there are relevant works
that study the importance of the role of periodically driven
time-dependent Rashba spin-orbit coupling on a monolayer
of graphene [40,41]. For Dirac Hamiltonians with a flat
band and under time-driven polarized light, the tight-binding
model for the kagome lattice has also been studied [42,43].
However, a study of the transitions induced by time-driven
electromagnetic fields is not available. In this work we present
such a study. Especially, we show how the inclusion of flat-
band states shares many similarities with the three-level Rabi
problem [44], in which the flat band provides an intermediate
step to mediate transitions from the valence to the conduction
band. Our results show many useful relationships between
transition probabilities, times, and parameters of the model.
This can serve to combine experimental and theoretical results
to fine-tune the parameters of the Hamiltonian, which is a
problem that is still a work in progress [45], as well as a tool
to have quantum control of the system.

The layout of this work is the following. In Sec. II we
present the model and basic equations, while in Sec. III we
include the electromagnetic field. Then in Sec. IV we identify
the transitions and relevant features of the model. Section V is
devoted to presenting the numerical results, and a discussion
is undertaken to identify the relevant features of the model.
Finally, in Sec. VI the conclusions are given.

II. HAMILTONIAN FOR THE α − T3 MODEL

In the tight-binding low-energy approximation, the α − T3

Hamiltonian model considering only nearest-neighbor hop-
ping is given by [23–26,28,29]

Ĥ =
⎛
⎝ 0 tCα f (k) 0

tCα f ∗(k) 0 tSα f (k)
0 tSα f ∗(k) 0

⎞
⎠, (1)

where f (k) = ∑3
l=1 e−ik·δl and t is the nearest-neighbor hop-

ping amplitude, with δi (i = 1, 2, 3) being the vectors con-
necting the nearest-neighbor sites and k = (kx, ky) being the
momentum vector.

It is important to remark here that, in principle, one needs
to use the full tight-binding Hamiltonian to explore other
sections of the Brillouin zone which are not close to the
low-energy region. According to our experience [46–48], in
general, one can expect different band crossings and even
new kinds of topological states [49] at such zones, as seen re-
cently in graphene with time-dependent strain [48]. However,
probing such regions from an experimental point of view is
challenging due to the intense fields required. Thus, here we
concentrate on the most accessible part of the Brillouin zone
and leave for future works the research of the full Brillouin
zone.

The low-energy Hamiltonian around the two inequivalent
Dirac points can be written as [25,28]

Ĥ0
ξ = h̄vF k · Ŝ, (2)

FIG. 1. Sketch of the α − T3 lattice. When α = 0, (Cα = 1, Sα =
0) results in the honeycomb lattice resembling monolayer graphene.
In contrast, for α = 1, (Cα = Sα = 1/

√
2) leads to the well-studied

dice lattice with pseudospin 1 [25].

where vF ≈ 106 m/s is the Fermi velocity and Ŝ = (ξ Ŝx, Ŝy),
with ξ = ±1, refers to the K and K′ valleys. The pseudospin
operators Ŝx and Ŝy are defined as

Ŝx =
⎛
⎝ 0 Cα 0
Cα 0 Sα

0 Sα 0

⎞
⎠, (3)

Ŝy =
⎛
⎝ 0 −iCα 0

iCα 0 −iSα

0 iSα 0

⎞
⎠, (4)

with Cα = 1/
√

1 + α2, Sα = α/
√

1 + α2, and 0 � α � 1.
From Eq. (1) it is possible to find the electronic band structure
and the eigenfunctions by solving the eigenvalue problem

Ĥ0
ξ |ψk,μ〉 = Eμ |ψk,μ〉 , (5)

where the band structure consists of two Dirac cones and
an additional flat band. The first cone is described by E1 =
−vF h̄|k|, which corresponds to the valence band (VB); the
flat band (FB) is described by E2 = 0, and the second cone
is E3 = vF h̄|k| and describes the conduction band (CB). In
Fig. 2, we show this band structure near the Dirac point K
(ξ = +1).

