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Charge carrier drop at the onset of pseudogap behavior in the two-dimensional Hubbard model
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We show that antiferromagnetic spin-density wave order in the two-dimensional Hubbard model yields a drop
of the charge carrier density as observed in recent transport measurements for cuprate superconductors in high
magnetic fields on entering the pseudogap regime. The amplitude and the (generally incommensurate) wave
vector of the spin-density wave is obtained from dynamical mean-field theory (DMFT). An extrapolation of the
finite temperature results to zero temperature yields an approximately linear doping dependence of the magnetic
gap �(p) ∝ p∗ − p in a broad doping range below the critical doping p∗. The magnetic order leads to a Fermi
surface reconstruction with electron and hole pockets, where electron pockets exist only in a restricted doping
range below p∗. The dc charge transport properties are computed by combining the renormalized band structure
as obtained from the DMFT with a doping-independent phenomenological scattering rate. A pronounced drop
of the longitudinal conductivity and the Hall number in a narrow doping range below p∗ is obtained.
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I. INTRODUCTION

The structure of the normal state hidden beneath the su-
perconducting dome determines the fluctuations that govern
the anomalous properties of cuprate superconductors in a
wide range of their phase diagram [1]. Recently, this normal
state could be accessed in a series of experiments where
superconductivity was suppressed by applying extremely high
magnetic fields to almost 100 tesla. High field charge trans-
port measurements in YBa2Cu3Oy (YBCO) and several other
cuprate compounds revealed a drastic reduction of the charge
carrier density on entering the pseudogap regime [2–5]. In par-
ticular, the Hall number drops from 1 + p to p in a relatively
narrow range of hole doping p below the critical doping p∗
at the edge of the pseudogap regime. Most recently, nuclear
magnetic resonance (NMR) and ultrasound experiments in
high magnetic fields indicated glassy antiferromagnetic order
in La2−xSrxCuO4 (LSCO) at low temperatures up to the
critical doping p∗ for pseudogap behavior [6]. By contrast, in
the superconducting state forming in the absence of a strong
external magnetic field, magnetic order exists only in the
low-doping regime [7].

The observed drop in charge carrier density below p∗
indicates a phase transition associated with a Fermi-surface
reconstruction. The Hall number drop is qualitatively con-
sistent with the formation of a Néel state [8–10], spi-
ral magnetic order [10–13], charge order [14,15], and ne-
matic order [16]. Alternatively, it may be explained by
strongly fluctuating states without long-range order such as
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fluctuating antiferromagnets [17–20] and the Yang-Rice-
Zhang state [8,10,21], while it appears difficult to relate
the experimental data to incommensurate collinear magnetic
order [22]. Magnetic scenarios received considerable support
from the recent discovery of magnetic order in LSCO for any
doping up to p∗ [6].

The competition between antiferromagnetism and super-
conductivity in cuprates seems to be well captured by the
two-dimensional Hubbard model [23]. Approximate solutions
of the Hubbard model indicate robust magnetic order up to
fairly high doping both at moderate [24] and strong coupling
[25,26], provided that superconductivity is suppressed. Hence,
from a theoretical point of view, the recent observation of
magnetic order in LSCO by Frachet et al. [6] was not totally
unexpected. Theory and experiment also agree in that Néel
order is observed only close to half-filling, while incom-
mensurate magnetic order dominates for sizable hole doping.
Dynamical mean-field calculations suggest that the ordering
wave vector is related to the Fermi surface geometry not only
at weak but also at strong coupling [27].

In this work we present quantitative results for magnetic
order in the Hubbard model and its impact on charge transport.
The magnetic order parameter is computed from dynamical
mean-field theory (DMFT) in the strong-coupling regime
relevant for cuprates. Within DMFT, there is no pairing in-
stability in the repulsive Hubbard model such that “normal”
(nonsuperconducting) solutions are stable even in the absence
of an external magnetic field. We compare results for two
materials with distinct band structures, namely the single-
layer compound LSCO and the bilayer compound YBCO. We
obtain magnetic order up to 21% hole doping for LSCO, while
the critical doping for magnetism in YBCO is significantly
smaller. The dc charge transport properties are computed by
plugging the magnetic order parameter as obtained from the
DMFT calculation into expressions for the longitudinal and
Hall conductivities in a magnetically ordered state derived
previously by two of us [13]. For the transport scattering rate
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we assume a constant (doping-independent) value. We obtain
a sharp drop of the longitudinal and Hall conductivity below
the critical doping for magnetism in qualitative agreement
with the above-mentioned high-field experiments.

Note that the DMFT yields magnetic long-range order
irrespective of the low dimensionality of the system not only
in the ground state but also at low finite temperatures, since it
does not capture nonlocal fluctuations of the magnetic order
parameter orientation. However, the charge carrier density
relevant for the conductivities is not strongly affected by these
fluctuations [19], so that this deficiency of the DMFT is not a
major drawback here.

