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We have derived a method which allows us to compute the full and the Pauli reference kinetic potentials for
atoms and molecules in a real-space representation. This is done by applying the optimized effective potential
(OEP) method to the Kohn-Sham noninteracting kinetic energy expression. Additionally, we have also derived
a simplified OEP variant based on the common energy denominator approximation which has proven to give
much more stable and robust results than the original OEP. Moreover, we have also proved that at the solution
point our approach is formally equivalent to the commonly used Bartolotti-Acharya formula.
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I. INTRODUCTION

The most natural and straightforward realization of
density-functional theory (DFT) [1,2] is the so-called orbital-
free (OF) DFT [3,4]. The theory describes the ground-state
electronic properties of any electron system via the knowledge
of the electron density ρ that is obtained as the solution of the
Euler equation [5],

δTs[ρ]

δρ(r)
+ vext(r) + vH (r) + δExc[ρ]

δρ(r)
= μ, (1)

where vext is the external/nuclear potential, vH is the Hartree
potential, μ is a Lagrange multiplier fixed from the normaliza-
tion condition

∫
drρ(r) = N , and Exc and Ts are the exchange

correlation (XC) and noninteracting kinetic energy (KE) func-
tionals, respectively. The latter two quantities are very im-
portant to describe many-body fermionic effects. However,
despite that the existence of both functionals is guaranteed
by the first Hohenberg-Kohn theorem [1] and that they can
be formally defined within the Levy’s constrained search
procedure [2], their explicit expression in terms of the electron
density is unknown. Therefore, one needs to approximate both
quantities.

In the case of the XC functional, many useful approxima-
tions have been proposed (see, e.g., Refs. [6–8] and references
therein). On the other hand, for the KE term, this task is much
more difficult due to two facts: (i) the KE contribution is much
larger than the XC one (it has the same order of magnitude as
the total energy [9,10]); (ii) it includes highly nonlocal Pauli
contributions [11–14], which account for all fermionic effects.
Nonetheless, different approximate KE functionals have been
developed (see, e.g., Refs. [13,15–41]). In numerous cases,
these have been developed mimicking the exchange functional
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construction, according to the conjointness conjecture hypoth-
esis [42–45]. In other cases, specific KE properties have been
considered such as the exact constraint satisfaction [17,19,46]
or the use of information from the linear response of the uni-
form electron gas [3]. In all cases, however, the approximate
KE functionals still show, in general, poor accuracy and/or
transferability [25,47,48].

For these reasons, OF-DFT calculations are rarely em-
ployed in practice. The most popular computational realiza-
tion of DFT, the Kohn-Sham (KS) method [49], avoids the
direct use of the KE functional by introducing an auxiliary
noninteracting system of fermionic particles where both the
density and the KE terms are expressed in terms of single-
particle orbitals {φi}. Thus, we have

ρ(r) =
∑

i

|φi(r)|2 (2)

Ts = −1

2

N∑
i

∫
dr φ∗

i (r) ∇2φi(r). (3)

Note that the KE can be alternatively written as

Ts =
∫

drτ (r), (4)

where τ (r) = 1/2
∑N

i |∇φi(r)|2 is the positive-definded KE
density. Throughout this paper, we label with i, j the occupied
KS orbitals, with a, b the unoccupied ones, and with p, q
the general (occupied or unoccupied) ones. All equations are
written in spin-restricted form.

The KE functional given by Eq. (3) is usually separated
in two main contributions, namely the von Weizsäcker (VW)
[50] (T W ) and the Pauli (T P) term:

Ts[ρ] = T W [ρ] + T P[ρ]. (5)

2469-9950/2020/101(16)/165144(11) 165144-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5941-5409
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.165144&domain=pdf&date_stamp=2020-04-29
https://doi.org/10.1103/PhysRevB.101.165144
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The former has a simple semilocal expression written in terms
of the density and its gradient, which reads

T W [ρ] =
∫

dr
|∇ρ(r)|2

8ρ(r)
, (6)

and is exact for any one- and two-electron spin-singlet state
systems. Due to its explicit density dependence, the corre-
sponding kinetic potential can be easily derived using standard
functional derivatives as

vW (r) = δT W [ρ]

δρ(r)
= |∇ρ(r)|2

8ρ2(r)
− ∇2ρ(r)

4ρ(r)
. (7)

On the other hand, the Pauli term can only be expressed
exactly via the KS orbitals [51–54] as

T P
s [ρ] =

∫
dr τP(r) (8)

with

τP(r) = 1

2ρ(r)

∑
i< j

|φi(r)∇φ j (r) − φ j (r)∇φi(r)|2 (9)

being the Pauli kinetic-energy density according to Ref. [53].
The KS method, via Eq. (3) [or Eq. (4)], provides a direct

way to calculate the noninteracting KE of any electron system.
Therefore, this information can be, and indeed is, used to
assess and improve approximate KE functionals. On the other
hand, the KS method makes no use of the kinetic potential,
δTs[ρ]/δρ(r), and provides no direct way to obtain it. For
this reason, the kinetic potential has long been an overlooked
quantity and almost no effort has been made to assess and
optimize the approximate KE functionals against this quantity.
However, the kinetic potential is the main ingredient in the
Euler equation [Eq. (1)] and its importance is nowadays
increasingly recognized [47,48,55–60]. Thus, methods to gen-
erate the kinetic potential from reference KS input quantities,
or more generally from any input set of orbitals, are of great
importance to allow a direct knowledge of this fundamental
quantity.