The eigenfunctions for each band are given by

|ψk,1〉 = 1√
2

[ξCαe−iξθk |A〉 − |B〉 + ξSαeiξθk |C〉], (6)

|ψk,2〉 = ξSαe−iξθk |A〉 − ξCαeiξθk |C〉 , (7)

|ψk,3〉 = 1√
2

[ξCαe−iξθk |A〉 + |B〉 + ξSαeiξθk |C〉], (8)

where θk = tan−1(ky/kx ) and

|A〉 =
⎛
⎝1

0
0

⎞
⎠, |B〉 =

⎛
⎝0

1
0

⎞
⎠, |C〉 =

⎛
⎝0

0
1

⎞
⎠, (9)

are the spinors that describe the sublattice degree of freedom
(A, B, and C) in the unit cell, as shown in Fig. 1.

165305-2



ELECTRON TRANSITIONS FOR DIRAC HAMILTONIANS … PHYSICAL REVIEW B 101, 165305 (2020)

FIG. 2. Band structure of the α − T3 lattice around the Dirac
point K. The light-blue Dirac cone corresponds to the CB (E3),
light green shows the FB (E0), and light orange shows the VB (E1).
When an electromagnetic field with a given constant frequency � is
introduced, direct interband transitions denoted by light-red arrows
are allowed. (a) shows the transitions for the resonant frequency
ω ≈ � (corresponding to κ2

x + κ2
y ≈ 1, as indicated by the gray

circle), which is associated with two simultaneous transitions from
the VB to the FB and from the FB to the CB. In (b), we show
the transition for the resonant frequency ω ≈ �/2 (corresponding to
κ2

x + κ2
y ≈ 1/4, as indicated by the gray circle), which is associated

with the transitions from the VB to the CB.

III. THE α − T3 MODEL UNDER ELECTROMAGNETIC
RADIATION AND THE INTERACTION PICTURE

To study the dynamics of the electrons in the α − T3 model
under electromagnetic radiation, we introduce a minimal cou-
pling through the Peierls substitution [28] h̄k → h̄k − eA
in the low-energy Hamiltonian (2), where A = (Ax, Ay) is
the vector potential of the electromagnetic wave. For this
problem, we consider a gauge in which the components Ax

and Ay are only a function of time.
From Eq. (2) we obtain

Ĥξ (t ) = Ĥ0
ξ + V̂ξ (t ), (10)

where Ĥ0
ξ is given by Eq. (2) and V̂ξ (t ) is defined as

V̂ξ (t ) = −evF A · Ŝ. (11)

In Eqs. (2) and (11) the vectors h̄vF k and evF A represent
the directional energy flux of electrons and the work done

by the electromagnetic wave along the x and y directions,
respectively.

In the interaction picture [50], the Dirac equation for the
α − T3 model is given by

ih̄
d

dt
χ(t ) = V(t )χ(t ), (12)

where the vector χ(t ) = (χ1(t ), χ2(t ), χ3(t ))� contains the
components of the wave functions in the VB (μ = 1), FB
(μ = 2), and CB (μ = 3) in the interaction picture and they
are given by

χμ(t ) = exp

[
i
Eμ

h̄
t

]
〈ψk,μ|�(t )〉 (13)

and |�(t )〉 is a time-dependent three-component spinor in the
Schröndiger picture. In Eq. (12), V(t ) is a square matrix with
dimensions 3 × 3, and its components are defined as

[V(t )]μ,ν = exp

[
i
(Eμ − Eν )

h̄
t

]
〈ψk,μ| V̂ξ (t ) |ψk,ν〉 , (14)

where the subindices μ, ν = 1, 2, 3 refer to the band.
Let us now study the case of a linearly polarized electro-

magnetic wave defined by the vector potential

A = E0

�
cos(�t )r̂, (15)

where r̂ = (cos �, sin �) is the polarization vector, E0 is the
amplitude of the electric field, taken as constant, and � is
the frequency of the electromagnetic wave. Notice that here
we consider a classical field, and thus, we are assuming a
quantum coherent field with a huge number of photons [51].
Without any loss of generality, we can take � = 0 as the
physics depending only upon the angle between � and θk.