This paper is structured as follows. In Sec. II we compute
the magnetic gap and the reconstructed Fermi surfaces for
the two-dimensional Hubbard model with band parameters as
appropriate for LSCO and YBCO. The implications for the
longitudinal and Hall conductivities are discussed in Sec. III.
A conclusion in Sec. IV closes the presentation.

II. MAGNETIC ORDER AND FERMI SURFACE
RECONSTRUCTION

A. Model and method

1. Hubbard model and band structure

The Hubbard model [28] describes spin- 1
2 lattice fermions

with a purely local interaction. In standard second quantized
notation, the Hamiltonian reads

H =
∑
j, j′,σ

t j j′c
†
j,σ c j′,σ + U

∑
j

n j,↑n j,↓, (1)

where j and j′ are lattice indices and σ (↑ or ↓) is the spin
orientation. In applications to electrons in solids the interac-
tion is repulsive, that is, U > 0. Shortly after the discovery
of cuprate high-temperature superconductors Anderson [29]
argued that the two-dimensional Hubbard model captures the
most important correlations between the valence electrons
moving in the copper-oxygen planes.

We model the band structure of the copper-oxygen planes
by choosing a two-dimensional square lattice with hopping
amplitudes −t , −t ′, and −t ′′ among nearest, second-nearest,
and third-nearest neighbors, respectively. Fourier transform-
ing this hopping matrix yields the bare dispersion relation

εk = − 2t (cos kx + cos ky) − 4t ′ cos kx cos ky

− 2t ′′(cos 2kx + cos 2ky).
(2)

The ratios t ′/t and t ′′/t are important material-dependent
parameters [30,31].

The bilayer compound YBCO is modeled by two square
lattice planes connected by a momentum-dependent nearest-
neighbor interlayer hopping amplitude t⊥

k . This leads to a
dispersion relation

εk,kz = εk − t⊥
k cos kz, (3)

where the two possible values 0 and π for kz correspond to the
bonding and antibonding band, respectively.

In the following we will first describe the formalism for
purely two-dimensional single-layer systems, and then men-
tion modifications for bilayer compounds.

2. Spiral magnetic order

The spiral order is characterized by a finite expectation
value of the local spin operator

〈S j〉 = 1

2

∑
σ,σ ′

〈
c†j,σ τσσ ′c j,σ ′

〉 = mn̂ j, (4)

where τ = (τ x, τ y, τ z ) are the Pauli matrices, m is the am-
plitude of the on-site magnetization (the same for all sites
in a spiral state), and n̂ j is a unitary vector indicating the
magnetization direction on site j of the form

n̂ j = cos(Q · R j ) êx − sin(Q · R j ) êy. (5)

The magnetization thus lies in the xy plane and its direction
on two neighboring sites differs by an angle Q · (R j − R j′ ),
where Q is an (a priori) arbitrary wave vector and R j are the
coordinates of the lattice sites. For Q = (π, π ) we recover the
Néel state. Due to the SU(2) spin symmetry of the Hubbard
model, the magnetization vector could actually lie in any
plane. The xy plane is chosen merely for convenience. The
magnetic gap, the Fermi surface, and the charge transport do
not depend on this choice.

Fourier transforming the creation and annihilation opera-
tors, one finds that the magnetization in Eq. (4) is given by the
expectation value in momentum space

m = 1

2

∫
d2k

(2π )2

〈
c†k+Q,↑ck,↓ + H.c.

〉
. (6)

For each momentum k, the spiral order couples only two
single-particle states, namely (k,↓) and (k + Q,↑). It is thus
convenient to use the Nambu-like basis (ck+Q,↑, ck,↓). In this
basis, the noninteracting Green’s function has the matrix form

G0
ν,k =

(
iν + μ − εk+Q 0

0 iν + μ − εk

)−1

, (7)

where ν is the fermionic Matsubara frequency and μ is the
chemical potential.

Spiral order in the two-dimensional Hubbard model has
been found in several Hartree-Fock and slave-boson mean-
field studies [32,33] and in functional renormalization group
calculations at moderate coupling [24]. Spiral order has also
been shown to arise naturally on doping an antiferromagnetic
Mott insulator, as described by the t-J model [34,35].

3. Dynamical mean-field equations

To access the strongly interacting regime, we use the
DMFT, which captures nonperturbative effects such as the
Mott metal-insulator transition [36]. The central approxima-
tion underlying the DMFT is a local approximation for the
self-energy, which is exact in the limit of infinite lattice
dimensions [37]. Under this assumption, the Hubbard model
can be mapped onto an Anderson impurity model (AIM),
whose propagator is related to the lattice propagator by a
self-consistency condition [38].