The simplest way to generate the total kinetic potential is to
directly use Eq. (1). If the ground-state density ρ(r) is already
determined and we fix the corresponding XC potential (e.g.,
from standard KS calculations [49], ab initio DFT [61–68]
or some “reverse-engineering” approach [54,69,70]), then it
is clear that at the solution point the kinetic potential can be
obtained as the negative of the effective potential shifted by a
constant

vk(r) = δTs[ρ]

δρ(r)
= −vs[ρ](r) + μ, (10)

where with vk(r) we denote the total kinetic potential. The
constant μ is commonly taken [5,71] to be the negative
of the first ionization potential μ = −IP or approximately
the orbital energy of the highest occupied molecular orbital
(HOMO) (μ = εH ), which can be calculated in various man-
ners [72].

To compute the Pauli potential one simply needs to subtract
the Weizsäcker kinetic potential given by Eq. (7) from Eq. (10)
getting

vP(r) = −vs[ρ](r) − vW (r) + μ. (11)

Another commonly used method to generate reference
Pauli potentials [52,53,73–76] is the one derived by Bartolotti
and Acharya (BA) in Ref. [52]. The formula

vP(r) = τ (r) − τW (r)

ρ(r)
+

N∑
i

(εH − εi )
|φi(r)|2
ρ(r)

(12)

utilizes the occupied orbitals and the orbital energies from
an arbitrary self-consistent field (SCF) method [including
Hartree-Fock (HF)]. The full derivation of Eq. (12) can be
found in Refs. [52,53]. However, for clarity of this paper, it
is also briefly sketched in Appendix A.

Formally, Eq. (12) is equivalent to Eq. (11) with a corrected
VW term (see Ref. [18], Sec. III A, and Appendix A for more
details). Once the Pauli potential is available, the total kinetic
potential can be calculated as

vk(r) = vW (r) + vP(r). (13)

In this paper, we introduce a method based on the opti-
mized effective potential (OEP) [77,78] approach, allowing
us to generate the noninteracting kinetic potentials (full and
Pauli terms) for different atoms and molecules in a real space
representation. Additionally, we compare and discuss the
proposed method with the aforementioned approaches utilized
up to date.

II. THEORY

In this section, we introduce a method based on the OEP
technique that allows us to generate the full and the Pauli
kinetic potentials from any set of reference orbitals (φp) and
orbital energies (εp); in addition, we describe the common
energy denominator approximation of the method that is
numerically simpler and more stable.

A. Kinetic potential using the OEP method

In this subsection, we consider a method to obtain the
kinetic potential. For simplicity, we will describe it for the
total kinetic functional; however, it can also be applied in
exactly the same way for the Pauli kinetic term [see Eq. (9)].

To start, consider the KS noninteracting kinetic energy
functional given in Eq. (3). Because it displays an explicit
orbital dependence, while it is only an implicit functional of
density, the direct computation of the kinetic potential through
functional derivative is impossible. Thus, to calculate the
potential, alike in the case of the orbital dependent exchange
[77–84] and correlation [61–67,85,86] energy functionals,
one can employ the OEP method [77,78]. Hence, we can
define the functional derivative of Eq. (3) using the following
chain rule:

vk (r) =
∑

p

∫
dr′dr′′

{
δTs[{φq}]
δφp(r′)

δφp(r′)
δvs(r′′)

δvs(r′′)
δρ(r)

+ c.c.

}
.

(14)

In the above equation, the first term in brackets is easily
derived (see Appendix C) to be zero when p indexes an
unoccupied orbital, while for p indexing an occupied orbital
we find

δTs[{φq}]
δφp(r′)

= −1

2
∇2φp(r′) − 1

2
∇2φ∗

p(r′). (15)
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In the case of real orbitals, as often happens, this is just
−∇2φp(r′). The second term can be obtained from first-order
perturbation theory considering an infinitesimal perturbation
of the effective potential (δvs) introduced into the KS equa-
tion. Thus, we have

δφp(r)

δvs(r′)
=

∑
q �=p

φp(r′)φ∗
q (r′)

εp − εq
φq(r). (16)

The last term is the inverse (X −1(r′, r)) of the static KS linear
response function of a system of noninteracting particles
expressed trough KS orbitals and eigenvalues:

X (r′, r) = 2
∑

ia

φ∗
i (r′)φa(r′)φ∗

a (r)φi(r)

εi − εa
+ c.c. (17)

Inserting Eqs. (15) and (16) into Eq. (14), after some
algebra we obtain

vOEP
k (r)

=
∑
i,a

[
(Ts)ia

εi − εa

∫
dr′φi(r′)φ∗

a (r′)X −1(r, r′) + c.c.