Using Eq. (15) and rewriting Eqs. (12)–(14), we obtain

iχ′(t ) + cos(�t )B(t ) χ(t ) = 0, (16)

where B(t ) is a matrix defined as

B(t ) =
⎛
⎝ −ε w e−iωt s e−i2ωt

w∗ eiωt 0 we−iωt

s∗ e2iωt w∗eiωt ε

⎞
⎠. (17)

The coefficients ε, w, and s from the previous expression are
defined as

ε = ζ cos θk, (18)

w = i
√

2ξCαSαζ sin θk, (19)

s = iξ
(
C2

α − S2
α

)
ζ sin θk, (20)

and the coefficient

ζ = evF E0

h̄�
. (21)

In Eq. (17) we used a set of renormalized moments, κx =
(vF /�)kx and κy = (vF /�)ky, which are related to ω as
follows: ω = �

√
κ2

x + κ2
y .
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IV. TRANSITIONS

This section is devoted to studying the transitions that
are obtained from Eq. (16). The first observation concerning
Eq. (16) is that the system depends upon the angle θk. For
some angles, the solutions of Eq. (16) are readily found by
direct integration, while others require perturbation theory, as
detailed below.

It is important to remark that previous works have shown
that many-body systems with local interactions under external
periodical driving can increase system’s temperature [52–55].
However, the energy absorption rate decays exponentially as a
function of the driving frequency and implies that many-body
states in periodically driven systems, although metastable, can
have very long lifetimes [52]. Here we do not consider such
many-body effects, which certainly are important in correlated
quantum phases.

A. Parallel or antiparallel incidence angle

When the electron momentum is parallel to the electric
field, i.e., for θk = 0 (also for the antiparallel θk = π the
solution is similar), we have w = 0 and s = 0. Therefore, we
have, in principle, that for η = 1, 3,

χη(t ) = χη(0) exp

[
∓i

ζ

�
sin (�t )

]
, (22)

where the upper sign is for η = 1 and the lower sign is for
η = 3. We also have χ2(t ) = χ2(0). Using Eq. (13), we obtain
for η = 1, 3,

〈ψk,η|�(t )〉 = χη(0) exp

[
∓ iζ

�
sin �t

]
exp

[
−i

Eη

h̄
t

]
, (23)

while for the flat band,

〈ψk,2|�(t )〉 = χ2(0) exp

[
−i

E2

h̄
t

]
. (24)

Equations (23) and (24) show that band occupation probabili-
ties are constant over time.

It is interesting to use Floquet theory to analyze such a
result. We decompose Eq. (23) as a Fourier series,

〈ψk,η|�(t )〉

= χη(0)
∞∑

m=1

(−i)mJm

(
ζ

�

)
exp

[
− i

h̄
(Eη + mh̄�)t

]
,

(25)

where Jm(x) denotes the m-esim Bessel function. The argu-
ment of the exponential can be identified with the Floquet
quasienergy εm = Eη + mh̄�, with the first Brillouin zone
determined by h̄�. Here |Jm(ζ/�)|2 represents the amplitude
of emission or absorption for m = 1, 2, 3, 4, . . . photon pro-
cesses starting from a coherent field, i.e., a field in which there
is a huge number of photons present [51]. It is surprising
to have photon emission and absorption while keeping the
occupation probabilities the same. However, this is easy to
understand if we observe that after a time period given by
T = 2π/�, the wave function only gets a phase given by

〈ψk,η|�(t + T )〉 = exp

[
2iπ

h̄�

]
〈ψk,η|�(t )〉 . (26)

When the field is at resonance with a given Eμ, say, E1 = nh̄�,
with n being an integer, the change in phase in Eq. (26) is 2πn
for η = 1 and −2πn for η = 3. All these results are explained
by the fact that the field does not break the symmetry along
the x axis for this incidence. As we will see below, this is
not the case for other incidence angles. It is important to add
that the persistence of this symmetry classifies the system
with linearly polarized light as topologically different from
the case of circularly polarized light. In the former case no
gap is opened by light, while in the latter a gap is open [26].