Spiral magnetic order in a DMFT solution of the Hubbard
model has been analyzed previously for the square lattice by
Fleck et al. [26] and for the triangular lattice by Goto et al.
[39]. Using the Nambu basis appropriate for spiral order as
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introduced above, the self-consistency equation reads∫
d2k

(2π )2

[(
G0

ν,k

)−1 − �dmft
ν

]−1 = (
G−1

ν − �dmft
ν

)−1
, (8)

where �dmft
ν is the local self-energy and Gν is the bare propa-

gator of the AIM. The self-energy has the form

�dmft
ν =

(
	ν �ν

�ν 	ν

)
, (9)

where 	ν is the normal self-energy and �ν the magnetic gap
function. The off-diagonal term �ν is nonzero if the spin
SU(2) symmetry is broken by spiral magnetic order.

In Ref. [26] a perturbative impurity solver was used for the
AIM. Here we solve the AIM associated with Gν by exact
diagonalization (ED) of the following Hamiltonian [39]:

HAIM = −μ(n↑ + n↓) + Un↑n↓ +
∑

,σ

ε
 a†

,σ a
,σ

+
∑

,σ,σ ′

[
V σσ ′


 c†σ a
,σ ′ + H.c.
]
, (10)

where c†σ (cσ ) and a†

,σ (a
,σ ) are the creation (annihilation)

operators of the impurity and bath electrons, respectively, and
nσ = c†σ cσ , while ε
 are the bath energy levels and V σσ ′


 the
hybridization amplitudes. The coefficients V ↑↓


 account for a
spin flip during a bath-to-impurity (and vice versa) hopping.
They are nonzero only if magnetic order occurs.

Integrating out the bath electrons, one obtains the effective
bare propagator of the impurity electrons

G−1
ν = (iν + μ)1 −

∑



V†

V


iν − ε


, (11)

where 1 is the identity matrix in spin space and V
 is a matrix
in spin space with elements V σσ ′


 .
The magnetization amplitude m is obtained from the

off-diagonal elements of the full DMFT propagator Gν,k =
[(G0

ν,k )−1 − �dmft
ν ]−1 in the form

m = T

2

∑
ν

∫
d2k

(2π )2

(
G↑↓

ν,k + G↓↑
ν,k

)
. (12)

For the bilayer compound YBCO we assume an antiferro-
magnetic alignment between the spiral states in each layer,
that is, Qz = π . The self-consistency relation (8) is then
modified to

1

2

∑
kz=0,π

∫
d2k

(2π )2

1(
G0

ν,k,kz

)−1− �dmft
ν

= 1

G−1
ν − �dmft

ν

, (13)

where

G0
ν,k,kz

=
(

iν + μ − εk+Q,kz+Qz 0

0 iν + μ − εk,kz

)−1

. (14)

As an impurity solver for the DMFT calculation we use
a recent version of an ED algorithm [40] which is suitable
for reaching relatively low temperatures. We have checked
that our low-temperature results are consistent with results ob-
tained via a continuous-time quantum Monte Carlo algorithm
[41].

FIG. 1. Diagonal (top) and off-diagonal (bottom) components of
the DMFT self-energy as a function of the Matsubara frequency ν

for LSCO parameters at p = 0.1 and T = 0.04t .

B. Results

We use material specific hopping amplitudes which can
be calculated by downfolding ab initio band structures of
cuprates on a one-band Hubbard Hamiltonian [30,31]. For
LSCO we use t ′ = −0.17t , t ′′ = 0.05t , and U = 8t , and
for YBCO t ′ = −0.3t , t ′′ = 0.15t , and U = 10t , with t =
0.35 eV for both compounds. For YBCO we use a bi-
layer model with a momentum-dependent next-nearest inter-
layer hopping amplitude t⊥

k = t⊥(cos kx − cos ky)2 with t⊥ =
0.15t . All results are presented in units of t .

The lowest accessible temperature at which we obtain
a stable numerical solution of the DMFT self-consistency
equation is T = 0.027t for LSCO and T = 0.04t for YBCO
parameters. In the following we include results at T = 0.04t
also for LSCO to disentangle material trends from tempera-
ture dependencies. We obtain homogeneous solutions for any
doping. This is in contrast to Hartree-Fock theory at zero
temperature with spiral magnetic order [33] where phase sep-
aration into regions with distinct densities frequently occurs
in a broad doping regime.

1. Order parameter

Previous calculations at weak coupling [24,42] and the
analysis of the DMFT magnetic susceptibility at strong cou-
pling [27] indicate that the ordering wave vector has the form
Q = (±(π − 2πη), π ) or Q = (π,±(π − 2πη)), where η �
0. The value of η, usually referred to as “incommensurability,”
is determined by minimizing the DMFT free energy [36].

In Fig. 1 we show the normal self-energy 	ν and the
off-diagonal self-energy �ν as a function of frequency for
a specific choice of parameters in the symmetry broken
phase of LSCO. In static mean-field theory (Hartree-Fock)
the off-diagonal self-energy is just a real number, yielding the
magnetic gap, while in DMFT �ν is complex and frequency
dependent. The frequency dependence can be sizable, but it is
smooth. Its value at the lowest Matsubara frequency ν = πT
is close to an extrapolation of �ν to ν = 0.
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FIG. 2. Magnetic gap as a function of doping for LSCO at T =
0.027t (diamonds) and T = 0.04t (squares), and for YBCO at T =
0.04t . The corresponding model parameters are described in the text.
The vertical dashed line indicates the doping beyond which electron
pockets are present in addition to the hole pockets (for T = 0.04t). A
linear extrapolation yielding an estimate of the gap at T = 0 is also
shown (black dashed lines).