]
,

(18)

where (Ts)pq = 〈φp| − 1
2∇2|φq〉 are the KE matrix elements.

Note that the above procedure is partially similar to the one
used in the self-consistent implementation of meta-GGA XC
functionals depending on the local kinetic energy density
[8,87,88].

B. Common energy denominator approximation

Since the OEP procedure described above is numerically
involved and not very stable (see Sec. IV for more details),
we introduce here an approximation based on the common
energy denominator method (CEDA) [89–91]. This leads to a
simpler and well-behaving equation for the kinetic potential
that yields basically the same results as the full OEP variant
[Eq. (18)].

To obtain our approximation, we start by multiplying
Eq. (18) by Eq. (17) and integrating over r to obtain

∑
ia

[
(vk )ia

εi − εa
φi(r)φ∗

a (r) + c.c.

]

=
∑

ia

[
(Ts)ia

εi − εa
φi(r)φ∗

a (r) + c.c.

]
, (19)

where

(vk )pq =
∫

drφ∗
p(r)vk (r)φq(r). (20)

This is just another representation of the OEP equation [92].
Now we assume that all the energy differences in the denom-
inator of Eq. (19) can be approximated by a constant mean
energy (� ≈ εi − εa), getting

∑
ia

[
(vk )iaφi(r)φ∗

a (r) + c.c.

]

=
∑

ia

[
(Ts)iaφi(r)φ∗

a (r) + c.c.

]
. (21)

At this point, we can use on both sides of Eq. (21) the relation∑
a

φ∗
a (r)φa(r′) +

∑
i

φ∗
i (r)φi(r′) = δ(r − r′) (22)

to obtain

ρ(r)vk (r) −
∑
i, j

(vk )i jφi(r)φ∗
j (r) + c.c.

= −1

2

∑
i

φ∗
i (r)∇2φi(r) −

∑
i, j

(Ts)i j φi(r)φ∗
j (r) + c.c.

(23)

Finally, using the identity [8]

−1

2

N∑
i

φ∗
i (r)∇2φi(r) = τ (r) − 1

4
∇2ρ(r), (24)

we find the kinetic potential approximation

vk (r) = τ (r)

ρ(r)
− ∇2ρ(r)

4ρ(r)
+

∑
i, j

[(vk )i j − (Ts)i j]
φi(r)φ∗

j (r)

ρ(r)
.

(25)

This equation expresses the kinetic potential in the CEDA.
A further approximation can be obtained following the idea

of Krieger-Li-Iafrate (KLI) [91], neglecting in the summation
all the terms with i �= j. Indeed, numerical investigations
support the fact that the off-diagonal terms in the sum provide
only a minor contribution with respect to the diagonal ones. In
this way, we obtain the KLI approximation of Eq. (18), which
reads

vk (r) = τ (r)

ρ(r)
− ∇2ρ(r)

4ρ(r)
+

∑
i

[(vk )ii − (Ts)ii]
|φi(r)|2
ρ(r)

.

(26)

Inserting the definition τ (r) = τW (r) + τP(r) into Eq. (26)
and removing the VW potential of Eq. (7), one obtains the
Pauli potential

vP(r) = τP(r)

ρ(r)
+

∑
i

[(vk )ii − (Ts)ii]
|φi(r)|2
ρ(r)

. (27)

One can prove that for density and orbitals corresponding to
the SCF solution of the KS and Euler equations (i.e., at the
solution point) the above formula is formally equivalent to
Eq. (12) (see Appendix B for more details).

III. COMPUTATIONAL DETAILS

All methods have been implemented in a local version of
the ACESII [93] software package. The kinetic potentials have
been computed for fixed reference densities obtained from
various methods, such as OEPx [78,79], OEP2-sc [62], HF
[94], Perdew-Burke-Ernzerhof (PBE) [95] in post-SCF fash-
ion. Here OPEx denotes exact-exchange OEP calculations,
OEP2-sc denotes second-order correlated OEP calculations
with a semicanonical transformation of the orbitals. We re-
mark that a similar approach was already successfully utilized
in some studies [96–98] to investigate the most relevant fea-
tures of the XC potentials. To calculate the kinetic potentials
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FIG. 1. The Weizsäcker kinetic potential without and with os-
cillatory profile correction calculated for Ne atoms in the cc-pVTZ
basis set.

with the OEP method, in practice, we have employed the
finite-basis set procedure of Ref. [79], which was also used
in our previous studies to generate exchange and correlation
potentials [67,98–104]. Thus, the kinetic OEP potential is
expanded in the same primitive Gaussian basis set which is
used to represent the orbitals in the SCF procedure. In the
case of exchange and correlation potentials, this procedure
led to the reduction of numerical instabilities in the solution
of OEP equation [105–107]. In all calculations, the cutoff for
the truncated singular-value decomposition (SVD) was set to
10−6.