B. General incidence angle: Time-dependent perturbation
theory

Obtaining an analytical solution for the system of equa-
tions that arises from Eq. (16) for θk �= 0 or θk �= π is difficult.
Nevertheless, it is possible to find information on the dynam-
ics of α − T3 in the interaction picture using time-dependent
perturbation theory [50].

In this approach, the solution for each component of
Eq. (16) can be expressed as follows:

χμ(t ) = χ (0)
μ (t ) + χ (1)

μ (t ) + . . . , (27)

where χ (0)
μ (t ) and χ (1)

μ (t ) signify amplitudes of zero order,
first order, and so on, in the strength parameter ζ of the
time-dependent potential.

To zero order the amplitudes are time independent,

χ (0)
μ =

∑
ν

〈ψk,μ|ψk,ν〉 =
∑

ν

δμ,ν, (28)

where |ψk,ν〉 denotes the initial state ν. The first-order correc-
tion is

χ (1)
μ (t ) =

∑
ν

aμν (t ), (29)

where aμν (t ) is given by

aμν (t ) = −|Bμν |
∫ t

0
ei arg[Bμν (t ′ )] cos(�t ′)dt ′, (30)

with Bμ,ν being the coefficients defined in Eq. (17). For the
transitions from the VB (μ = 1) to the FB (ν = 2) we obtain

a21(t ) = − iw

2

{
1 − exp[i(ω + �)t]

ω + �

}

− iw

2

{
1 − exp[i(ω − �)t]

ω − �

}
. (31)

The last expression is formed by two terms. The first cor-
responds to a photon emission process, while the second
represents absorption.

The squared amplitudes of the coefficients aμν (t ) give the
transition probability from state ν to state μ. At a given
frequency of the electromagnetic wave � and considering
the photon absorption mechanism, there will be two resonant
frequencies, namely, (1) ω ≈ �, which is associated with two
simultaneous transitions from VB to FB and from FB to CB,
and (2) ω ≈ �/2, related to the transition from VB to CB.
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Therefore, using Eq. (30) and omitting the photon emission
mechanism, we obtain

PA
2←1 = |w|2 sin2[(ω − �)t/2]

(ω − �)2
(32)

and

PA
3←2 = PA

2←1 (33)

for the former case, while for the transition that does not
involve the flat band

PA
3←1 = |s|2 sin2[(2ω − �)t/2]

(2ω − �)2
. (34)

Hence, for transition probabilities PA
3←2 and PA

2←1 in the
resonance frequency ω ≈ � and using the fact that ω =
�

√
κ2

x + κ2
y , we find that the maximum transitions occur

when the renormalized moments satisfy κ2
x + κ2

y ≈ 1. In
Fig. 2(a), we show these transition probabilities for this reso-
nant frequency. Similarly, for transitions PA

3←1 and ω ≈ �/2,
the maximum transition is given by κ2

x + κ2
y ≈ (1/2)2, as

shown in Fig. 2(b).

V. EXACT NUMERICAL RESULTS AND DISCUSSION

In this section, we study the behavior of band occupation
probabilities |χμ(t )|2. To simplify the discussion, here we will
focus on the particular case when the electron momentum is
perpendicular to the electric field (θk = π/2) and in the K
valley (ξ = +1). The results presented here are representative
for other values of θk and for the K′ valley (ξ = −1). Then we
numerically solve the system of coupled differential equations
that comes from Eq. (16). For this purpose, we consider the
amplitude of the electric field to have the value E0 = 5 ×
10−2 V/m, and the frequency of the electromagnetic wave
is � = 22 GHz. With these values and using Eq. (21), the
strength parameter is ζ = 3.45 GHz. In the following, we will
discuss the occupation probabilities in the cases of the two
resonant frequencies discussed in Sec. IV.

A. Resonance frequency ω ≈ �: Three- and two-level
Rabi problems

As we saw in Sec. IV B, one resonant frequency is at ω ≈
�. We consider θk = π/2, for which the normalized moments
take the values κx ≈ 0 and κy ≈ 1.