In Fig. 2, we show the extrapolated zero-frequency gap
as a function of doping for LSCO and YBCO. The gap
is maximal at half-filling and decreases monotonically with
increasing doping, as expected, and vanishes continuously at
the critical doping p∗. The magnetic order extends over a wide
doping regime for all three cases. For LSCO parameters, the
computed value for p∗ is remarkably close to the critical value
for magnetic order recently observed in LSCO [6]. For YBCO
parameters p∗ is lower than for LSCO. This is due to the
larger in-plane hopping parameters beyond nearest neighbors,
while the interplane hopping leads to a slight increase of
p∗. The doping range where electron pockets are present (in
addition to hole pockets) is restricted to a few percent for both
compounds.

The magnetic phase transition is continuous in all cases.
Due to the mean-field character of the DMFT, the magnetic
gap is expected to be proportional to (p∗ − p)1/2 for p slightly
below p∗ at finite temperatures, consistent with the negative
curvature of �(p) close to p∗ in Fig. 2. At T = 0, which is
not accessible to our calculation, p∗ is slightly larger, and
the nearly linear p dependence seen in Fig. 2 away from
p∗ probably extends until the critical doping is reached, as
indicated by the linear extrapolation in the figure. In principle,
a weak first-order transition is also possible at T = 0.

The spiral wave vector varies with the doping, as can be
seen from Fig. 3, where we plot the incommensurability η

as a function of doping p. In all cases η(p) is lower than p.
Experimentally, the simple relation η(p) = p is approximately

FIG. 3. Incommensurability η as a function of the doping for
LSCO and YBCO at T = 0.04t .

obeyed for LSCO in the doping range 0.06 < p < 0.12, while
it saturates at η ≈ 1/8 for larger doping [43]. For YBCO, the
observed η(p) is significantly lower than p [44]. Note that the
incommensurability η depends not only on doping but also on
temperature. The dependence of the free energy on η is often
very weak such that the optimal choice of η (minimizing the
free energy) depends on tiny details. The impact of η on the
drop of the Hall coefficient is rather weak [13], while it plays
an important role in determining the degree of nematicity.

2. Fermi surfaces

The magnetic gap � leads to a band splitting and thus
to a fractionalization of the Fermi surface. Due to the mo-
mentum independence of the DMFT self-energy, the quasi-
particle bands obtained from a diagonalization of the matrix
propagator for ν → 0 are given by the standard mean-field
expression [33]

E±
k = 1

2 (εk + εk+Q) ±
√

1
4 (εk − εk+Q)2 + �2 − μ̃, (15)

where � is the zero frequency extrapolation of �ν and μ̃ =
μ − Re	ν→0 is the renormalized chemical potential. The
quasiparticle Fermi surfaces are given by E±

k = 0. For YBCO
one has to replace εk by εk,kz with kz = 0, π .

In Fig. 4 the quasiparticle Fermi surfaces of LSCO and
YBCO are shown for doping values close to their respective
critical doping p∗ on the magnetically ordered side. For
YBCO, the bilayer structure splits the Fermi surface into
two branches from the bonding and antibonding bands. In
all cases, both electron and holelike pockets are present, as
expected, due to the relatively small value of � in the vicinity
of the critical doping.

The quasiparticle Fermi surface must not be confused
with the Fermi surface seen in photoemission. The latter is
determined by poles of the diagonal elements of the matrix
Green’s function at zero frequency, corresponding to peaks
in the spectral function at zero frequency, Ak(0). Discarding
the normal self-energy except for the chemical potential shift
by Re	ν→0, and approximating �ν by its zero frequency
extrapolation �, the spectral function for spin up and spin
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FIG. 4. Quasiparticle Fermi surfaces for LSCO and YBCO
slightly below their respective critical doping at T = 0.04t . Fermi
surfaces of electron and hole pockets are plotted in blue and red,
respectively. For YBCO, the solid and dashed lines correspond to
bonding and antibonding bands, respectively.

down electrons is given by [11]

Ak,↑(ω) =
∑
n=±

�2

�2 + (
ξk−Q−E−n

k−Q

)2 δ
(
ω−En

k−Q

)
,

Ak,↓(ω) =
∑
n=±

�2

�2 + (
ξk − En

k

)2 δ
(
ω − En

k

)
, (16)

where ξk = εk − μ̃. For inversion symmetric dispersion rela-
tions (εk = ε−k), as in our case, one can show that Ak,↑(ω) =
A−k,↓(ω). The Fermi surface corresponding to peaks in
Ak(ω) = Ak,↑(ω) + Ak,↓(ω) at ω = 0 is thus given by the
points in momentum spaces obeying E±

k = 0 or E±
k−Q = 0.