In the following subsection, we recall some problems
related to representation in real space of von Weizsäcker and
Pauli potentials and describe the details related to the imple-
mentation of the OEP method and the KLI approximation.

A. Asymptotic-corrected VW potential

In principle, the far-distance asymptotic behavior of the
VW potential is

vW (r) ∝ εH , (28)

where εH is the HOMO energy. This property is readily ob-
tained by using the asymptotic density behavior [108] ρ(r) ∝
Ae−2

√−2εH r into Eq. (7). However, in many calculations, the
electron density is expanded in Gaussian basis functions.
Thus, the asymptotic density behavior is not the true one
but rather ρ(r) ∝ e−αr2

, with α being the exponent of the
most diffuse primitive basis function. Consequently, the VW
potential is found to behave as

vW (r) ∝ − 1
2α2r2 + 1

2α. (29)

Then, the VW potential incorrectly diverges. In a similar
way, the use of contracted Gaussian functions to represent the
electron density may lead to oscillations in the core region of
atoms, due to inaccuracies in the description of the Laplacian
term in Eq. (7) [109]. These issues have been studied by
several groups [109–114] and are basically related to the
truncation error of the basis set.

One possible remedy to reduce these basis set artifacts is
to use a smoothing procedure as described in Ref. [112]. This
allows, in an effective manner, to eliminate the oscillations
and divergences in the VW potential computed using Gaus-
sian basis set densities by utilization of a basis-set oscillation
profile [109,112] defined as

�vosc(r) = − 1

ρ(r)

N∑
i=1

φ∗
i (r)δi(r) (30)

with

δi(r) = [− 1
2∇2 + vs(r)[ρ]

]
φi(r) − εiφi(r). (31)

Note that since the oscillation profile is directly linked with
a measure of basis set incompleteness [109], for a complete
basis set all δi(r) vanish and thus so does the oscillation
profile.

Employing Eq. (30), the corrected VW potential can be
computed as

vW,fix(r) = vW (r) − �vosc(r). (32)

Figure 1 shows the VW potential of the Ne atom, computed
with a Gaussian basis set (cc-pVTZ [115]) with and without
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FIG. 2. Total (left) and Pauli (right) kinetic potential calculated using OEP method described in Sec. II A on top of OEPx converged
quantities the Ne atom in various basis sets (see text).
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the oscillation profile correction. We see that the impact of the
correction is observed both in core and asymptotic regions that
might be very important from the computational point of view
when a Gaussian-type basis set is employed in the calculation.

B. Numerical implementation of OEP method

In principle, likewise for the exchange potential, Eq. (18)
could be solved numerically [78,84]. However, in general
it is better to transform the OEP equation [Eq. (18)] into
an algebraic problem like in Refs. [79,80]. This is done by
expanding the kinetic potential and Eq. (17) on an auxiliary,
orthonormal, and M-dimensional basis set { fp(r)}M

p=1 as

vOEP
k (r) =

∑
p

cp fp(r), (33)

and

X (r, r′) =
∑
p,q

(X)pq f ∗
p (r) fq(r′), (34)

where

(X)pq =
∫

f ∗
p (r)X (r, r′) fq(r′)dr′dr

=
∑
i,a

(
(ia|p)(ia|q)∗

εi − εa
+ c.c.

)
, (35)

while

(rs|q) =
∫

dr′φs(r′)φ∗
r (r′) fq(r′).

This step allows us to turn the solution of Eq. (18) into an
algebraic problem in which the expansion coefficients (cp) are
obtained from the solution of the OEP equation in the form

(X)qpcp = Yq, (36)

with

Yq =
∑

p

∑
i,a

[{
(Ts)ia

εi − εa
(ai|q)

}
+ c.c.

]
. (37)

Note that since the density-density response matrix is sin-
gular [105], to solve Eq. (36), one needs to employ a truncated
SVD in the OEP procedure to calculate the pseudoinverse of
the density-density response matrix, (X−1)qp, which is an es-
sential step for determining stable and physically meaningful
OEP potentials [66,83,105].

C. Numerical implementation of KLI method

To obtain the total kinetic potential given by Eq. (26),
one needs to find the matrix elements [ci = (vk )ii − (Ts)ii]
which depend explicitly on the total kinetic potential itself.
Thus, similarly as in the case of the KLI method applied to
the exchange potential [91,116], one can solve this problem
turning Eq. (26) into the linear algebraic equations taking the
form

[1 − M]c = t, (38)

where

(M)kl,i =
∫

dr
φ∗

k (r)φ∗
i (r)φi(r)φl (r)

ρ(r)
(39)
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FIG. 3. Top: Comparison of total and Pauli kinetic potentials
calculated with OEP and KLI methods on top of OEPx SCF quan-
tities using the UGBS basis set. The inset presents the asymptotic
behavior of the potential. The dashed horizontal line denotes the
HOMO energy (εH = −0.8507 a.u.). Middle: The difference in the
total and Pauli kinetic potential between the OEP and KLI methods.
Bottom: The comparison of the difference in the total kinetic poten-
tial (vOEPx

k − vKLI
k ) and the oscillatory profile [see Eq. (30)] calculated

for the same computational setup.

and

(t)kl = 〈φk|1

2
∇2 − τ (r)

ρ(r)
+ ∇2ρ(r)

4ρ(r)
|φl〉. (40)

The matrix equation [Eq. (38)] can be efficiently solved
using standard numerical routines with respect to the ci coef-
ficients which then can be used to compute the potential via
Eq. (26).