In Fig. 3(a) we plot the occupation probabilities |χμ(t )|2
for the VB (black line), FB (blue line), and CB (red line)
for α = 1, when the initial state is χ1(0) = 1 (numerical
solution). For this value of α, the bond between sites A
and B and B and C are the same (see Fig. 1). Accordingly,
Cα = Sα = 1/

√
2. This reduces the coupling of the system of

differential equations in Eq. (16) as s = 0. Therefore, it turns
out that the matrix B(t ) is the same as a known simplified
solvable version of the three-level Rabi system [44,56] and
that we can compare it with our numerical results. The main
difference between the three-level and two-level Rabi systems
is that the three-level one can be used to probe the medium

FIG. 3. Occupation probabilities |χ1(t )|2 (black line), |χ2(t )|2
(red line), and |χ3(t )|2 (blue line) as a function of time for the reso-
nant frequency ω ≈ �. The dashed gray lines are the results obtained
for the three-level Rabi problem considering only resonant terms.
(a) shows the numerical results for α = 1.0 and �w = 1.72 GHz.
(b) shows the behavior for α = 0.2 with �w = 0.66 GHz. The initial
states in both panels are given by χ1(0) = 1. Note that although �w is
different in both panels, the periodicity is determined by �w . Notice
how the case α = 1 corresponds to the three-level Rabi problem.

through the interaction with a first transition. According to
Sargent and Horwitz, the band occupancies are given by [44]

|χ1(t )|2 =
[

cos

(
�w

2
t

)]4

, (35)

|χ2(t )|2 = 1

2
[sin(�wt )]2, (36)

|χ3(t )|2 =
[

sin

(
�w

2
t

)]4

. (37)

The band occupation probabilities present oscillations with
period for the VB and CB transitions equal to T = 2π/�w,
where �w = |w|/√2, with |w| being defined by Eq. (19).
In this particular case we have �w = 1.72 GHz. For the
FB transitions, the oscillation period is T/2. The maximum
amplitude of oscillations for VB and CB is equal to 1. This is a
consequence of the resonant frequency and α = 1. Notice that
although the external field frequency is resonant for transitions
between the FB and the cone levels, the flat state can be only
half occupied. The reason is that the probability leaks from the
valence band to the conduction band through the intermediate
FB [44]. This can be corroborated by observing that for this
case, time perturbation theory indicates that PA

3←1 = 0, while
PA

2←1 = PA
3←2.
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FIG. 4. Occupation probabilities |χ1(t )|2 (black line), |χ2(t )|2
(red line), and |χ3(t )|2 (blue line) as a function of time for the reso-
nant frequency ω ≈ �. The dashed gray lines are the results obtained
for the three-level Rabi problem considering only resonant terms.
(a) shows the numerical results for α = 1.0 and �w = 3.45 GHz.
(b) shows the behavior for α = 0.2 with �w = 1.32 GHz. The initial
states in both panels are given by χ2(0) = 1. Note that although
�w is different in the two panels, the periodicity is determined by
�w . Notice how the case α = 1 corresponds to the three-level Rabi
problem.

In Fig. 3(a) we show a comparison between the band
occupancies given by Eqs. (36)–(37) (gray dashed lines) and
our numerical calculation (solid lines). We can see excellent
agreement between the analytical and numerical results. How-
ever, the numerical result contains a high-frequency oscilla-
tion not seen in the Rabi solution. The reason is that right from
the start, the Rabi solution considers only frequencies near
resonances, as it assumes a field Vint (t ) = Vint (0)ei2�t , while
our numerical solution contains resonant and nonresonant
frequencies.

By changing α we move away from the solvable three-level
system. Figure 3(b) shows that the main effect is a change in
�w as w depends on α. The other effect is a reduction of the
highest-band occupancy as the FB band is not empty at half
period.