The latter equation is equivalent to E±
−k = 0 for inversion

symmetric εk. Note that E±
k and the quasiparticle Fermi

surfaces are not inversion symmetric, while Ak(ω) is. The
spectral weight on the Fermi surface is given by �2

�2+ξ 2
k
, which

is maximal for momenta close to the bare Fermi surface,
where ξk = 0.

At low energies and low temperature, the main effect of the
normal self-energy 	ν is a renormalization of the quasiparti-
cle energies and a reduction of the quasiparticle weight by the
Z factor

Z =
[

1 − ∂Im	ν

∂ν

∣∣∣∣
ν=0

]−1

. (17)

At finite temperatures the differential quotient may be approx-
imated by the quotient Im	ν0/(πT ), where ν0 = πT is the
lowest positive Matsubara frequency. The Z factor reduces the
bare single-particle excitation energy and the gap to ξ̄k = Zξk
and �̄ = Z� and thus also the quasiparticle energies to Ē±

k =
ZE±

k . Moreover, it reduces the quasiparticle contributions
Eq. (16) by a global factor Z . The missing spectral weight
is shifted to incoherent contributions at higher energies. The
spectral function for single-particle excitations can thus be
written as

Ak(ω) =
∑
n=±

Z �̄2

�̄2 + (
ξ̄k − Ē n

k

)2 δ
(
ω − Ē n

k

) + (k → −k)

+ Ainc
k (ω). (18)

FIG. 5. The Z factor as a function of doping for LSCO and
YBCO at T = 0.04t . The Z factor obtained from the unstable (below
p∗) paramagnetic solution is also shown for comparison (dashed
lines).

In Fig. 5 we show the Z factor as obtained from the DMFT as
a function of doping. For p < p∗ we also show the Z factor
found in the unstable paramagnetic solution. One can see that
the magnetic order enhances Z compared to the paramagnetic
phase. The Z factor exhibits only a moderate doping
dependence and assumes material-dependent values between
0.2 and 0.4. The strongest renormalization is found for YBCO.
Note that the paramagnetic Z factors do not vanish for p → 0,
because for our choice of parameters the paramagnetic DMFT
solution at half-filling is still on the metallic side of the Mott
transition.

In Fig. 6 we plot the quasiparticle Fermi surface and the
quasiparticle contribution to the spectral function Ak(0) in
the case of LSCO for various dopings. Electron pockets are
present only very close to the critical doping p∗. In the plots
of the spectral function only the inner side of the pocket
Fermi surface close to the bare Fermi surface is visible
since the contributions on the outer side are suppressed by
a drastically reduced spectral weight [11]. Hence the Fermi
surface seen in photoemission seems to evolve smoothly from
a large Fermi surface at high doping into Fermi arcs in the
pseudogap regime. The backbending edges of the arcs could
be suppressed by a more realistic momentum-dependent
scattering rate.

III. CHARGE TRANSPORT

A. Method

In principle, one could compute charge transport prop-
erties from linear response theory within the DMFT ap-
proximation [36]. However, this involves a rather delicate
analytic continuation from Matsubara to real frequencies.
Moreover, the scattering rates obtained from the DMFT can-
not be expected to provide a good approximation in two
dimensions. Hence, we compute only the magnetic gap, the
incommensurability, and the Z factor from the DMFT, while
we take the scattering rates from estimates obtained from
experiments.
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FIG. 6. Quasiparticle Fermi surfaces (top) and spectral functions Ak(0) (bottom) for LSCO band parameters at various doping values. The
δ peaks in the spectral functions have been broadened by inserting a constant scattering rate � = 0.025t .

More precisely, we compute the charge conductivities for
the mean-field Hamiltonian,

HMF =
∑
k,σ

εkc†k,σ
ck,σ

+
∑

k

�(c†k+Q,↑ck,↓ + c†k,↓ck+Q,↑),

(19)
where the gap � and the ordering vector Q are extracted
from the DMFT solution as described in the previous section.
The chemical potential μ is adapted such that it corresponds
to a doping p in the solution of HMF. The scattering rate
is implemented by adding a small imaginary part i� to the
inverse retarded bare propagator.

The ordinary electrical conductivity σαβ and the Hall con-
ductivity σ

αβγ
H are defined as

jα = [
σαβ + σ

αβγ
H Bγ

]
Eβ , (20)

where jα is the current in direction α = x, y, z. Bγ and Eβ

are the components of the external magnetic and electric
fields, respectively. Building on previous work by Voruganti
et al. [45], exact expressions for the conductivities in a spiral
magnetic state as described by the mean-field Hamiltonian
HMF, Eq. (19), have been derived recently [13].