IV. RESULTS

In this section, we show the total and Pauli kinetic poten-
tials generated using various methods for some representative
systems. More examples (for several atoms and molecules)
are provided in the Supplemental Material [117]. Because
we have proved analytically the equivalence of the inverted
Euler equation, the BA formula, and the KLI approach, in the
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FIG. 4. Pauli potential calculated using the KLI method described in Sec. II B on top of OEPx converged quantities for the Ne atom (left)
and the CO molecule (right, plotted along bond axis) for the cc-pVXZ (X = D, T, Q) family of basis sets. The inset presents the differences
between the Pauli potentials calculated for two successive basis sets in cc-pVXZ family.

following we will show and discuss only the OEP and KLI
results.

In Fig. 2, we report the total (left) and Pauli (right) kinetic
potentials obtained using the OEP procedure for the Ne atom
in few basis sets. One can note that for both kinetic poten-
tials generated using the cc-pVTZ [115] basis set, we get
a nonphysical course of the potential in the asymptotic and
the core region. Moreover, in the valence region, we observe
strong oscillations, especially visible in the case of the Pauli
potential. Similar results (not reported) were also obtained
employing the cc-pVDZ and cc-pVQZ Dunning [115] basis
sets. These issues are due to the fact that these basis sets
are not flexible enough to represent the kinetic potentials and
the response matrix, thus the OEP equation cannot yield a
satisfactory solution. Uncontraction of the cc-pVTZ basis set
(cc-pVTZU) makes it sufficiently flexible, especially in the
atomic core regions, leading to a significant improvement in
the shape of both potentials. In fact, in this case, the kinetic
potential exhibits a much better behavior in that region. This
fact resembles what is observed in the case of the OEP proce-
dure applied to exchange and exchange-correlation potentials
[96,105,106]. Nevertheless, even if the cc-pVTZU basis set
definitely improves the description of the total kinetic poten-
tial, looking at the Pauli potential, which is more sensitive to
numerical issues, one can still observe a moderate oscillatory
behavior in the core region. This probably has the same origin
as the one observed in Ref. [106] in the case of exchange
potentials. Those oscillations can be removed by a careful
choice of the basis set. For example, the utilization of a larger
uncontracted basis set, namely, the universal Gaussian basis
set [118] (UGBS), leads to a further improvement of the Pauli
kinetic potential such that the oscillations are largely reduced.

A more effective way to avoid the basis set artifacts and
obtain stable and well-behaving kinetic potentials turns out
to be the utilization of the KLI approximation described in
Sec. II B. In the top of Fig. 3, we show in fact a comparison of
the total and Pauli kinetic potentials generated using the KLI
and the OEP methods (with the UGBS basis set). Additionally,

in the middle panel of Fig. 3, we report the difference in
the total (vOEPx

k − vKLI
k ) and Pauli kinetic potentials between

the OEP and KLI methods. One can readily see that the KLI
approximation yields virtually the same potentials as the OEP
procedure but without the unphysical oscillations. The largest
differences can be seen mostly in the core and asymptotic
regions probably due to the superposition of two problems
related to (i) the basis set incompleteness and oscillatory
profile and (ii) the expansion of OEP kinetic potential in
the finite Gaussian basis set. This actually can be confirmed
comparing the (vOEPx

k − vKLI
k ) difference with the oscillatory

profile. This is reported in the bottom panel of Fig. 3. One
can note that in the major part these two quantities are largely
proportional to each other, meaning that the difference be-
tween the kinetic potential generated by the OEP and the
KLI methods lays basically in the incompleteness of the basis
set used to expand both orbitals (thus the density) and the
kinetic potential. Moreover, the KLI approximation appears to
incorporate the oscillation profile correction thus the quality
of the total and Pauli potentials are much better. For example,
in the asymptotic region, the KLI method performs much
better than the OEP potential (see the inset in the upper panel)
which is not decaying correctly to εH for large values or r (and
as 1/r2 [76] to zero in case of the Pauli potential). This, in
fact, is related to the Gaussian basis (used to expand the OEP
kinetic potential) which goes rapidly to zero in this region. A
similar behavior was also observed in the case of the exchange
OEP potential [83,105]. Moreover, we note that, in the case of
the KLI approximation, the description of the core region is
highly improved. The occurrence of rapid oscillations in the
OEP potential in this region probably has the same origin as
the one observed in Ref. [106] in the case of the exchange
potential and can be cured by a proper balancing the auxiliary
basis set in the OEP procedure.