In twisted bilayer graphene and in the α − T3 graphene
model, the Fermi level falls at the flat band. Therefore, it is
relevant to study the system when a pure FB state is taken as
the initial condition. Interestingly, in this case the three-level
Rabi system mimics a two-level system due to the symmetry.
This behavior is seen in Figs. 4(a) and 4(b). Figure 4(a)
corresponds to the known solvable case α = 1 in which the
numerical and analytic solutions are almost the same. As we

FIG. 5. Occupation probabilities |χ1(t )|2 (black line), |χ2(t )|2
(red line), and |χ3(t )|2 (blue line) as a function of time for the
resonant frequency ω ≈ �/2. The dashed gray lines are the re-
sults obtained for the two-level Rabi problem considering only
resonant terms. (a) shows the numerical results for α = 0.0 and
�s = 3.45 GHz. (b) shows the behavior for α = 0.8 with �s = 0.75
GHz. The initial states in both panels are given by χ1(0) = 1. Note
that although �s is different in the two panels, the periodicity is
determined by �s. Notice how the case α = 0 corresponds to the
two-level Rabi problem.

change α, the period is modified, small ripples are observed
due to nonresonant contributions, and the highest bands are
never fully occupied. This suggests that upon charge doping,
the system can be changed from a two- to a three-level Rabi
problem.

B. Resonance frequency ω ≈ �/2: Two-level Rabi problem

As we found in Sec. IV B, there is a second resonant
frequency at ω ≈ �/2. In Fig. 5(a) we plot the occupation
probabilities for the VB (black line), FB (blue line), and CB
(red line) for α = 0, when the initial state is χ1(0) = 1. In this
case, Cα = 1, and Sα = 0, and hence, the α − T3 lattice is a
honeycomb lattice resembling monolayer graphene [25].

Hence, w = 0, and the matrix B(t ) in Eq. (17) is the same
as a known simplified solvable form of the two-level Rabi
system [57,58]. The band occupancies are given by

|χ1(t )|2 =
[

cos

(
�s

2
t

)]2

, (38)

|χ2(t )|2 = 0, (39)

|χ3(t )|2 =
[

sin

(
�s

2
t

)]2

. (40)
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The band occupation presents oscillations, where the pe-
riod for the VB and CB is T = 2π/�s and �s = |s|. In
this particular case �s = 3.45 GHz. The above expressions
are in agreement with the time perturbation theory pre-
sented before, where PA

2←1 = PA
3←2 = 0 and PA

3←1 �= 0. Such
a result indicates that the FB does not contribute to the
occupancy probabilities. In Fig. 5(a), we show that the
numerical solution and the band occupancies (gray dashed
lines), given by Eqs. (38) and (39), show excellent agreement.
As in the three-level problem, the numerical result contains
a high-frequency oscillation not seen in the two-level Rabi
solution.

Finally, by increasing the value of α, the two-level system
is difficult to solve, and the numerical solution presents two
effects. As shown in Fig. 5(b), the first effect is a reduction of
the highest-band occupancy in the VB and CB, and the second
is a change in the frequency of �s due to the shift in α in
Eq. (20).

VI. CONCLUSIONS

We investigated the occupancy probabilities for the α −
T3 system under linearly polarized light by studying the
corresponding Dirac equation in the interaction picture. The
transitions between states have contributions that depend upon
the relative angle between the electron momentum and the

electromagnetic field wave vector. When both are parallel
(or antiparallel), the transitions are found by using Floquet
theory, while for other directions we used time-perturbation
theory and numerical solutions. This allowed us to find two
resonant frequencies. The first resonance, ω ≈ �, involves
the flat band as an intermediate step (three-level system). In
contrast, the second, ω ≈ �/2, is similar to the valence and
conduction band transitions observed in graphene (two-level
system). The value of the parameter α plays an important
role in the behavior of transitions probabilities. While for α

close to 1 and ω ≈ � the system recovers the behavior of
the three-level Rabi system, for α near zero and ω ≈ �/2
it behaves like a two-level Rabi system. Moreover, we also
showed that upon charge doping, the system can be changed
from a two- to a three-level Rabi problem, unveiling many
interesting possibilities for quantum control and electronic
devices [59].
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