The longitudinal conductivity is obtained as a sum of intra-
and interband contributions σαα = σαα

intra + σαα
inter, with

σαα
intra =−e2 π

L

∑
k

∑
n=±

∫
dε f ′(ε)En,α

k En,α
k

[
An

k(ε)
]2

, (21)

σαα
inter =−2e2 π

L

∑
k

∫
dε f ′(ε)Fα

k Fα
k A+

k (ε)A−
k (ε), (22)

where L is the number of lattice sites, e is the electron
charge, and f ′(ε) is the first derivative of the Fermi function

f (ε) = (eε/T + 1)−1;

A±
k (ε) = �/π

(ε − E±
k )2 + �2

(23)

is the spectral function of the quasiparticles, which must
not be confused with the spectral function Ak(ω) for single-
particle excitations discussed in the preceding section. The
scattering rate � is assumed to be momentum independent.
E±,α

k = ∂E±
k /∂kα are the quasiparticle velocities, and Fα

k =
[�/(E+

k − E−
k )]∂ (εk+Q − εk )/∂kα . Note that σ xy = σ yx = 0

as the ordering vector Q is Néel antiferromagnetic (compo-
nent π ) in one direction [13].

The Hall conductivity is given by σ
xyz
H = σ

xyz
H,intra + σ

xyz
H,inter

with

σ
xyz
H,intra = e3 π2

3L

∑
k

∑
n=±

∫
dε f ′(ε)

[
An

k(ε)
]3

× [(
En,x

k

)2
En,yy

k − En,x
k En,y

k En,xy
k + (x ↔ y)

]
,

(24)

σ
xyz
H,inter = − e3 π2

L

∑
k

∑
n=±

∫
dε f ′(ε)

[
An

k(ε)
]2

A−n
k (ε)

× [
F x

k

(
Hyx

k En,y
k − Hyy

k En,x
k

) + (x ↔ y)
]

+ 2e3 π2

L

∑
k

∑
n=±

∫
dε f (ε) A+

k (ε)A−
k (ε)

× A+
k (ε) − A−

k (ε)

E+
k − E−

k

× [
F x

k

(
Hyx

k En,y
k − Hyy

k En,x
k + F x

k En,yy
k − F y

k En,yx
k

)
+ (x ↔ y)

]
, (25)
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where E±,αβ

k = ∂2E±
k /∂kα∂kβ is the inverse effective mass

and Hαβ

k = [�/(E+
k − E−

k )] ∂2(εk+Q − εk )/∂kα∂kβ . The Hall
coefficient is given by

RH = σ
xyz
H

σ xxσ yy
, (26)

and the Hall number by nH = (|e|RH )−1. The sign is chosen
such that hole pockets contribute positively and electron pock-
ets negatively to the Hall number.

For the single-layer compound LSCO the momentum sums
in the conductivity formulas are replaced by L−1 ∑

k →∫
d2k

(2π )2 in the thermodynamic limit and for the bilayer com-

pound YBCO by L−1 ∑
k → 1

2

∑
kz=0,π

∫
d2k

(2π )2 .
The ratio of interband and intraband contributions to the

conductivities vanishes as �2 in the limit � → 0, and for
realistic values of the scattering rate in cuprates (in the regime
of interest), the interband contributions are already compar-
atively small [13]. For small � the intraband contributions
assume the simple form known for noninteracting band elec-
trons, with the bare dispersion replaced by the quasiparticle
bands En

k [45]. Our numerical results presented below have
been obtained from the complete expressions which include
interband contributions.

To take the renormalization of the quasiparticle energies
into account, we replace En

k by Ē n
k = ZEn

k as described in
the preceding section. Note that the reduction of spectral
weight of single-particle excitations by the Z factor does not
apply to the conductivities. The reduction of the quasiparticle
contribution to the propagators by Z is canceled by vertex
corrections to the conductivities [46].

B. Results

We now show and discuss results for the longitudinal and
Hall conductivities as obtained by inserting the DMFT result
for the magnetic order parameter and the Z factor into the
expressions for the conductivities presented above. For the
scattering rate we assume the doping-independent value � =
0.025t corresponding to an estimate for La1.6−xNd0.4SrxCuO4

(Nd-LSCO) at low temperatures [47]. The magnetic gap in the
zero temperature results is based on a linear extrapolation of
�(p) as shown in Fig. 2. The zero-temperature limit of η(p)
and Z (p) was obtained by a linear temperature extrapolation
at each doping [48] and a subseqent linear fit in p up to the
zero temperature extrapolation of p∗.

In Fig. 7 we show the longitudinal conductivity σ xx as
a function of doping for LSCO parameters at T = 0.027t
and T = 0.04t and for YBCO parameters at T = 0.04t , to-
gether with an extrapolation to zero temperature. Note that
σ xx/e2 is a dimensionless quantity since we use natural units
where h̄ = 1. Our results for the two-dimensional conductiv-
ity correspond to three-dimensional resistivities of the order
100 μ�cm, in agreement with experimental values [49]. The
expected drop below p∗ is clearly visible. It is particularly
steep at T > 0, which is due to the square-root-type onset
of the order parameter at finite temperature, see Fig. 2. Since
the scattering rate is fixed in our calculations, the drop of σ xx

is exclusively due to a drop of charge carrier concentration

FIG. 7. Longitudinal conductivity as a function of doping for
LSCO at T = 0.027t (dashed line) and T = 0.04t (solid line) and
for YBCO at T = 0.04t (solid line), together with an extrapolation
to zero temperature (dashed-dotted lines). The conductivity in the
unstable paramagnetic phase is also shown for comparison at T =
0.04t (gray lines).

related to the Fermi surface reconstruction by the magnetic
gap.