One more advantage of the KLI method is that the quality
of the results is also preserved when standard, relatively small
basis sets are used. This is shown in Fig. 4, where we report
the Pauli potentials for a Ne atom and CO molecule generated
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FIG. 5. Total, Weizsäcker, and Pauli kinetic potentials for Ar
(top) atom and CO (middle) and HF (bottom) molecules (plotted
along bond axis). Data are generated on top of OEPx SCF results
in cc-pVTZ basis set using the method described in Sec. II B.

using the family of Dunning [115] cc-pVXZ basis sets (where
X = D, T, Q). The plots show that indeed the potential is only
marginally dependent on the basis set and, in any case, no
numerical artifacts appear. This shows that the KLI approach
for the description of the kinetic potential is really a robust
numerical procedure.

In Fig. 5, we report the total, von Weizsäcker, and Pauli
kinetic potentials generated using the KLI method and the

cc-pVTZ [115] basis set for three representative systems,
namely the Ar (top) atom and the CO (middle) and HF
(bottom) molecules. The same quantities are reported for sev-
eral other atomic and molecular systems in the Supplemental
Material (see Ref. [117]). First, we note the smooth course
of all kinetic potentials. This further supports the conclusion
that the KLI method is stable and can generate reference
potentials for any type of system. Second, the Pauli potential
is always non-negative, giving a finite value at the core [119]
and decays to zero asymptotically [76]. Moreover, at the bond
(see, e.g., the HF and CO cases, as well as other molecules
in Ref. [117]), the Pauli potential gives a non-negative con-
tribution to the total kinetic potential which may play quite
an important role in some cases. Furthermore, we see that in
the iso-orbital regions, the Pauli potential goes correctly to
zero (see, e.g., the H side in the HF molecule). The Pauli
potential also exhibits a similar shell structure as the one
visible in the Weizsäcker kinetic potential case. We note that
the total kinetic potential does not have such features, meaning
that those must almost cancel mutually. This is an important
fact which should be taken into account in the construction
of KE functionals and potentials for OF-DFT. Finally, we
note that the total and Weizsäcker kinetic potentials show
the correct behavior at the nuclei and in the asymptotic
region where they decay to εH (see the insets in Fig. 5, Ar
atom).

Finally, we have assessed the impact of the reference SCF
orbitals on the shape of total and Pauli kinetic potentials.
Thus, in Fig. 6 we report the aforementioned quantities cal-
culated on top of OEPx [78,79], OEP2-sc [62], HF [94], and
PBE [95] orbitals in the post-SCF fashion for a Ne atom
and CO molecule in the cc-pVTZ basis sets [115]. One can
readily see that all the orbitals generate virtually the same
Pauli potentials. A closer look (see the inset of Fig. 6 where
we present the differences between PBE, HF, and OEPx
results and the one obtained from OEP2-sc method) reveals
that some differences appear mostly in the core regions.
Note that the Pauli potential obtained from HF orbitals also
behaves in line with others. This is somehow contradictory
to the results reported in Ref. [120] (see Fig. 2 in the paper).
However, the closer inspection reveals that the Pauli potential
in Ref. [120] was obtained using the BA formula which, in
contrary to our KLI method, also incorporates effects related
to the nonlocality of the exchange operator (see Appendix B
for more details). This can be also seen in Table I where
we report the expansion coefficients calculated using the BA
formula (εH − εi) and the KLI method for Be and Ne atom
in the UGBS basis set. One can immediately note that in
the case of the OEPx orbitals, the expansion coefficients are
identical. On the other hand, in the case of the HF orbitals,
there is quite a large discrepancy between the coefficients.
As was mentioned before, this is due to the fact that the BA
coefficients obtained for the HF orbitals also take into account
the energy shift (〈φHF

i |vx − v̂NL
x |φHF

i 〉) related to the difference
between the local and nonlocal exchange potentials. In the
KLI case, the utilization of HF quantities leads to a purely
local kinetic potential which does not include any additional
effect related to the exchange potential (see Appendix B)
and thus the coefficients are much more similar to the ones
obtained from the OEPx method.
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FIG. 6. Pauli potential calculated using the KLI method described in Sec. II B on top of PBE, HF, OEPx, and OEP2-sc converged quantities
for the Ne atom (left) and the CO molecule (right, plotted along bond axis) for the cc-pVTZ basis set. The inset presents the differences between
PBE, HF, and OEPx results and those obtained from OEP2-sc method.

V. CONCLUSIONS

We have introduced a method that allows one to generate a
real-space representation of the total and Pauli kinetic poten-
tials via the utilization of the OEP method [77,78], taking as a
starting point the KS noninteracting kinetic energy expression.
Moreover, we have reviewed in detail all the presently uti-
lized methods used to compute the aforementioned quantities.
The OEP based method, however, leads to similar numerical
problems as those encountered in the case of the exchange
and exchange-correlation OEP calculations. Thus, we have
derived a common energy denominator approximation to the
kinetic OEP method and then its KLI variant which has
proven to give much more stable and robust results than the
original OEP one. Additionally, we have proved that when the
SCF density and orbitals are employed, at the solution point,
our KLI method is formally equivalent to commonly used
BA formula [52] when KS reference orbitals are considered.
Nevertheless, our KLI approach seems to be superior to the
BA one because it can also be employed starting from HF
orbitals (whereas in this case, the BA formula includes some
undesired nonlocal contributions). We hope that the present
paper will shed some light on the future development of

total and Pauli kinetic potentials for OF-DFT and allow us
to improve existing [121] semilocal expressions for the latter.
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APPENDIX A: BARTOLOTTI-ACHARYA FORMULA

Consider the KS equation[− 1
2∇2 + vs(r)

]
φi(r) = εiφi(r). (A1)

Multiplication by φ∗
i and sum over i yields

τL(r)

ρ(r)
+ vs(r) = 1

ρ(r)

N∑
i

εi|φi(r)|2, (A2)

where τL(r) = −(1/2)
∑

i φ
∗
i (r)∇2φi(r). Using Eq. (24) and

the fact that τ (r) = τW (r) + τP(r), we find

τW

ρ
− ∇2ρ

4ρ
+ τP

ρ
+ vs(r) = 1

ρ(r)

N∑
i

εi|φi(r)|2. (A3)

TABLE I. The expansion coefficients calculated using Bartolotti-Acharya formula (BA) and the one obtained from KLI method described
in Sec. II B (KLI). For all systems, the UGBS basis set was used.

OEPx orbitals HF orbitals

orb. orb. energy BA (εH − εi) KLI orb. energy BA (εH − εi) KLI

Be

1s −4.125 3.816 3.816 −4.733 4.423 3.861
2s −0.309 0.000 − −0.309 0.000 −

Ne

1s −30.820 29.969 29.969 −32.772 31.922 29.961
2s −1.718 0.867 0.867 −1.930 1.080 0.858
2p −0.851 0.000 − −0.850 0.000 −
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On the other hand, the Euler equation [Eq. (1)] reads

δTs[ρ]

δρ(r)
+ vs(r) = μ. (A4)

By subtracting Eq. (A3) from Eq. (A4), after some algebra we
obtain

δTs[ρ]

δρ(r)
= τW

ρ
− ∇2ρ

4ρ
+ τP

ρ
+ 1

ρ(r)

N∑
i

(μ − εi )|φi(r)|2,

(A5)

Now if we remove the von Weizsäcker kinetic potential from
both sides, we easily retrieve Eq. (12).

It is also easy to show that the BA formula can be alter-
natively derived starting from the oscillation profile corrected
Pauli potential

vP,fix(r) = −vs(r) − vW (r) + �vosc(r) + μ, (A6)

that is directly derivable from Eq. (32). Taking into account
that the �vosc(r) can be rewritten as

�vosc(r) = τW (r)

ρ(r)
− ∇2ρ(r)

4ρ(r)
+ τP(r)

ρ(r)
+ vs(r)

− 1

ρ(r)

N∑
i

εi|φi(r)|2, (A7)

one arrives at

vP(r) = τP(r)

ρ(r)
− 1

ρ(r)

N∑
i

εi|φi(r)|2 + μ, (A8)

that is exactly Eq. (12).

APPENDIX B: EQUIVALENCE OF
BARTOLOTTI-ACHARYA FORMULA

AND KLI APPROXIMATION

From the KS equation, we easily find

εi = 〈φi| − 1
2∇2 + vs|φi〉. (B1)

On the other hand, multiplying the Euler equation [Eq. (A4)]
by |φi(r)|2 and integrating over the whole space, one arrives
at

μ = 〈φi|δTs[ρ]

δρ(r)
+ vs|φi〉. (B2)

Now, subtracting Eqs. (B1) and (B2), we get

μ − εi = 〈φi|δTs[ρ]

δρ(r)
+ 1

2
∇2|φi〉 = (vk )ii − (Ts)ii. (B3)

Finally, inserting Eq. (B3) into Eq. (A5) and removing from
both sides the VW potential, we recover Eq. (27).