The Hall number is plotted as a function of doping in Fig. 8,
again for LSCO at T = 0.027t and T = 0.04t , and for YBCO
parameters at T = 0.04t , together with an extrapolation to
zero temperature. A pronounced drop is seen for doping
values below p∗, indicating once again a drop of the charge
carrier concentration.

In the high-field limit ωcτ  1 the Hall number would be
exactly equal to the charge carrier density enclosed by the
Fermi lines, that is, 1 + p in the paramagnetic phase and p
in the magnetically ordered phase, even in the presence of
electron pockets [50]. However, the experiments which mo-
tivated our analysis are in the low-field limit ωcτ � 1, since
τ is rather small, and our expression for the Hall conductivity
has been derived in this limit. In the low-field limit the Hall
number is equal to the carrier density only for a parabolic
dispersion. For low doping the Hall number nH (p) shown
in Fig. 8 indeed approaches the value p, which indicates a
near-parabolic dispersion of the holes in the hole pockets for
small p. For large doping, in the paramagnetic phase, the
Hall number is only slightly above the naively expected value
1 + p in YBCO, while it shoots up to significantly higher
values in LSCO, indicating that the dispersion of charge
carriers near the Fermi surface cannot be approximated by a
parabolic form. The increase of nH (p) way above 1 + p is a
precursor of a divergence at the doping p = 0.33, well above
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FIG. 8. Hall number as a function of doping for LSCO at T =
0.027t (dashed line) and T = 0.04t (solid line) and for YBCO at T =
0.04t (solid line), together with an extrapolation to zero temperature
(dashed-dotted lines). The Hall number in the unstable paramagnetic
phase is also shown for comparison at T = 0.04t (gray lines). The
black dashed lines correspond to the naive expectations nH = p for
hole pockets and nH = 1 + p for a large holelike Fermi surface.

the van Hove point at p = 0.23, which is due to a cancellation
of positive (holelike) and negative (electronlike) contributions
to the Hall coefficient RH .

In Fig. 9 we show the ratio σ yy/σ xx as a function of doping
for LSCO and YBCO at T = 0.04t . The breaking of the
tetragonal symmetry of the square lattice by a spiral order
with η > 0 naturally leads to an anisotropy (or “nematicity”)
in the longitudinal conductivity. For a wave vector of the
form Q = (π − 2πη, π ) the conductivity in the y direction

FIG. 9. Ratio σ yy/σ xx as a function of doping for LSCO (orange)
and YBCO (blue) at T = 0.04t .

is somewhat larger than the one in the x direction. Lowering
the doping below p∗ the anisotropy first increases due to the
increasing magnetic gap but then decreases again due to the
decreasing incommensurability η for low doping.

C. Comparison to experiments

Qualitatively, the pronounced drop of the longitudinal
conductivity and the Hall number observed in experiment is
captured by our theory. The onset of the drop at p∗ = 0.21
in our zero-temperature extrapolation for LSCO is slightly
above the experimental value 0.18 for LSCO [3] but below
the value 0.23 observed for Nd-LSCO [4]. Why the observed
p∗ differs so much between LSCO and Nd-LSCO is unclear.
For YBCO we obtain p∗ = 0.15 while the charge carrier drop
seen in experiment starts at p∗ = 0.19 [2]. Cluster extensions
of the DMFT [51] yield critical doping strengths for the onset
of pseudogap behavior which are also below the experimental
value [52,53]. Hence, for a better quantitative agreement one
probably needs to go beyond the single-band Hubbard model.

The relatively narrow doping range of a few percent in
which the steep charge carrier drop occurs also shows agree-
ment between theory and experiment. However, the Hall
number obtained from our calculations reaches the value
nH (p) = p only at much lower dopings than in the experi-
ments. The convergence is particularly slow for LSCO and
can be attributed to the nonparabolic dispersion of the charge
carriers in the hole pockets. In the experiments, the behavior
nH ≈ p is observed over an extended doping range only at
low doping far below p∗, too. At larger doping, a few percent
below p∗, the Hall number becomes equal to p only at a single
doping value. On further reducing the doping it drops below p
and even becomes negative, presumably due to charge density
wave order [54]. To obtain the steep drop of the Hall number
down to nH = p and below in a theoretical description, one
therefore needs to take the charge order into account. Charge
order on top of spiral order was discussed by Eberlein et al.
[11], but the corresponding transport properties were not yet
computed.