Alternatively, starting from the HF equations, we find

εHF
i = 〈

φHF
i

∣∣ − 1
2∇2 + vext + vH + v̂NL

x

∣∣φHF
i

〉
, (B4)

where v̂NL
x is a nonlocal HF exchange operator. Multiplying

now the Euler equation [Eq. (A4)] by |φHF
i (r)|2 and integrat-

ing over the whole space, one arrives at

μ = 〈
φHF

i

∣∣δTs[ρ]

δρ(r)
+ vs

∣∣φHF
i

〉
. (B5)

Subtracting Eqs. (B4) and (B5), we get

μ − εHF
i = 〈

φHF
i

∣∣δTs[ρ]

δρ(r)
+ 1

2
∇2

∣∣φHF
i

〉

+ 〈
φHF

i

∣∣vx − v̂NL
x

∣∣φHF
i

〉
. (B6)

Finally, inserting Eq. (B6) into Eq. (A5) and removing from
both sides the VW potential, one obtains the expression for
the Pauli kinetic potential. Note, however, that Eq. (27) does
not include the 〈φHF

i |vx − v̂NL
x |φHF

i 〉 term which additionally
accounts in the μ − εHF

i difference for the nonlocal effect
related to the HF exchange operator.

APPENDIX C: DERIVATION OF δTs[{φq}]
δφp(r′ )

The derivative of the orbital-dependent KE functional
given by Eq. (15) with respect to the orbitals reads

δTs[{φq}]
δφp(r′)

= −1

2

N∑
i

∫
dr

δφ∗
i (r)

δφp(r′)
∇2

r φi(r)

− 1

2

N∑
i

∫
drφ∗

i (r) ∇2
r

(
δφi(r)

δφp(r′)

)

= −1

2

N∑
i

∫
drδ(r − r′)δpi∇2

r φi(r)

− 1

2

N∑
i

∫
drδpiφ

∗
i (r)∇2

r (δ(r − r′)). (C1)

Clearly, whenever φp denotes an unoccupied orbital, we have
δT s/δφp = 0. In the opposite case (φp being an occupied
orbital), a nonzero value is obtained. After some algebra,
Eq. (C1) reduces to

δTs[{φq}]
δφp(r′)

= −1

2
∇2

r φp(r′) − 1

2

∫
drφ∗

p(r) ∇2
r (δ(r − r′)).

(C2)

Now, utilizing the following relation:∫
dr′ f (r′)∇2

r′δ(r − r′)=
∫

dr′δ(r − r′)∇2
r′ f (r′) = ∇2

r f (r),

(C3)

on the right-hand side of Eq. (C2), we recover Eq. (15).
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[23] S. Śmiga, E. Fabiano, S. Laricchia, L. A. Constantin, and

F. Della Sala, J. Chem. Phys. 142, 154121 (2015).
[24] L. A. Constantin, E. Fabiano, and F. Della Sala, J. Chem.

Theory Comput. 13, 4228 (2017).
[25] J. Seino, R. Kageyama, M. Fujinami, Y. Ikabata, and H. Nakai,

J. Chem. Phys. 148, 241705 (2018).
[26] A. C. Cancio and J. J. Redd, Mol. Phys. 115, 618 (2017).
[27] M. Ernzerhof, J. Mol. Struct.: THEOCHEM 501, 59 (2000).
[28] D. Chakraborty, R. Cuevas-Saavedra, and P. W. Ayers, Kinetic

energy Density Functionals from models for the one-electron
reduced density matrix, in Many-body Approaches at Different
Scales: A Tribute to Norman H. March on the Occasion of his
90th Birthday, edited by G. G. N. Angilella, and C. Amovilli
(Springer International Publishing, Cham, 2018), pp. 199–208.

[29] A. Lembarki and H. Chermette, Phys. Rev. A 50, 5328 (1994).
[30] F. Tran and T. A. Wesołowski, Int. J. Quantum Chem. 89, 441

(2002).
[31] A. J. Thakkar, Phys. Rev. A 46, 6920 (1992).
[32] H. Ou-Yang and M. Levy, Int. J. Quantum Chem. 40, 379

(1991).
[33] L. Vitos, B. Johansson, J. Kollar, and H. L. Skriver, Phys. Rev.

A 61, 052511 (2000).

[34] A. Lindmaa, A. E. Mattsson, and R. Armiento, Phys. Rev. B
90, 075139 (2014).

[35] A. Borgoo and D. J. Tozer, J. Chem. Theory Comput. 9, 2250
(2013).

[36] W. Yang, R. G. Parr, and C. Lee, Phys. Rev. A 34, 4586 (1986).
[37] J. P. Perdew and L. A. Constantin, Phys. Rev. B 75, 155109

(2007).
[38] S. Laricchia, L. A. Constantin, E. Fabiano, and F. Della Sala,

J. Chem. Theory Comput. 10, 164 (2014).
[39] A. C. Cancio, D. Stewart, and A. Kuna, J. Chem. Phys. 144,

084107 (2016).
[40] J. Lehtomäki and O. Lopez-Acevedo, Phys. Rev. B 100,

165111 (2019).
[41] W. Mi and M. Pavanello, Phys. Rev. B 100, 041105(R)

(2019).
[42] H. Lee, C. Lee, and R. G. Parr, Phys. Rev. A 44, 768 (1991).
[43] N. H. March, J. Phys. Chem. 86, 2262 (1982).
[44] S. Laricchia, E. Fabiano, L. A. Constantin, and F. Della Sala,

J. Chem. Theory Comput. 7, 2439 (2011).
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