For dopings p � p∗ the Hall number for YBCO is close to
1 + p as naively expected. More precisely, it is slightly larger
in agreement with the experimental observations [2]. By con-
trast, for LSCO parameters nH is much larger than 1 + p for
p � p∗ with an increasing deviation for larger doping. From
a theoretical point of view this behavior is not surprising,
since there is no reason why nH should be close to the charge
carrier density for the strongly nonparabolic dispersion near
van Hove filling. In the experiments p∗ practically coincides
with van Hove filling in Nd-LSCO, and nH is nevertheless
only slightly above 1 + p for p near p∗ [4].

A drop by a factor p/(1 + p) in a narrow doping range
below p∗ has also been observed for the longitudinal conduc-
tivity in Nd-LSCO [4]. This drop corresponds to the expecta-
tion based on a Drude formula for the conductivity only if the
scattering rate and the effective electron mass remain constant
while the charge carrier concentration drops from 1 + p to p.
The drop of σ xx below p∗ obtained from our calculation for
LSCO parameters is less pronounced (see Fig. 7). Since we
assumed a doping-independent scattering rate, this reduction
of the drop compared to the carrier concentration ratio must
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be due to an increase of the average Fermi velocities below
p∗, that is, a decrease of the effective electron mass in a Drude
picture. A priori there is no reason why these quantities should
remain constant when the Fermi surface gets fractionalized
in pockets. Hence, the drop of the longitudinal conductivity
by a factor p/(1 + p) observed for Nd-LSCO might be just
an accident. Of course, it can be reconciled with the theory
by assuming a suitable doping-dependent enhancement of the
scattering rate below p∗ [9,12].

A pronounced temperature and doping-dependent in-
plane anisotropy (nematicity) of the longitudinal conduc-
tivities has been observed in YBCO by Ando et al. [55].
The maximal conductivity ratios σ yy/σ xx observed in these
experiments are much larger than those obtained in our
calculation.

IV. CONCLUSION

Using the two-dimensional Hubbard model to describe the
valence electrons in the CuO2-planes of high-Tc cuprates,
we have shown that antiferromagnetic spin-density wave
order can explain the pronounced drop of the charge car-
rier density at the onset of the pseudogap regime ob-
served in recent transport experiments in high magnetic
fields [2–5].

The amplitude and the wave vector of the spin-density
wave was computed for a strong Hubbard interaction by
DMFT. The wave vector has the form Q = (π − 2πη, π ),
where the incommensurability η increases with doping. The
magnetic gap � decreases monotonically as a function of
doping and vanishes at a critical doping p∗. An extrapolation
of the numerical results (obtained at low finite T ) to zero
temperature yields an approximately linear doping depen-
dence �(p) ∝ p∗ − p in a broad doping range below p∗. The
magnetic order leads to a Fermi surface reconstruction with
electron and hole pockets. Electron pockets exist only in a
restricted doping range near p∗. Due to a strong momentum
dependence of the spectral weight along the reconstructed
Fermi surface, the spectral function for single-particle excita-
tions seen in angular-resolved photoemission seems to exhibit
Fermi arcs instead of hole pockets. The backbending edges of
the arcs in our results could be suppressed by taking a more
realistic momentum-dependent scattering rate into account.

Longitudinal and Hall conductivities were computed by
inserting the magnetic gap, the magnetic wave vector, and the
quasiparticle renormalization Z as obtained from the DMFT
into transport equations for spin-density wave states with a
phenomenological scattering rate [13]. A pronounced drop of
the longitudinal conductivity and the Hall number in a narrow
doping range of few percent below p∗ is obtained in agreement
with the corresponding high-field experiments. The doping
range in which electron pockets exist matches approximately
with the range of the steepest Hall number drop, but there
is no simple theoretical relation between these two features.
For p > p∗ the calculated Hall number nH (p) is close to
the naively expected value 1 + p for YBCO parameters but
significantly higher for LSCO. From a theoretical point of
view this is not surprising since the band structure near
the Fermi surface of LSCO cannot be approximated by a
parabolic band in a broad doping range around p∗. For p <

p∗ the Hall number approaches the value p from above but
converges to this limiting value only for dopings well below
the point where the electron pockets disappear. nH (p) ≈ p is
obtained only in a regime where the hole pockets are suffi-
ciently small so that the quasiparticle dispersion in the pockets
is approximately parabolic. In the cuprates nH (p) does not
converge to p but rather crosses the line nH (p) = p at a doping
value a few percent below p∗ and becomes negative at lower
doping, presumably due to electron pockets associated with
charge density wave order [54]. Computing charge transport
properties in the presence of charge density wave order on top
of magnetic order could thus be an interesting extension of
our work.

The zero-temperature extrapolation of our results for the
magnetic order parameter as a function of doping yields p∗ =
0.21 for LSCO parameters and p∗ = 0.15 for YBCO. These
values are in the correct range, but we are obviously not in a
position to provide accurate predictions for the experimentally
observed critical doping. For a better agreement one probably
needs a material-dependent modeling beyond the single-band
Hubbard model.
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